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MIXED INTERFACE PROBLEMS FOR ANISOTROPIC
ELASTIC BODIES

D. NATROSHVILI

Abstract. Three-dimensional mathematical problems of the elastic-
ity theory of anisotropic piecewise homogeneous bodies are discussed.
A mixed type boundary contact problem is considered where on one
part of the interface, rigid contact conditions are given (jumps of the
displacement and the stress vectors are known), while on the remain-
ing part screen or crack type boundary conditions are imposed. The
investigation is carried out by means of the potential method and the
theory of pseudodifferential equations on manifolds with boundary.

1. Introduction

The investigation deals with the problems of anisotropic elasticity for
composite bodies which have piecewise homogeneous structure. From the
mathematical point of view these problems can be considered as problems
involving a system of partial differential equations with discontinuous coef-
ficients.

The most general structure of the elastic body under consideration math-
ematically can be described as follows. In three-dimensional Euclidean space
R3 we have some closed smooth two-dimensional connected surface S1 which
involves other closed smooth surfaces S2, . . . Sm (Sj ∩ Sk = ∅, j 6= k).
By these surfaces the space R3 is divided into several connected domains
Ω1, . . . , Ωµ. Each domain Ωl is assumed to be filled up by an anisotropic
material with the corresponding (in general, different) elastic coefficients

l
ckjpq =

l
cpqkj =

l
cjkpq, l = 1, . . . , µ, k, j, p, q = 1, 2, 3. (1.1)

The common boundaries of two different materials are called contact
boundaries (surfaces) of the piecewise homogeneous body. If some domains
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represent empty inclusions, then the surfaces corresponding to them to-
gether with S1 are called boundary surfaces of the piecewise homogeneous
body in question.

Such piecewise homogeneous bodies are encountered in many physical,
mechanical, and engineering applications.

Classical and nonclassical mathematical problems for isotropic piecewise
homogeneous bodies are studied in [1, 2, 3] by means of potential methods,
while similar problems for anisotropic piecewise homogeneous bodies are
investigated in [4, 5].

By using the functional methods analogous problems have been consid-
ered in [6].

In the present paper we treat the mixed boundary-contact problems with
discontinuous boundary conditions on contact surfaces. Such types of prob-
lems have not been investigated even for isotropic piecewise homogeneous
bodies. Our study is based on the potential methods and on the theory of
pseudodifferential equations on manifolds with boundary.

A displacement vector corresponding to the domain Ωl will be denoted by
l
u = (

l
u1,

l
u2,

l
u3)T ;

l
T (Dx, n)

l
u(x) denotes the corresponding stress vector cal-

culated on the surface element with the unit normal vector n = (n1, n2, n3):

[
l
T (D, n)

l
u(x)]k =

l
ckjpqDq

l
up(x), Dq = ∂/∂xq.

Here and in what follows, summation over repeated indices is from 1 to
3. The symbol [·]T denotes transposition.

Components of the stress
l
τkj and of the strain

l
ekj tensors are related by

Hooke’s law

l
τkj =

l
ckjpq

l
epq,

l
epq = 2−1(Dp

l
uq + Dq

l
up).

The potential energy

l
E(

l
u,

l
u) =

l
ekj

l
τkj =

l
ckjpq

l
ekj

l
epq (1.2)

is assumed to be a positive-definite quadratic form in symmetric variables
l
ekj =

l
ejk. Therefore there exists positive δ0 > 0 such that

l
E(

l
u,

l
u) ≥ δ0

l
ekj

l
ekj . (1.3)

The basic homogeneous equation of statics reads as (provided bulk forces
are equal to zero)

l
A(Dx)

l
u(x) = 0, x ∈ Ωl, (1.4)
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where
l
A = ‖

l
Akp‖,

l
Akp(D) =

l
ckjpqDjDq.

It follows from (1.1)–(1.3) that
l
A is a formally self-adjoint strongly elliptic

matrix differential operator (cf. [6]), and consequently for any ξ ∈ R3 and
for arbitrary complex vector η ∈ C3 the inequality

Re
( l
A(ξ)η, η

)

=
l
A(ξ)η · η ≥ δ1|ξ|2|η|2

holds with δ1 = const > 0. As usual (a, b) = a · b = akbk denotes a scalar
product of two vectors.

2. Formulation of the Problems

For simplicity we consider the following model problems. The piecewise
homogeneous anisotropic body is assumed to consist of two connected do-
mains Ω1 = Ω+ and Ω2 = Ω−, provided Ω+ is bounded (diam Ω+ < ∞)
and Ω− = R3\Ω+

; Ω
+

= Ω+ ∪S, S = ∂Ω±. Thus we have only one contact
surface S and the whole space R3 = Ω1∪Ω2 can be considered as a piecewise
homogeneous anisotropic body with the interface S. For domains of general
structure described in Section 1, all problems can be investigated similarly
with slight modifications.

Let a smooth, connected, non-self-intersecting curve γ ⊂ S divide the
surface S into two parts S1 and S2 : S = S1 ∪ S2 ∪ γ; Sl = Sl ∪ γ.

The basic mixed contact (interface) problems can be formulated in the
following way.

C–D Problem. Find the vectors
1
u and

2
u satisfying equations (1.4) in

Ω1 and Ω2, respectively, and the contact conditions

[
1
u(x)]+ − [

2
u(x)]− = f(x),

[
1
T (Dx, n(x))

1
u(x)]+ − [

2
T (Dx, n(x))

2
u(x)]− = F (x),







x ∈ S1,
(2.1)

(2.2)

[
1
u(x)]+ = f+(x),

[
2
u(x)]− = f−(x),

}

x ∈ S2;
(2.3)

(2.4)

C–N Problem. Find the vectors
1
u and

2
u satisfying equations (1.4) in

Ω1 and Ω2, respectively, contact conditions (2.1), (2.2) on S1, and

[
1
T (Dx, n(x))

1
u(x)]+ = F+(x),

[
2
T (Dx, n(x))

2
u(x)]− = F−(x),







x ∈ S2;
(2.5)

(2.6)

here the symbols [·]± denote limiting values on S from Ω±, and f , f±, F ,
and F± are the given vector functions. In addition, in both problems we
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suppose that

2
u(x) = o(1) (2.7)

as |x| → +∞. Condition (2.7) implies (see [7,8])

Dα 2
u(x) = O(|x|−1−|α|) as |x| → +∞ (2.8)

for an arbitrary multi-index α = (α1, α2, α3), |α| = α1 + α2 + α3.

From particular problems of mathematical physics and mechanics (see
[9]) it is well known that, in general, solutions to mixed boundary value prob-
lems or the derivatives of the solutions possess singularities in the vicinity
of curves of discontinuity of boundary conditions (curve γ) and they do not
belong to the class of regular functions C1(Ω±). Moreover, for C∞-regular
data of problems they do not possess even Cα-smoothness with α > 1/2 in
the neighbourhood of γ while being infinitely differentiable elsewhere (i.e.,
in Ω±\γ).

Because of this fact we consider both mixed problems formulated above
in Sobolev spaces

1
u ∈ W 1

p (Ω+),
2
u ∈ W 1

p,loc(Ω
−) (2.9)

with a view to involve a wider class of boundary data.
For conditions (2.1)–(2.6) to make sense we need some functional spaces.
By Bν

p,q(Ω
+), Bν

p,q,loc(Ω
−), Bν

p,q(S) and Hν
p (Ω+), Hν

p,loc(Ω
−), Hν

p (S) are
meant the Besov and the Bessel potential spaces, respectively, with ν ∈ R,
1 < p < ∞, 1 ≤ q ≤ ∞ (see [10,11,12]).

The definition of regular function spaces Ck+α(Ω±) and Ck+α(S) with
integer k ≥ 0 and 0 < α < 1 can be found, e.g., in [1].

Let us introduce the following functional spaces on Sj ⊂ S (j = 1, 2) :

Bν
p,q(Sj) =

{

f |Sj : f ∈ Bν
p,q(S)

}

,

˜Bν
p,q(Sj) =

{

f ∈ Bν
p,q(S) : supp f ⊂ Sj

}

⊂ Bν
p,q(S),

Hν
p (Sj) =

{

f |Sj : f ∈ Hν
p (S)

}

,

˜Hν
p (Sj) =

{

f ∈ Hν
p (S) : supp f ⊂ Sj

}

⊂ Hν
p (S)

(cf. [13,14]).
For vector function (2.9) the boundary and contact conditions for the

displacement vectors can be considered in terms of traces. The first-order
derivatives of the functions from W 1

p (Ω+) and W 1
p,loc(Ω

−) belong to Lp(Ω+)
and Lp,loc(Ω−), and they have no traces on S. For the boundary and contact
conditions (2.2), (2.5), and (2.6) to make sense, we proceed as follows.
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For regular solutions
l
u ∈ C1(Ωl) ∩ C2(Ωl) of equation (1.4) and for

arbitrary regular vectors
l
v ∈ C1(Ωl) (with diam supp

2
v < +∞) the following

Green’s formulas are valid (see, e.g., [15])
∫

Ω+

1
A(D)

1
u · 1

v dx = −
∫

Ω+

1
E(

1
u,

1
v) dx +

∫

S
[
1
T (D, n)

1
u]+ · [1v]+dS, (2.10)

∫

Ω−

2
A(D)

2
u · 2

v dx = −
∫

Ω−

2
E(

2
u,

2
v) dx−

∫

S
[
2
T (D,n)

2
u]+ · [2v]+dS, (2.11)

where n is an exterior unit normal vector on S,

l
E(

l
u,

l
v) =

l
ckjpqDk

l
ujDp

l
vq. (2.12)

We can rewrite (2.10) and (2.11) as follows (provided that
1
u and

2
u satisfy

(2.9) and equation (1.4) (in the distributional sense))

〈[
1
T (D,n)

1
u]+, [

1
v]+〉S =

∫

Ω+

1
E(

1
u,

1
v)dx, (2.13)

〈[
2
T (D, n)

2
u]−, [

2
v]−〉S = −

∫

Ω−

2
E(

2
u,

2
v)dx (2.14)

with
1
v ∈ W 1

p′(Ω
+),

2
v ∈ W 1

p′,comp(Ω−), p′ =
p

p− 1
.

It is evident that

[
l
v]±S ∈ B1−1/p

p′,p′ (S) = B1/p
p′,p′(S), l = 1, 2,

and the symbol 〈·, ·〉S defines the duality between B−1/p
p,p (S) and B1/p

p′,p′(S),
which for the smooth functions f and g has the form

〈f, g〉S = (f, g)L2(S) =
∫

S
f · g dS.

Due to (2.12), dualities (2.13) and (2.14) define [
1
T

1
u]+ and [

2
T

2
u]− on S

correctly, and

[
1
T

1
u]+, [

2
T

2
u]− ∈ B−1/p

p,p (S).

The conditions on stresses in (2.2), (2.5), and (2.6) are to be understood
in the sense just described.

Now we can write precisely conditions for boundary data in the above
formulated problems:

1
u and

2
u satisfy (2.7), (2.9) and

f ∈ B1−1/p
p,p (S1), f± ∈ B1−1/p

p,p (S2),

F ∈ B−1/p
p,p (S1), F± ∈ B−1/p

p,p (S2).
(2.15)
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It is evident that the compatibility conditions are

f0 =

{

f on S1

f+ − f− on S2
∈ B1−1/p

p,p (S) (2.16)

in the C–D Problem, and

F 0 =

{

F on S1

F+ − F− on S2
∈ B−1/p

p,p (S) (2.17)

in the C–N Problem.
In what follows these conditions are assumed to be fulfilled.
Moreover, for simplicity we assume that S and γ possess the C∞-smooth-

ness (in fact it suffices to have some finite regularity).

3. Potentials and Their Properties

Let
l
Γ be the fundamental matrix of the operator

l
A(D)

l
A(D)

l
Γ(x) = Iδ(x),

where δ(·) is the Dirac distribution and I is the unit matrix I = ‖δkj‖3×3.
It can be proved that (see [15])

l
Γ(x) = (2π)−3

∫

R3
e−ixξA−1(−iξ) dξ = − 1

8π|x|

∫ 2π

0

l
A−1(aη̃) dϕ, (3.1)

where
l
A−1(ξ) is the matrix reciprocal to

l
A(ξ) and a = ‖akj‖3×3 is an

orthogonal matrix with the property aT x = (0, 0, |x|)T , η̃ = (cos ϕ, sin ϕ, 0).
Obviously, (3.1) implies

l
Γ(tx) = t−1

l
Γ(x),

l
Γ(x) =

l
Γ(−x) = [

l
Γ(x)]T , t > 0.

Let us introduce the single- and double-layer potentials

(
l
V g)(x) =

∫

S

l
Γ(x− y)g(y) dSy,

(
l
U)(x) =

∫

S
[

l
T (Dy, n(y))

l
Γ(y − x)]T g(y) dSy.

The superscript l indicates that the potential corresponds to the funda-

mental matrix
l
Γ.

The properties of these potentials are studied in [4,15] in regular Ck+α

spaces, and in [14] in the Bessel potential Hν
p and the Besov Bν

p,q spaces.
We need some results obtained in the above cited works. We shall for-

mulate them in the form of the following theorems.
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Theorem 3.1 ([4,15]). Let k ≥ 0 be an integer and 0 < α < 1. Then

l
V : Ck+α(S) → Ck+1+α(Ω±), (3.2)
l
U : Ck+α(S) → Ck+α(Ω±). (3.3)

For any g ∈ Ck+α(S) and x ∈ S

[(
l
V g)(x)]+ = [(

l
V g)(x)]− = (

l
V g)(x) ≡

l
Hg(x), (3.4)

[
l
T (Dx, n(x))(V g)(x)]± =

(

∓ 1
2 I +

l
K

)

g(x), (3.5)

[(
l
Ug)(x)]± =

(

± 1
2 I +

l
K∗)g(x), (3.6)

[
l
T (Dx, n(x))(Ug)(x)]+ =[

l
T (Dx, n(x))(Ug)(x)]−≡

l
Lg(x), (3.7)

k ≥ 1,

where n(x) is an exterior to Ω+ unit normal vector at the point x ∈ S; I
stands for the unit operator,

l
Hg(x) =

∫

S

l
Γ(x− y)g(y) dSy,

l
Kg(x) =

∫

S

l
T (Dx, n(x))

l
Γ(x− y)g(y) dSy,

l
K∗g(x) =

∫

S
[

l
T (Dy, n(y))

l
Γ(y − x)]T g(y) dSy,

l
Lg(x) = lim

Ω±3z→x∈S

l
T (Dz, n(x))

∫

S
[

l
T (Dy, n(y))

l
Γ(y − z)]T g(y) dSy.

Theorem 3.2 ([4,15]). Let k ≥ 0 be an integer and 0 < α < 1. Then

(i)
l
H : Ck+α(S) → Ck+1+α(S),
l

K,
l

K∗ : Ck+α(S) → Ck+α(S),
l
L : Ck+1+α(S) → Ck+α(S);

(3.8)

(3.9)

(3.10)

(ii) operators (3.5) and (3.6) are mutually adjoint singular integral oper-
ators (SIO) of normal type (i.e., their symbol matrices are not degenerated)
and their indices are equal to zero; operators (3.8) and

1
2I +

l
K, 1

2I +
l
K∗ : Ck+α(S) → Ck+α(S)

are invertible; moreover

l
H−1 : Ck+1+α(S) → Ck+α(S)
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is a singular integro-differential operator;
(iii) for h ∈ Cα(S) and g ∈ C1+α(S)

(

−
l
Hh, h

)

L2(S) ≥ 0,
( l
Lg, g

)

≥ 0

with equality only for h = 0 and g(x) = [a × x] + b, where a and b are
arbitrary three-dimensional constant vectors and [· × ·] stands for a vector
product;

(iv) the general solution for the homogeneous equation
(

− 1
2I + K∗)g = 0

is g(x) = [a×x]+b, x ∈ S, with arbitrary three-dimensional constant vectors
a and b.

Theorem 3.3 ([15]). Operator
l
L is a singular integro-differential oper-

ator, and the equations

l
K∗ l

H =
l
H

l
K,

l
K

l
L =

l
L

l
K∗,

l
H

l
L = − 1

4I + (
l
K∗)2,

l
L

l
H = − 1

4I + (
l
K)2

hold.

Theorem 3.4 ([14]). Operators (3.8)– (3.10) can be extended by conti-
nuity to the following bounded operators:

l
H : Hν

p (S) → Hν+1
p (S)

[

Bν
p,q(S) → Bν+1

p,q (S)
]

,
l
K,

l
K∗ : Hν

p (S) → Hν
p (S)

[

Bν
p,q(S) → Bν

p,q(S)
]

,
l
L : Hν+1

p (S) → Hν
p (S)

[

Bν+1
p,q (S) → Bν

p,q(S)
]

,
1 < p < ∞, 1 ≤ q ≤ ∞, ν ∈ R.

(3.11)

Operators
l
H,

l
K,

l
K∗, and

l
L are pseudodifferential operators of order −1,

0, 0, and 1, respectively.
Operators (3.11) and

1
2I +

l
K, 1

2I +
l
K∗ : Hν

p (S) → Hν
p (S)

[

Bν
p,q(S) → Bν

p,q(S)
]

are invertible.
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Theorem 3.5 ([14]). Operators (3.2) and (3.3) can be extended by con-
tinuity to the following bounded operators:

l
V : Bν

p,p(S) → Hν+1+1/p
p (Ω+)

[

Bν
p,q(S) → Bν+1+1/p

p,q (Ω+)
]

, (3.12)
l
U : Bν

p,p(S) → Hν+1/p
p (Ω+)

[

Bν
p,q(S) → Bν+1/p

p,q (Ω+)
]

, (3.13)
l
V : Bν

p,p(S) → Hν+1+1/p
p,loc (Ω−)

[

Bν
p,q(S) → Bν+1+1/p

p,q,loc (Ω−)
]

, (3.14)
l
U : Bν

p,p(S) → Hν+1/p
p,loc (Ω−)

[

Bν
p,q(S) → Bν+1/p

p,q,loc(Ω
−)

]

, (3.15)

1 < p < ∞, 1 ≤ q ≤ ∞, ν ∈ R.

Jump relations (3.4)– (3.7) on S remain valid for operators (3.12)– (3.15),
respectively, in the corresponding spaces.

Theorem 3.6 ([14]). Operators −
l
H and

l
L are formally self-adjoint

pseudodifferential operators with positive-definite principal symbol matrices
whose entries are homogeneous functions of order −1 and 1, respectively.
Inequalities (iii) of Theorem 3.2 hold for any h ∈ H−1/2

2 (S) and any g ∈
H1/2

2 (S) with the same conclusion (they are to be understood as dualities).

Theorem 3.7 ([14]). The operators

l
H : ˜Bν

p,q(Sj) → Bν+1
p,q (Sj), (3.16)

l
H : ˜Hν

p (Sj) → Hν+1
p (Sj), (3.17)

l
L : ˜Bν+1

p,q (Sj) → Bν
p,q(Sj), (3.18)

l
L : ˜Hν+1

p (Sj) → Hν
p (Sj), j = 1, 2, (3.19)

are bounded for any 1 < p < ∞, 1 ≤ q ≤ ∞, ν ∈ R.
Operators (3.16) and (3.18) are Fredholm operators if

1/p− 3/2 < ν < 1/p− 1/2 (3.20)

holds.
Operators (3.17) and (3.19) are Fredholm operators if and only if condi-

tion (3.20) holds.
Operators (3.16)– (3.19) are invertible for all ν satisfying (3.20).
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4. One Auxiliary Contact Problem (C–Problem)

Let us consider the following contact (interface) problem for a piecewise
homogeneous space R3 = Ω1 ∪ Ω2 with an interface S = ∂Ω1 = ∂Ω2 (see
Section 2).

C–Problem. Find regular vectors
1
u and

2
u satisfying equations (1.4) in

Ω1 and Ω2, respectively, the contact conditions on S

[1
u(x)

]+ −
[2
u(x)

]−
= ϕ(x), (4.1)

[ 1
T (Dx, n(x))

1
u(x)

]+ −
[ 2
T (Dx, n(x))

2
u(x)

]−
= Φ(x), x ∈ S, (4.2)

and conditions (2.7) at infinity; here ϕ and Φ are the given vector-functions
on S

ϕ ∈ C1+α(S), Φ ∈ Cα(S).

Formulas (2.10) and (2.11) together with (1.3) imply

Lemma 4.1. The homogeneous C-Problem has only the trivial solution.

Let us look for the vectors
1
u and

2
u in the form of single layer potentials

with special densities

l
u(x) = V

[ l
H−1 l

g
]

(x), x ∈ Ωl, (4.3)

where
l
H−1 is the operator inverse to

l
H (see Theorem 3.2.ii)).

Then by Theorem 3.1 due to (4.1) and (4.2) for the unknown vector densi-

ties
l
g we obtain the following equations on S:







1
g − 2

g = ϕ,
(

− 1
2I +

1
K

) 1
H−11

g −
(1

2I +
2
K

) 2
H−12

g = Φ.
(4.4)

(4.5)
Denote

1
N =

(

− 1
2I +

1
K

) 1
H−1,

2
N = −

( 1
2I +

2
K

) 2
H−1, N =

1
N +

2
N. (4.6)

By (4.4), (4.5), and (4.6) we have






1
g = ϕ +

2
g,

N
2
g = Φ−

1
Nϕ.

(4.7)

(4.8)
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Lemma 4.2. Operators
1
N ,

2
N , and N are singular integro-differential

operators with the following properties:

(i)
1
N,

2
N, N : Ck+1+α(S) → Ck+α(S); (4.9)

for f , g, h ∈ C1+α(S)

(
1
Nf, f)L2(S) ≥ 0, (

2
Ng, g)L2(S) ≥ 0, (Nh, h)L2(S) ≥ 0 (4.10)

with equality only for f(x) = [a × x] + b, g = 0, and h = 0; a and b are
arbitrary three-dimensional constant vectors.

(ii) Operators
1
N ,

2
N , and N are formally self-adjoint pseudodifferential

operators of order 1 and their principal (homogeneous of order 1) symbol
matrices are positive definite;

(iii) Operators (4.9) can be extended by continuity to the following bounded
operators:

1
N,

2
N, N : Hν+1

p (S) → Hν
p (S)

[

Bν+1
p,q (S) → Bν

p,q(S)
]

. (4.11)

Inequalities (4.10) remain valid for any f, g, h ∈ H1/2
2 (S) with the same

conclusion.
The operator N defined by (4.9) and (4.11) is invertible.

Proof. The fact that
1
N ,

2
N and N are singular integro-differential oper-

ators follows directly from representation (4.6), since
l
H−1 is a singular

integro-differential operator and (± 1
2I +

l
K) are singular integral operators.

Therefore (4.9) holds.
To prove inequalities (4.10) we proceed as follows. If f and g have the

C1+α smoothness, then the single-layer potentials
1
V [

1
H−1f ] and

2
V [

2
H−1g]

are regular solutions of equations (1.4) in Ω1 and Ω2, respectively, satisfying
condition (2.8). Due to formulas (2.10) and (2.11) we have

∫

Ω+

1
E(

1
V [

1
H−1f ],

1
V [

1
H−1f ]) dx =

=
∫

S

[(

− 1
2I +

1
K

) 1
H−1f

]

· f dS ≥ 0, (4.12)
∫

Ω−

2
E(

2
V [

2
H−1f ],

2
V [

2
H−1f ]) dx =

= −
∫

S

[( 1
2I +

2
K

) 2
H−1g

]

· g dS ≥ 0, (4.13)

where
l
E is defined by (2.12) and satisfies condition (1.3).
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If in (4.12) and (4.13) we have equalities, then (see [15])

1
V [

1
H−1f ](x) = [

1
a× x] +

1
b, x ∈ Ω1 = Ω+,

2
V [

2
H−1g](x) = [

2
a× x] +

2
b, x ∈ Ω2 = Ω−;

and applying (2.8), we conclude

f(x) = [
1
a× x] +

1
b, g = 0, x ∈ S.

Thus (4.10) holds and assertion (i) is proved.

Formally self-adjointness of the operators
1
N ,

2
N , and N readily follows

from Theorem 3.3. Indeed,

N∗ =
( 1
H−1)∗(− 1

2I +
1
K∗)−

( 2
H−1)∗( 1

2I +
2
K∗) =

− 1
2

1
H−1 +

1
H−1

1
K∗ − 1

2

2
H−1 −

2
H−1

2
K∗ =

= − 1
2

1
H−1 +

1
K

1
H−1 − 1

2

2
H−1 −

2
K

2
H−1 = N.

The remaining part of assertion (ii) follows from Theorems 3.4, 3.2.(ii),
3.6, and inequality (4.10).

The proof of assertion (iii) is quite similar to that of Theorems 3.4 and 3.6.
Due to the general theory of elliptic pseudodifferential equations on mani-

folds without boundary, the invertibility of the operator N follows both from
the properties of its symbol matrix and from the positiveness of N .

Remark 4.3. Note that the operator N−1 inverse to operators (4.9) and
(4.11) is a pseudodifferential operator of order −1 with the following map-
ping properties:

N−1 : Ck+α(S) → Ck+1+α(S), k ≥ 0, 0 < α < 1,

N−1 : Hν
p (S) → Hν+1

p (S)
[

Bν
p,q(S) → Bν+1

p,q (S)
]

,

1 < p < ∞, 1 ≤ q ≤ ∞, ν ∈ R.

The principal symbol matrix of N−1 is a positive-definite symmetric ma-
trix with homogeneous (of order −1) entries.

Now from (4.3), (4.7), (4.8) and Lemmas 4.1 and 4.2 we get the repre-
sentation of the unique solution of the C–problem:

1
u(x) =

1
V

[ 1
H−1N−1(Φ +

2
Nϕ)

]

(x), x ∈ Ω1, (4.14)

2
u(x) =

2
V

[ 2
H−1N−1(Φ−

1
Nϕ)

]

(x), x ∈ Ω2, (4.15)

where ϕ and Φ are vector functions contained in (4.1) and (4.2).
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These formulas imply that if

ϕ ∈ Ck+1+α(S), Φ ∈ Ck+α(S),

then
l
u ∈ Ck+1+α(Ωl), l = 1, 2

(see Lemma 4.2 and Theorem 3.1).

Remark 4.4. Note that if

ϕ ∈ Bν+1
p,p (S)

[

Bν+1
p,q (S)

]

, Φ ∈ Bν
p,p(S)

[

Bν
p,q(S)

]

,

then by (4.14) and (4.15)

1
u ∈ Hν+1+1/p

p (Ω1)
[

Bν+1+1/p
p,q (Ω1)

]

,
2
u ∈ Hν+1+1/p

p,loc (Ω2)
[

Bν+1+1/p
p,q,loc (Ω2)

]

,

1 < p < ∞, 1 ≤ q ≤ ∞, ν ∈ R

(see Theorems 3.4 and 3.5 and Lemma 4.2).

5. Investigation of the C–D Problem

Let us consider the C–D problem (2.1)–(2.4), (2.9), (2.15), (2.16). First
we substitute conditions (2.3) and (2.4) by the equivalent equations

[
1
u(x)]+ − [

2
u(x)]− = f+(x)− f−(x),

[
1
u(x)]+ + [

2
u(x)]− = f+(x) + f−(x),

}

x ∈ S2.
(5.1)

(5.2)
Due to (2.16) it is evident that the difference

[
1
u(x)]+ − [

2
u(x)]− = f0(x) ∈ B1−1/p

p,p (S)

is a known vector on S.
Let ˜F be some fixed extension of the vector F from S1 onto S2 which

preserves the space, i.e.,

˜F ∈ B−1/p
p,p (S), ˜F |S1 = F.

Any other extension Φ of the vector F from S1 onto S2 preserving the
space can be represented in the form

Φ = ˜F + Ψ ∈ B−1/p
p,p (S)

with arbitrary
Ψ ∈ ˜B−1/p

p,p (S2).
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Let us now look for the solution of the C–D problem in the form (cf.
(4.14), (4.15))

1
u(x) =

1
V

[ 1
H−1N−1( ˜F + Ψ +

2
Nf0)

]

(x), x ∈ Ω1, (5.3)

2
u(x) =

2
V

[ 2
H−1N−1( ˜F + Ψ−

1
Nf0)

]

(x), x ∈ Ω2, (5.4)

with the known vector-functions f0, ˜F and the unknown vector-function Ψ.
It is evident that equation (1.4) and conditions (2.1), (2.2), and (5.1) are

satisfied. Condition (5.2) leads to the following pseudodifferential equation
for Ψ:

N−1Ψ = 1
2 (f+ + f−)−N−1

˜F − 1
2N−1(

2
N −

1
N)f0 on S2. (5.5)

Note that by virtue of Lemma 4.2 and Remark 4.3

Q ≡ −N−1
˜F − 1

2N−1(
2
N −

1
N)f0 ∈ B1−1/p

p,p (S) (5.6)

and

q ≡ 1
2 [f+ + f−] + Q|S2 ∈ B1−1/p

p,p (S2). (5.7)

Let r2 be the restriction operator to S2. Then (5.5) can be rewritten in
the form

r2N−1Ψ = q on S2 (5.8)

with q defined by (5.7), (5.6).
We have to investigate the solvability of (5.8) in the Besov space

˜B−1/p
p,p (S2).
To this end denote by σ(x; ξ), x ∈ S, ξ ∈ R2 the principal symbol matrix

of the operator N−1 whose entries are homogeneous functions of order −1
with respect to ξ.

To establish the Fredholm property of equation (5.8) due to the general
theory of pseudodifferential equations on manifold with boundary, we must
investigate eigenvalues of the matrix

M = [σ(x; 0,−1)]−1[σ(x; 0, 1)]

(see [16]–[20]).

Lemma 5.1. Eigenvalues of the matrix M for any x ∈ S are positive
numbers.
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Proof of the Lemma follows from positive definiteness of the matrix
σ(x; ξ) for any x ∈ S and |ξ| = 1. Indeed, if λ is an eigenvalue of the
matrix M , then there exists η ∈ C3\{0} such that Mη = λη, whence

σ(x; 0, 1)η = λσ(x; 0,−1)η,

i.e.,
λ =

(

σ(x; 0, 1)η · η
)[(

σ(x; 0,−1)η · η
)]−1

> 0.

Lemma 5.1 implies (see [16]–[18], 20])

Theorem 5.2. Let 1 < p < ∞, 1 ≤ q ≤ ∞. Then the operators

r2N−1 : ˜Bν
p,q(S2) → Bν+1

p,q (S2), (5.9)

r2N−1 : ˜Hν
p (S2) → Hν+1

p (S2) (5.10)

are bounded for all ν ∈ R.
Operator (5.9) is a Fredholm operator if (3.20) holds.
Operator (5.10) is a Fredholm operator if and only if conditions (3.20)

hold.
Both operators (5.9) and (5.10) are invertible if ν and p satisfy inequality

(3.20).

It is evident that Theorem 5.2 yields unique solvability of equation (5.8)
for 4/3 < p < 4. Consequently, we obtain the following

Theorem 5.3. Let 4/3 < p < 4 and conditions (2.15), (2.16) be fulfilled.
Then the C–D problem has a unique solution satisfying (2.9). The solution
is representable in the form (5.3), (5.4) with Ψ defined by the uniquely solv-
able pseudodifferential equation (5.8).

The method described above makes it possible to improve the regularity
property of the solution by increasing the smoothness of boundary data.

Theorem 5.4. Let 4/3 < p < 4, 1 < t < ∞, 1 ≤ q ≤ ∞, 1/t − 3/2 <

ν < 1/t − 1/2, and
1
u,

2
u be the solution of the C–D problem satisfying

conditions (2.9). In addition, if

f ∈ Bν+1
t,t (S1), f± ∈ Bν+1

t,t (S2), F ∈ Bν
t,t(S1),

f0 =

{

f on S1

f+ − f− on S2
∈ Bν+1

t,t (S),

then
1
u ∈ Hν+1+1/t

t (Ω1),
2
u ∈ Hν+1+1/t

t,loc (Ω2).

If

f ∈ Bν+1
t,q (S1), f± ∈ Bν+1

t,q (S2), F ∈ Bν
t,q(S1), f0 ∈ Bν+1

t,q (S),
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then
1
u ∈ Bν+1+1/t

t,q (Ω1),
2
u ∈ Bν+1+1/t

t,q,loc (Ω2).

In particular, if

f ∈ Cα(S1), f± ∈ Cα(S2), F ∈ Bα−1
∞,∞(S1), f0 ∈ Cα(S),

then
1
u ∈ Cα′(Ω1),

2
u ∈ Cα′(Ω2)

for any α′ ∈ (0, α0), α0 = min{α, 1/2}.

Proof of the theorem follows from Theorems 5.2, 3.5 and the well-known
embedding theorems for the Besov and the Bessel potential spaces (cf. sim-
ilar theorems in [14, 20]).

6. Investigation of the C–N Problem

Now let us consider the C–N problem (2.1), (2.2), (2.5), (2.6), (2.9),
(2.15), (2.17). We shall study this problem by applying the approach de-
scribed in Section 5. First we substitute conditions (2.5) and (2.6) by the
equivalent ones

[ 1
T (Dx, n(x))

1
u(x)

]+ −
[ 2
T (Dx, n(x))

2
u(x)

]−
= F+(x)− F−(x), (6.1)

[ 1
T (Dx, n(x))

1
u(x)

]+
+

[ 2
T (Dx, n(x))

2
u(x)

]−
= F+(x) + F−(x), (6.2)

x ∈ S2.

Condition (6.1) combined with (2.2) gives (on S)

[ 1
T (Dx, n(x))

1
u
]+ −

[ 2
T (Dx, n(x))

2
u
]−

= F 0(x) ∈ B−1/p
p,p (S)

due to (2.17).
Denote by ˜f some fixed extension of the vector f from S1 onto S2 pre-

serving the functional space

˜f ∈ B1−1/p
p,p (S), ˜f

∣

∣

S1
= f.

Any other extension ϕ of the vector f from S1 onto S2 preserving the
functional space can be represented in the form

ϕ = ˜f + ψ ∈ B1−1/p
p,p (S)

with
ψ ∈ ˜B1−1/p

p,p (S2).
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Now if we look for the solution of the C–N problem in the form

1
u(x) =

1
V

{ 1
H−1N−1[F 0 +

2
N( ˜f + ψ)

]}

(x), x ∈ Ω1, (6.3)

2
u(x) =

2
V

{ 2
H−1N−1[F 0 −

1
N( ˜f + ψ)

]}

(x), x ∈ Ω2, (6.4)

then equation (1.4) and conditions (2.1), (2.2), (6.1) are satisfied automati-
cally. Condition (6.2) implies the following equation on S2 for the unknown
vector ψ ∈ ˜B1−1/p

p,p (S2)

2
NN−1

1
Nψ = 1

2 (F+ + F−) + 1
2 (

2
N −

1
N)N−1F 0 −

2
NN−1

1
N ˜f. (6.5)

This equation is obtained with the help of the equality

1
NN−1

2
N =

2
NN−1

1
N (6.6)

which can be easily verified.
It is evident that

Q1 ≡ 1
2 (

2
N −

1
N)N−1F 0 −

2
NN−1

1
N ˜f ∈ ˜B−1/p

p,p (S), (6.7)

q1 ≡ 1
2 (F+ + F−) + Q1

∣

∣

S2
∈ B−1/p

p,p (S2). (6.8)

Using the notation

P =
2
NN−1

1
N,

from (6.5), (6.7), and (6.8) we get

r2Pψ = q1 on S2, (6.9)

where r2 is again the restriction operator (to S2).
Solvability of equation (6.9) will be studied by the method applied in the

previous section.
To this end we have to examine the properties of the operator P .

Lemma 6.1. Operator P is a formally self-adjoint and non-negative op-
erator with positive-definite principal symbol matrix. For arbitrary h ∈
C1+α(S)

(Ph, h)L2(S) ≥ 0

with equality only for h = [a× x] + b, where a and b are arbitrary constant
vectors.
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Operators

P : Ck+1+α(S) → Ck+α(S), k ≥ 0, 0 < α < 1, (6.10)

P : Bν+1
p,q (S) → Bν

p,q(S), (6.11)

P : Hν+1
p (S) → Hν

p (S), (6.12)

1 < p < ∞, 1 ≤ q ≤ ∞, ν ∈ R,

are bounded.

Proof. Mapping properties (6.10)–(6.12) follow from Lemma 4.2. Self-ad-
jointness is the consequence of equality (6.6) and Lemma 4.2.ii).

Let h ∈ C1+α(S) and consider single layer potentials

1
v(x) =

1
V

[ 1
H−1N−1

2
Nh

]

(x), x ∈ Ω1,

2
v(x) = −

2
V

[ 2
H−1N−1

1
Nh

]

(x), x ∈ Ω2.

It is easy to show that these potentials are regular vectors in Ω1 and Ω2,
respectively, and relation (2.8) holds for them. Therefore, making use of
Green’s formulas (2.10) and (2.11), we get

∫

Ω+

1
E(

1
v,

1
v)dx =

∫

S

1
NN−1

2
Nh ·N−1

2
Nh dS,

∫

Ω−

2
E(

2
v,

2
v)dx =

∫

S

2
NN−1

1
Nh ·N−1

1
NhdS.

Upon taking the sum and using (6.6) and (4.6), we obtain
∫

Ω+

1
E(

1
v,

1
v)dx +

∫

Ω−

2
E(

2
v,

2
v)dx =

∫

S

1
NN−1

2
Nh · h dS ≥ 0.

In the case of the equality to zero we conclude that
1
v and

2
v are rigid

displacements

1
v(x) = [a′ × x] + b′, x ∈ Ω1;

2
v(x) = [a′′ × x] + b′′, x ∈ Ω2.

Condition (2.8) for
2
v implies:

2
v(x) = 0, x ∈ Ω2. Therefore

2
H−1N−1

1
Nh =

0. Invertibility of the operators
2
H−1 and N−1 (see Theorem 3.2.ii) and

Lemma 4.2) yields
1
Nh = 0, whence by Theorem 3.2.iv) h(x) = [a× x] + b.

Now it is easy to verify that [
1
v(x)]+S = h(x), i.e., a′ = a, b′ = b.

Positive definiteness of the principal symbol matrix of the operator P
can be shown in the following way.
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Denoting by σ, σ1, σ2, and σ0 the principal symbol matrices of the op-

erators N−1,
1
N ,

2
N , and P , respectively, we have (see (6.6))

σ0(x; ξ) = σ2(x; ξ)σ(x; ξ)σ1(x; ξ) =

= σ1(x; ξ)σ(x; ξ)σ2(x; ξ), x ∈ S, ξ ∈ R2\{0}. (6.13)

By Lemma 4.2.(ii) all matrices on the right-hand side of (6.13) (and their
reciprocal matrices) are positive definite. Moreover, the matrix σ(x; ξ) has
the form (see (4.6))

σ(x; ξ) =
[

σ1(x; ξ) + σ2(x; ξ)
]−1

.

Hence

σ−1
0 (x; ξ) = σ−1

1 (x; ξ)
[

σ1(x; ξ) + σ2(x; ξ)
]

σ−1
2 (x; ξ) : C3 → C3

is the isomorphism on C3 for any x ∈ S and |ξ| = 1.
Let

η = σ−1
0 (x; ξ)ζ, ζ ∈ C3.

Due to the positive definiteness of the matrices σl(x; ξ), l = 1, 2, we have
(

σ0(x; ξ)η, η
)

=
(

ζ, σ−1
0 (x; ξ)ζ

)

=

=
(

σ−1
1 (x; ξ)ζ, ζ)

)

+
(

σ−1
2 (x; ξ)ζ, ζ) ≥ δ′|ζ|2 > 0

for any x ∈ S, |ξ| = 1 and η ∈ C3\{0}.
Therefore σ0(x; ξ) is a positive-definite matrix (since it is positive and

nondegenerated).

Remark 6.2. From the proof of Lemma 6.1 it follows that the general
solution of equation Ph(x) = 0, x ∈ S, is representable by the formula
h(x) = [a× x] + b, x ∈ S, with arbitrary tree-dimensional vectors a and b.
This implies that if h solves the above homogeneous equation and supp h 6=
S, then h(x) = 0, x ∈ S.

Lemma 6.3. Eigenvalues of the matrix
[

σ0(x; 0,−1)
]−1[

σ0(x; 0, 1)
]

,

where σ0(x; ξ) is the principal symbol of P , are positive numbers.

Proof. It is quite similar to that of Lemma 5.1.
Thus the operator P belongs to the class of pseudodifferential operators

for which the equations of type (6.9) on manifolds with boundary were
studied in [16]–[18]. As in Section 5 the results obtained in the above-cited
papers allow us to formulate the following theorems.
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Theorem 6.4. Let 1 < p < ∞, 1 ≤ q ≤ ∞. Then the operators

r2P : ˜Bν+1
p,q (S2) → Bν

p,q(S2), (6.14)

r2P : ˜Hν+1
p (S2) → Hν

p (S2) (6.15)

are bounded for all ν ∈ R.
Operator (6.14) is a Fredholm operator if (3.20) holds.
Operator (6.15) is a Fredholm operator if and only if (3.20) holds.
Both operators (6.14) and (6.15) are invertible if ν satisfies inequality

(3.20).

Theorem 6.5. Let 4/3 < p < 4 and conditions (2.15), (2.17) be fulfilled.
Then the C–N problem has a unique solution of the class (2.9). The solution
is representable in the form of (6.3) and (6.4) with ψ defined by the uniquely
solvable pseudodifferential equation (6.9).

Theorem 6.6. Let 4/3 < p < 4, 1 < t < ∞, 1 ≤ q ≤ ∞, 1/t − 3/2 <

ν < 1/t − 1/2 and let
1
u,

2
u be the solution of the C–N problem satisfying

(2.9). In addition, if

f ∈ Bν+1
t,t (S1), F ∈ Bν

t,t(S1), F± ∈ Bν
t,t(S2)

and F 0 defined by (2.17) belongs to Bν
t,t(S), then

1
u ∈ Hν+1+1/t

t (Ω1),
2
u ∈ Hν+1+1/t

t,loc (Ω2).

If

f ∈ Bν+1
t,q (S1), F ∈ Bν

t,q(S1), F± ∈ Bν
t,q(S2), F 0 ∈ Bν

t,q(S),

then
1
u ∈ Bν+1+1/t

t,q (Ω1),
2
u ∈ Bν+1+1/t

t,q,loc (Ω2).

In particular, if

f ∈ Cα(S1), F ∈ Bα−1
∞,∞(S1), F± ∈ Bα−1

∞,∞(S2), F 0 ∈ Bα−1
∞,∞(S),

then
1
u ∈ Cα′(Ω1),

2
u ∈ Cα′(Ω2)

for any α′ ∈ (0, α0), α0 = min{α, 1/2}.

Remark 6.7. The C–D and C–N problems involve as particular cases
the screen and the crack type problems. In fact, if both elastic materials
occupying Ω1 and Ω2 are the same and conditions (2.1) and (2.2) are ho-
mogeneous (f = 0, F = 0), then the surface S1 becomes a formal interface;
the displacement vector satisfies equation (1.4) for the points x ∈ S1, and
we obtain either the screen type or the crack type problems for R3 with a
cut along the surface S2.
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