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GEOMETRICAL DECOMPOSITION OF THE FREE LOOP
SPACE ON A MANIFOLD WITH FINITELY MANY

CLOSED GEODESICS

THOMAS MORGENSTERN

Abstract. In Morse theory an isolated degenerate critical point can
be resolved into a finite number of nondegenerate critical points by
perturbing the totally degenerate part of the Morse function inside
the domain of a generalized Morse chart. Up to homotopy we can
admit pertubations within the whole characteristic manifold. Up to
homotopy type a relative CW-complex is attached, which is the pro-
duct of a big relative CW-complex, representing the degenerate part,
and a small cell having the dimension of the Morse index.

Introduction

In [1] Gromoll and Meyer succeeded in extending the Morse theory to
isolated critical points and orbits. Applying these methods in [2] they were
able to show that the sequence of Betti numbers with rational coefficients
of the free (Sobolev) loop space ΛM is bounded for a closed manifold M
with only finitely many bona fide closed geodesics. The free loop space ΛM
is homotopy equivalent to a CW-complex. The intention of this paper is
to show that not only these homological numbers are bounded but also the
number of cells in all but finitely many dimensions is bounded for some
homotopy equivalent CW-complex. It also gives a geometrical insight into
why the Gromoll–Meyer theorem is true and motivates the use of special
homotopies adapted to the free loop space.

If, on the other hand, the sequence of Betti numbers is unbounded then
there have to be infinitely many prime non-trivial closed geodesics for every
differentiable structure and Riemannian metric on M . This was shown
to be true for all rationally nonmonogenic simply connected manifolds by
Vigué-Poirrier and Sullivan [3]. This answers the existence question for a lot
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of manifolds excluding, for example, spheres and projective spaces. There
are also results for nonsimply connected manifolds but this case becomes
more complicated the more complicated the fundamental group gets. The
homological Gromoll–Meyer theorem is true for arbitrary field coefficients
and one sees it to be true for integer coefficients as well, interpreting the
Betti numbers as minimal number of generators. For simply connected
ΛM our Theorem 1 thus follows from the abstract Proprosition [4, V. 8.3].
A nonsimply connected space is not determined by its homology, as the
example of the Poincaré manifolds shows.

Theorem 1 (Geometrical Gromoll–Meyer Theorem). If (M, g) is
a closed differentiable Riemannian manifold, I(M) is the isometry group of
M , G := I(M) ⊕ O(2), and if there are only finitely many G-orbits of
geometrically distinct nontrivial closed geodesics, then there are numbers R
and Q and a CW-complex which is homotopy equivalent to ΛM and has less
than R cells of dimension greater than or equal to Q.

The extension of Morse theory was given by three lemmas. The first is a
generalization of the Morse lemma [1, Lemma 1] introducing characteristic
manifolds. The second step is a localization argument [1, Lemma 3] using
what is now called Gromoll–Meyer pairs. Finally, the last and most impor-
tant one is the Shifting theorem [1, Theorem], which can also be regarded
as a kind of product formula. These lemmas proved to be very fruitful
and a great deal of work nowadays relies on them. Using some classical
results by Bott and observations about iterated characteristic manifolds the
homological proof is then given in [2].

The homological proof uses excision strongly, which we don’t have at
hand in homotopy theory. We will therefore introduce pairs of subsets very
similar to the isolating neighborhoods of the Conley index. With the help
of these and a telescope argument we are able to recover the homotopy type
of the space under consideration. To do this we don’t take the step towards
a local index, we don’t divide out the exit set. Consequently we have to
find appropriate properties for these pairs enabling the step from local to
global and conditions under which we can verify them. As in the original
Gromoll–Meyer theory the product property turns out to be important and
involved. We as well divide the proof into two parts, first setting up an
appropriate general machinery and then using it in our special case.

1. h-Morse Theory

We are interested in the homotopy category of compactly generated pairs
(X,A). From the homotopy type of filtration pairs (Xn, Xn−1) of a relative
NDR filtration we can draw conclusions about the homotopy type of the
pair (X, A) (see [5, Lemma 6] or [6, A.5.11]).
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Definition 2. A relative h-CW-decomposition of the pair (X, A) is a
relative NDR-filtration of (X, A) such that

[hCW]: for all n there is some relative CW-complex with (Xn, Xn−1)'
(Yn, Bn) CW-complex.

A relative h-CW-complex (X, A) is a pair of compactly generated spaces
admitting a relative h-CW-decomposition.

Lemma 3. If there is a relative h-CW-decomposition of (X, A) then the
pair is homotopy equivalent to a relative CW-complex with one cell (of the
same dimension) for every cell in (Yn, Bn) [6, A.4.12 and A.4.15].

The step from local to global will use the following proposition:

Proposition 4 ([12, 7.5.7]). If X = X1 ∪ X2 is the union of closed
subsets, the inclusion i2 : X1 ∩ X2 ↪→ X2 is a closed cofibration and if
(Y, B) is a closed cofibred pair, homotopy equivalent via r to (X2, X1 ∩X2),
then there is a map Φ such that (Φ, idX1) : (X1 tr Y,X1) ' (X,X1).

Corollary 5. If X = X1∪X2 as in Proposition 4 and in addition, (Y, B)
is a relative CW-complex then (X1 tr Y, X1) is a relative CW-complex with
one cell for each cell of (Y,B).

1.1. Local h-Decomposition Pairs. A strict Liapunov function for the
topological flow ϕ on the Hausdorff space M is a continuous function f :
M → R, which is strictly decreasing along ϕ(x) for all x 6∈ Kϕ, the
stationary points. As usual, the set fk = Mk := {x ∈ M |f(x) ≤ k}.
A closed subset T has the mean value property with respect to the flow
if for any x ∈ T and two times t1, t2 with t1 < t2, ϕ(x, t1) ∈ T and
ϕ(x, t2) ∈ T implies ϕ(x, t) ∈ T for all t1 < t < t2. We define the follow-
ing sets: the exit set T− := {x ∈ T |∀t > 0 : ϕ(x, t) 6∈ T}, the entrance
set T+ := {x ∈ T |∀t > 0 : ϕ(x,−t) 6∈ T}, and the vertical boundary set
T0 := cl(∂T − (T− ∪ T+)).

Lemma 6. Let T ⊆ M be a closed set with the mean value property with
respect to the flow ϕ and let kT ∈ R such that f(T+) ≥ kT and f(T0 ∪
T−) ≤ kT . Then x ∈ T+ − (T0 ∪ T−) if and only if there is t1 > 0 with
ϕ(x, t1) ∈ IntT ; furthermore ϕ(x, t) ∈ Int T for all 0 < t ≤ t1.

Corollary 7. Let the assumptions of Lemma 6 be valid and ∂T ∩Kϕ =
∅. Denote by ∂fk∪T T the boundary of T in fk∪T . Then ∂fk∪T T = T0∪T− .

Lemma 8. If for some x ∈ T with f(x) ≥ k there is t1 ≥ 0 with
ϕ(x, t1) ∈ T− ∩ f−1[k,∞) and t2 ≥ 0 with f(ϕ(x, t2)) = k and ϕ(x, t2) ∈ T ,
then t1 = t2.
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Lemma 9. If x ∈ M with f(x) ≥ k ≥ kT and there is t1 ≥ 0 with
ϕ(x, t1) ∈ T+ ∩ f−1[k,∞) and t2 ≥ 0 with f(ϕ(x, t2)) = k and ϕ(x, t2) ∈
cl(f−1(k)− T ), then t1 = t2.

For a subset A ⊆ T we define T+(A) := {x ∈ T |∃t ≥ 0 : ϕ(x, t) ∈ A}. A
closed subset A has in T the retraction property from above (with respect
to ϕ), if the function x 7→ tA(x) := minϕ(x,t)∈A{t ≥ 0} is continuous on
T+(A).

Definition 10. Let M be a Hausdorff space, ϕ a topological flow, and
Kϕ its stationary points. Let f : M → R be a strict Liapunov function
for ϕ. A local h-decomposition pair of K ⊆ Kϕ corresponding to ϕ and f
is a pair (U, Ũ) together with a number k, the separation level, having the
following properties:

[hm1]: U, Ũ ⊆ M are closed;
[hm2]: the top T := cl(U − Ũ) has the mean value property with

respect to the flow ϕ and Kϕ ∩ T = K and K ⊆ Int(T );
[hm3]: T has the retraction property from above with respect to ϕ;
[hm4]: f(T+) ≥ k, f(Ũ) ≤ k and T ∩ Ũ = T0 ∪ T−;
[hm5]: the inclusion i : Ũ ↪→ U is a cofibration.

Corollary 11. By [hm4] fk − (U − Ũ) is closed, and by [hm5] fk −
(U − Ũ) ↪→ fk ∪ U is a cofibration [7, Satz 7.36].

Definition 12. A local h-decomposition pair has the following properties:
[hm6]: if there is a relative CW-complex (Y, B) homotopy equivalent

to (U, Ũ);
[exc]: if T0 = ∅, κ := inf f(K) > k, T− has the retraction property

from above in T and if for all x ∈ T there is either t ≥ 0 with
ϕ(x, t) ∈ T− or otherwise ϕ(x, t) → K as t →∞.

1.2. h-Morse Decomposition.

Definition 13. Let f be a strict Liapunov function for ϕ and T a closed
subset with the mean value property. ϕ has the property (D) for f on T if:

(i) for every open neighborhood O of the stationary points Kϕ the
level sets T ∩ f−1(u)−O have the retraction property from above;

(ii) for every x ∈ T there is t > 0 with ϕ(x, t) ∈ T− or, otherwise, for
the flow line ϕ(x) : (α(x), β(x)) → M either f ◦ ϕ(x) → −∞ or
ϕ(x) → Kϕ as t → β(x).

If f is differentiable and satisfies the Palais–Smale condition (C) on T
then the negative gradient flow ϕ has the property (D) for f on T . If f is
bounded from below on T then the flow line either converges to the critical
points or ends in T−.
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Definition 14. Let M be a metrizable space and A, X closed subsets
with A ⊆ X. Let ϕ be a topological flow on M and T := cl(X − A) have
the mean value property. Let f : M → R be a strict Liapunov function for
ϕ, and ϕ have the property (D) for f on T . Let {Kl}l∈L be a partition
of the stationary points Kϕ ∩ (X − A) such that for every l ∈ L there is a
local h-decomposition pair (Ul, Ũl), kl of Kl with Ul ⊆ X and the following
properties:

[hm7]: There is a countable index set J = [0, . . . , jmax] or J = N0

and a partition L =
⋃

j∈J Lj such that for all l, m ∈ Lj we
have kl = km. There is a nondecreasing function u : J → R
such that uj := u(j) = kl for all l ∈ Lj . If J = N0 we have
the convergence uj → supx∈X−A f(x) as j →∞.

[hm8]: For i < j we have Tl ∩ Um = ∅ if l ∈ Lj and m ∈ Li.
[hm9]: For all l, m ∈ Lj with l 6= m we have Ul ∩ Um = ∅ and,

moreover,
⋃

l∈Lj
Ul is closed.

[hm10]: For all l ∈ L we have Tl ⊆ X − A. A has the retraction
property from above in X, T− ∪ T0 = ∂XA, f(T0) < u0 and
Au0 ↪→ Xu0 −

⋃

l∈L(Ul − Ũl) is deformation retract.

The relative h-Morse decomposition of (X,A) is a relative NDR filtration of
(X, A) defined by setting X−1 := A, and for n = 2j

Xn := Xn−1 ∪ (Xuj −
⋃

l∈Li, i≥j

(Ul − Ũl)) ,

Xn+1 := Xn ∪
⋃

l∈Lj

Ul .

If J = [0, . . . , jmax] is finite, we always set Xn := X for n ≥ 2(jmax + 1).

Proposition 15. If all local h-decomposition pairs have the property
[hm6], then a relative h-Morse decomposition is a relative h-CW-decom-
position of (X,A).

Proof. Let n = 2j. Let rl : (Yl, Bl) → (Ul, Ũl) be homotopy equiva-
lences to relative CW-complexes, and rn :=

∐

l∈Lj
rl :

∐

l∈Lj
(Yl, Bl) →

⋃

l∈Lj
(Ul, Ũl). All ιj :

⋃

l∈Lj
Ũl ↪→

⋃

l∈Lj
Ul are cofibrations, and by Propo-

sition 4 (Xn+1, Xn) = (Xn ∪
⋃

l∈Lj
Ul, Xn) ' (Xn trn

∐

l∈Lj
Yl, Xn), a rel-

ative CW-complex with cells eλ
γ for every cell eλ

γ of a relative CW-complex
∐

l∈Lj
(Yl, Bl).

We show that Xn−1 ↪→ Xn is deformation retract. By [hm10] X−1 ↪→
X0 is deformation retract. If uj−1 = uj we have Xn = Xn−1. Let uj−1 < uj .
For every x ∈ Xn − Xn−1 there is 0 < t < +∞ with ϕ(x, t) ∈ A or
f(ϕ(x, t)) ≤ uj−1 or ϕ(x, t) ∈ Tl for some l ∈ L.
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From Lemmas 8 and 9 we see that t(A∪
⋃

kl<uj
Tl)−f<uj−1 )(x) =

tf−1(uj−1)∩X−Int(A∪
⋃

l∈L
Tl)

(x) when both are defined; therefore tXn−1 is

continuous on Xn. We define the deformation retraction by h : Xn×I → Xn

(x, s) 7→ ϕ(x, stXn−1(x)). The homotopy stays in Xuj −
⋃

l∈Li, i≥j(Ul − Ũl)
because for every x ∈ Xn−Xn−1 we have ϕ(x, t) 6∈

⋃

l∈Li, i≥j Ul− Ũl for all
t > 0.

1.3. Existence of Local h-Decomposition Pairs. Let G be a compact
Lie group operating continuously on a differentiable manifold µ : G×M →
M , and let µg, defined by µg(x) := µ(g, x), be differentiable for every g ∈ G.
We say that G operates differentiably on c if the map µ(c)c : G → M ,
g 7→ g.c is differentiable. Let (B, g) be a Riemannian manifold, π : E →
B a differentiable Rimannian vector bundle with a bundle metric 〈 , 〉p.
Let G operate differentiably on c ∈ B and B ∼= G/Gc; moreover, let G
operate continuously fiber-preserving and orthogonal on π : E → B. Let
Õ ⊆ E be an open neighborhood of the zero section 0G.c. Let g̃ : Õ →
Pos T (Õ) and 〈 , 〉ξp be Riemannian metrics on Õ. There is a closed
invariant neighborhood D ⊆ Õ of the zero section on which 〈 , 〉ξp and
g̃(ξp) are uniformly equivalent, i.e., a2〈 , 〉ξp ≤ g̃(ξp) ≤ b2〈 , 〉ξp for some
0 < a < 1 < b and all ξp ∈ D. Let f̃ : Õ → R be an invariant differentiable
function. Let Õp := Õ ∩ π−1(p), f̃p := f̃ |Õb and grad f̃p ∈ Ep be the
gradient of f̃p formed by the Hilbert metric 〈 , 〉p on Ep. Let grad f̃ be
the gradient formed by 〈 , 〉ξp and ϕ be the flow of − grad f̃ . Assume that
grad f̃ = grad f̃p under the canonical identification of the vertical tangential
bundle with the bundle itself. Let g̃rad f̃ be the gradient formed by g̃ and
ϕ̃ the flow of − g̃rad f̃ .

Lemma 16. If (Uc, Ũc), k is a Gc-invariant local h-decomposition pair
of Kc corresponding to f̃c and the flow ϕc of − grad f̃c with Uc ⊆ Oc, then
(U, Ũ) := (G.Uc, G.Ũc), k is a local h-decomposition pair of K := G.Kc

corresponding to f̃ and ϕ. If (Uc, Ũc) has [exc] so does (U, Ũ).

Proof. The flow ϕ preserves fibres, hence [hm2] and [hm4] are fulfilled.
ξp 7→ inf{t ≥ 0|ϕ(ξp, t) ∈ U} is invariant because the flow is. Choosing
continuous bundle charts over V with the help of the G-operation one sees
that [hm3] holds and also that V × Ũc ↪→ V × Uc is a cofibration. That
it is globally a cofibration can be seen by partitions of unity and [5], hence
[hm5] holds.

Let the gradient grad e(ξp) of e(ξp) = 〈ξp, ξp〉p formed by 〈 , 〉ξp be
bounded on D, and let f̃ satisfy the Palais–Smale condition (C) with respect
to g̃ on D. Let 0G.c be an isolated critical submanifold of f̃ and f̃(0G.c) = κ.
K f̃ = Kϕ̃ = Kϕ.
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Lemma 17. For constants ε, % > 0 with D%(0G.c) ⊆ D and f̃−1[κ −
ε, κ + ε] ∩D%(0G.c) ∩K f̃ = 0G.c there is a (classical) G-invariant Gromoll–
Meyer pair (W,W−), κ − δ of 0G.c corresponding to ϕ, ϕ̃ and f̃ inside
f̃−1[κ− ε, κ + ε]∩D%(0G.c). Every Gromoll–Meyer pair is a local h-decom-
position pair.

Proof. Choose % ≥ %1 > %0 > 0, set β2 := inf{g̃(ξp)( g̃rad f̃(ξp), g̃rad f̃(ξp)) |
ξp ∈ D%1(0G.c) − B%0(0G.c)} > 0 because condition (C) is fulfilled and set,
finally, α2 := supξp∈D%1 (0B)〈grad e(ξp), grad e(ξp)〉ξp < ∞. We define a

function w(ξp) := 〈ξp, ξp〉p + η(f̃(ξp)− κ) and

W := wω ∩ f̃−1[κ− δ, κ + δ′],

W− := W ∩ f̃−1(κ− δ),

where η > α
aβ , %2

0 + ηδ′ ≤ ω ≤ %2
1 − ηδ and 0 < δ, δ′ < min{ε, %2

1−%2
0

2η }. (cf.
[2, §2], [8, Theorem 5.3 and p. 74]). The level set f−1(κ− δ)∩W is regular,
hence one can deform a small neighborhood of W− in W with the help of
the flow ϕ inside of W onto W− and with [7, Satz 3.13, Satz 3.9, Lemma
3.4, Satz 3.26] it follows that W− ↪→ W is a cofibration.

On a differentiable Riemannian manifold (M, g) let there be a differen-
tiable function f : M → R, its negative gradient − grad f formed with g and
its flow ϕ. For a diffeomorphism ψ : Õ → ψ(Õ) ⊆ M set f̃ := ψ∗f : Õ → R
and g̃ := ψ∗g.

Corollary 18. If K ⊆ ψ(Õ) is a critical set and (U, Ũ), k a local h-
decomposition pair corresponding to ϕ̃ and f̃ , then the pair (ψ(U), ψ(Ũ)), k
is a local h-decomposition pair of K corresponding to ϕ and f .

Proof. Flow lines entering ψ(U) in a finite time enter ψ(Õ)− ψ(U) before-
hand. But there tψ(T )(x) is continuous, hence it is continuous everywhere.
ψ is a homeomorphism, hence the claim.

Let H = H+ ⊕H− be a direct sum of Hilbert spaces, O an open neigh-
borhood of 0 and f : (x, y) 7→ 1

2 (‖x‖2 − ‖y‖2). Let Dλ ⊆ H− be the closed
unit disc with λ = dim H−. Then the following is true:

Lemma 19. (W,W−) ' (W− tα Dλ,W−) ' (Dλ, Sλ−1), where α :
Sλ−1 → W is given by ȳ 7→ (0,

√
2δȳ) [9, I §3].

Let H = Rν be finite-dimensional and f : O → R be differentiable,
0 an isolated critical point, (U, Ũ), k a local h-decomposition pair of 0
corresponding to f and ϕ. Furthermore, let % > 0 with B%(0) ⊆ U − Ũ .
Then there is a differentiable function f̄ : O → R with only finitely many
nondegenerate critical points and f |O − B%(0) = f̄ |O − B%(0) [10, Lemma
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8.6], [1, eq. (3)] or [8, Theorem 5.7]. (U, Ũ), k is also a local h-decomposition
pair corresponding to f̄ and its negative gradient flow ϕ̄.

Corollary 20. If (U, Ũ), k has [exc] it has [hm6], i.e., there is a ho-
motopy equivalent finite relative CW-complex (Y, Ũ).

Proof. Construct a relative h-Morse decomposition of (U, Ũ) with the help
of f̄ . Take open disjoint Morse charts for the finitely many critical points
of f̄ in the interior of U − Ũ and the images of Gromoll–Meyer-pairs, using
Corollary 18 and Lemma 19. The claim follows from Lemma 19, Proposition
15 and Lemma 3.

Proposition 21 ([11]). If (p, p̃) : (E, Ẽ) → B is a fibration pair of
Hurewicz fibrations (including the property of it being a closed cofibred pair),
if B is 0-connected and homotopy equivalent to a CW-complex P , and
if the fibres (F, F̃ ) are homotopy equivalent to some relative CW-complex
(K, L), then (E, Ẽ) is homotopy equivalent to a relative CW-complex hav-
ing the same numbers of cells of the same dimension as the product of
CW-complexes P × (K, L).

Proof. We can assume that B is already a CW-complex. (E, Ẽ) is a cofibred
pair over B. Look first at B′ ∪ϕ Dn ∼= B′ ∪ en = B′ ∪ χ(Dn). Set E′ :=
p−1(B′) and Ẽ′ := E′ ∩ Ẽ. (E′ ∪ Ẽ) ∩ p−1(en) = p̃−1(en) ∪ p−1(∂en) ↪→
p−1(en) is a closed cofibration (use [12, 7.3.9]). (χ∗E, χ∗Ẽ) is a cofibred
pair, hence because Dn ' ∗ there is a fiber homotopy equivalence of pairs
Φ : Dn× (F, F̃ ) → (χ∗E, χ∗Ẽ). Using a homotopy equivalence i : (K, L) →
(F, F̃ ), set µ := p∗χ ◦ Φ ◦ (id×i)|Dn ×A ∪ Sn−1 ×X and define

(K ′, L′) := ((E′ ∪ Ẽ) tµ (Dn ×X), E′ ∪ Ẽ) ,

which is a relative CW-complex with one cell for every cell in (Dn, Sn−1)×
(K, L). From Corollary 5 we have (K ′, L′) ' (E′ ∪ Ẽ ∪ p−1(en), E′ ∪ Ẽ).
If B has only countably many cells we can define by this process a relative
h-Morse decomposition of (E, Ẽ) (otherwise proceed by skeletons) and use
Lemma 3.

Corollary 22. If in Lemma 16 (Uc, Ũc) is homotopy equivalent to the
relative CW-complex (K, L) and G/Gc homotopy equivalent to the finite
CW-complex P , then (U, Ũ) := (G.Uc, G.Ũc) is homotopy equivalent to a
relative CW-complex with the same number of cells as P × (K, L), hence it
has the property [hm6].
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1.4. Excision of Local h-Decomposition Pairs. Cf. [1, §2 (V1, V −
1 )

and equation (9)].

Proposition 23 (Excision and Change of Metric). If (U, Ũ), k is
a local h-decomposition pair of the isolated critical orbit 0G.c corresponding
to ϕ and f̃ with the property [exc], if U ⊆ Õ and if f̃ has (C) on TU with
respect to 〈 , 〉ξp , then for all %, ε > 0 there is a homotopy equivalent local
h-decomposition pair (V, Ṽ ), kV of 0G.c corresponding to ϕ, ϕ̃ and f̃ with
TV ⊆ B%(0G.c)∩ f̃−1[κ− ε, κ+ ε] and again with [exc]. If (U, Ũ) and f̃ are
G-invariant, then (V, Ṽ ) can be chosen G-invariant as well and homotopy
G-equivariant.

Let W ⊆ T be a closed subset with the mean value property, W+ have
the retraction property from above, and K ⊆ Int(W ). Let δ > 0 with
f̃(∂W − W+) ≤ κ − δ and f̃(TU−) ≤ κ − δ. Choose δ ≥ δ̃ > 0, denote
ε̃ := δ − δ̃, set kV := κ− δ̃ and define the pair as follows:

S := T kV −ε̃ ∪W,

S̃ := T kV −ε̃ ∪W kV .

Claim 24. (S, S̃) ' (T, T−) rel T−.

Proof. tS(x) := min{t ≥ 0|ϕ(x, t) ∈ S} is continuous on T according to
Lemma 9. Define i : (T, T−) → (S, S̃) by x 7→ ϕ(x, tS(x)) and

r : (S, S̃) → (T, T−)

x 7→











ϕ(x, tT−(x)) for f(x) ≤ kV

ϕ
(

x, 2(κ−f(x))−δ̃
δ̃

tT−(x)
)

for f(x) ∈ [kV , κ− δ̃/2]

x for f(x) ≥ κ− δ̃/2

.

All maps are the identity on T−.

Corollary 25. The pair (V, Ṽ ) := (S ∪ Ũ , S̃ ∪ Ũ), kV is a local h-
decomposition pair with (U, Ũ) ' (V, Ṽ ) and TV = cl(S − S̃) ⊆ W .

Proof of Proposition 23. Choose an invariant Gromoll–Meyer pair (W,W−)
of 0G.c with W ⊆ B%′(0G.c)∩ f−1[κ− ε′, κ + ε′], where ε′ := min{ε, κ− kU}
and % > %′ > 0 is such that B%′(0G.c)∩ f−1[κ− ε′, κ + ε′] ⊆ U − Ũ . Choose
δ̃ > 0 with ε′ > δ̃ and set kV := κ− δ̃. Then use Corollary 25.
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1.5. Product Proposition. Let there be given an equivariant orthogonal
bundle sum E ∼= E+ ⊕ E− ⊕ E0, ξp = (ξ+

p , ξ−p , ξ0
p), and an equivariant

characteristic manifold

Wchar : (D0
%2

(0G.c), 0G.c) → (Õ, 0G.c)

ξ0
p 7→ (h(ξ0

p), ξ0
p)

as in the generalized equivariant Morse Lemma. Then there are % > 0 such
that D%(Wchar(D%2(0G.c))) ⊆ Õ, some numbers %1, %3 > 0 and a continu-
ous equivariant fiber preserving homeomorphism, a generalized equivariant
Morse chart,

Φ : (D±
%3

(0G.c)×D0
%1

(0G.c), 0G.c) −→ D%(Wchar(D%2(0G.c)))

(ξ±p , ξ0
p) 7→ η(ξ±p , ξ0

p) + ξ0
p + h(ξ0

p) ,

which extends Wchar (which means η(0±p , ξ0
p) = 0p), with η(ξ±p , ξ0

p) ∈ E+ ⊕
E−, and

f̃p ◦ Φ(ξp) =
1
2
(‖ξ+

p ‖2p − ‖ξ−p ‖2p) + f̃p(h(ξ0
p), ξ0

p) =: f̃1
p (ξ+

p , ξ−p ) + f̃0
p (ξ0

p) .

If f̃ is sufficiently differentiable, then Φ is a local diffeomorphism [13, Prop.
4.2.1], [10, Theorem 8.3], [8, Corollary 7.1].

To clarify here the dark points in [2] and some other places we should
make the following point clearer. The Whitney sum representation of E and
Morse-charts as above exist under conditions on the spectrum of the second
derivative d2f̃(0p). The subbundles are G-invariant if the map induced by
every element g ∈ G is differentiable and isometric. If this is the case and
E0

p is finite-dimensional, then E0 is a finite-dimensional manifold on which
G acts differentiably [14, V.1. Corollary]. In our case the map is fiberwise
linear and orthogonal. Choose some linear connection C± on E± := E+ ⊕
E−.

Lemma 26. If E0 is finite dimensional and the action of G is fiber
preserving and orthogonal, then there are a canonical linear connection
C0 : T (B) ⊕ E0 → T (E0) and a canonical Riemannian metric 〈 , 〉ξp on
E. The gradient formed by this metric grad(f̃ ◦Φ) is in the vertical tangent
space T v(E).

Proof. Represent Xp ∈ Tp(B) by a differentiable curve γ : (−ε, ε) → G
and for ξ0

p ∈ E0
p set C0

p(Xp, ξ0
p) = (γ(t).ξ0

p)′(0). This map is linear in the
second variable because G operates linearly on fibers and is continuous in
both variables because G operates differentiably. Let C := C± ⊕ C0 be
the product connection. The canonical horizontal tangent space is given
by Th

ξp
(E) := Cp(Tp(B), ξp) and the canonical metric by [15, Def. 1.9.12,

1.11.9].
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Therefore grad(f̃ ◦Φ) = grad(f̃ ◦Φ)p. It also follows that 0p is an isolated
critical point of f̃p iff 0G.c is an isolated critical manifold of f̃ .

Lemma 27. Given constants 0 < %0 < %1, there is an equivariant dif-
feomorphism Φ̃ : D±

%3
(0G.c)×D0

%2
(0G.c) → D%(Wchar(D%2(0G.c))) extending

Wchar such that Φ̃|D%3 ×D%0 = Φ|D%3 ×D%0 .

Proof. Choose χ ∈ C∞([0, %2],R+
0 ) with χ|[0, %0] ≡ 1 and χ|[%1, %2] ≡ 0,

define Φ̃ : (ξ±p , ξ0
p) 7→ ξ0

p +h(ξ0
p)+η(ξ±p , χ(‖ξ0

p‖) · ξ0
p +(1−χ(‖ξ0

p‖))%1 ·
ξ0

p

‖ξ0
p‖

).

If ‖ξ0
p‖ is invariant, so is χ(‖ξ0

p‖).

Let H1 ×H0 be the product of Hilbert spaces, O1 × O0 an open neigh-
borhood of 0, and f : O1 × O0 → R a differentiable function. Let there be
D1 × D0 ⊆ O1 × O0, a closed neighborhood of 0, on which f = f1 + f0 :
(x, z) 7→ f1(x) + f0(z). Denote by ϕ1 (respectively ϕ0) the partial negative
gradient flows of f1 (respectively of f0) and by ϕ that of f .

Proposition 28 (Product Proposition). If H0 is finite dimensional,
if we are given a local h-decomposition pair (U0, Ũ0), kU0 of 00 correspond-
ing to ϕ0 and f0 which is compact and has the property [exc], and if 01 ∈ D1

is an isolated critical point of f1 which satisfies the Palais–Smale condition
(C) on D1, then there are a local h-decomposition pair (U1, Ũ1), k1 of 01

corresponding to f1 and ϕ1, a local h-decomposition pair (U, Ũ), k of 0
corresponding to ϕ and f and a homotopy equivalence to the product

(U, Ũ) ' (U1, Ũ1)× (U0, Ũ0) .

(U, Ũ), k again has the property [exc]. All pairs and homotopies can be
chosen to be equivariant.

We prove a technical lemma first.
Let (V 1, Ṽ 1), k1 and (V 0, Ṽ 0), k0 be local h-decomposition pairs of

K1, K0 corresponding to ϕ1, ϕ0 and f1, f0 respectively with V 1 ⊆ O1

and V 0 ⊆ O0. We use the following notations: T 1 := TV 1 and T 0 := TV 0 .
Let T 1 ⊆ IntD1 and T 0 ⊆ Int D0; then (T 1 × T 0) has the mean value
property, and K = K1 × K0 are the critical points of f in T 1 × T 0. Let
f(T i) ⊆ [ki − εi, ki + ε′i] and f(Ki) ≥ κi for i = 0, 1; then we have f(K) ≥
κ1 +κ0 and f(∂(T 1×T 0)− (T 1×T 0)+) ≤ max{k1 +k0 +ε′0, k0 +k1 +ε′1} =
k1 + k0 + max{ε′1, ε′0}.

Lemma 29. If k1 + k0 + max{ε′1, ε′0} < κ1 + κ0, if both pairs have the
property [exc], if there exists a number k ∈ [k1 + k0 + max{ε′1, ε′0}, κ1 +
κ0), such that f((V 1 −D1) × V 0 ∪ V 1 × (V 0 −D0)) ≤ k and if condition
(C) is satisfied by f0 on T 0 and f1 on T 1, then there exists (equivariant)
local h-decomposition pair (U, Ũ), k of K corresponding to ϕ and f with
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the property [exc], and there is (equivariant) homotopy equivalence to the
product

(U, Ũ) ' (V 1, Ṽ 1)× (V 0, Ṽ 0) .

Proof. It immediately follows that f(Ṽ 1 × V 0 ∪ V 1 × Ṽ 0) ≤ k. Define

U := V 1 × V 0,

Ũ := (V 1 × V 0)k ,

and [hm1], [hm2], [hm4], [hm5] and [exc] follow easily. [hm3] is true,
because tT1×T0(x, z) = max{tT1(x), tT0(z)} and T 1×T 0 ⊆ Int(D1×D0). It
only remains to show the existence of homotopy equivalence. f satisfies (C)
on T 1×T 0 and (T1×T0)− has the retraction property from above in T 1×T 0;
hence we can define a deformation retraction of pairs r : (T 1 × T 0, (T 1 ×
T 0)k) → (T 1 × T 0, (T 1 × T 0)−) as in Claim 24 and Proposition 23.

Proof of Proposition 28. By hypothesis B%0(0
0) ⊆ D0 for some %0 > 0;

hence by Proposition 23 there is a compact local h-decomposition pair
(V 0, Ṽ 0), k0 = κ0−δ0 with [exc], TV 0 ⊆ B%0(0

0)∩(f0)−1[k0 := κ0−δ0, κ0+
δ′0], where δ0, δ′0 > 0 and δ′0 can later be chosen arbitrarily small. There is
% > 0 with f(B%({01}×V 0)−Int D1×B%0(0

0)) ≤ κ1+κ0−δ0/2 and B%(01) ⊆
D1. Choose a Gromoll–Meyer pair (W 1,W 1

−) of 01 for f1 with W 1 ⊆
B%(01), f1(W 1) ⊆ [k1 := κ1−δ1, κ1+δ′1], W 1

− = W 1∩(f1)−1(κ1−δ1), where
δ1, δ′1 > 0 and δ′1 < δ0. ε′i := δ1 + δ′i and therefore k1 + k0 + max{ε′1, ε′0} =
κ1−δ1 +κ0−δ0 +max{δ1 +δ′1, δ0 +δ′0} = κ1 +κ0−min{δ0−δ′1, δ1−δ′0}. We
see, that if we shrink δ′0 such that δ′0 < δ1, then the sum becomes smaller
than κ1 + κ0. Choose κ1 + κ0 > k > κ1 + κ0 −min{δ0/2, δ1 − δ′0, δ0 − δ′1}
and use Lemma 29.

2. The Geometric Gromoll–Meyer Theorem

Let (M, g) be a closed differentiable Riemannian manifold and ΛM :=
H1(S1,M) the space of free closed Sobolev loops. If c is a differentiable
closed loop then Tc(ΛM) ∼= H1(S1, c∗T (M)), where H1(S1, c∗T (M)) is the
space of H1-vector fields along c on which O(2) acts orthogonally. On
differentiable curves O(2) acts differentiably. Even though ΛM is not a
differentiable O(2)-manifold, there is a kind of equivariant exponential map
ẽxp : T (ΛM) ⊇ Õ → ΛM fibrewise induced by the exponential map exp :
TM ⊇ O → M of the manifold [15, 2.3.12]. We define fibrewise an energy
integral Ẽ on TΛM by ξc 7→ 1

2

∫ 1
0 ‖∇1ξc(t)‖2c(t)dt. Ẽ coincides on Õ with

the pull back ẽxp∗E. Denote by ϕ the negative gradient flow of E on ΛM .
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2.1. Local h-Decomposition Pairs for Iterated Geodesics. Denote
by I(M) the isometry group of M and set G := I(M)⊕O(2). If c is a closed
geodesic, then the G-orbit G.c is a differentiable submanifold [16, I.5.4]. If
mc is the order of c, choose, on TcΛM , the Gc-equivariant metric

〈ξc, ξ′c〉c,mc := 〈ξc, ξ′c〉0 +
1

m2
c
〈∇1ξc,∇1ξ′c〉0

[2, §3 eqn. (14)], [13, §4.2] and denote its norm by ‖ ‖1,mc . The itera-
tion map m∗ : TΛM |G.c −→ TΛM |G.cm is then an isometric embedding.
Identify the normal bundle πc : N(G.c) → G.c with the orthogonal com-
plement of TG.c. For arbitrary m we choose the domain of the exponen-
tial map Õ ∩N(G.cm) as tubular neighborhoods (Õ(G.cm), πcm , ẽxp); then
m∗(Õ(G.c)) ↪→ Õ(G.cm) is a linear bundle map.

Lemma 30 ([2, Lemma 5], [13, Lemma 4.2.5]). Let c be a (iterated)
nontrivial closed geodesic. If ν(c) = ν(cm), then m∗|N0

c is an isomorphism
onto N0

cm . If Wchar is a characteristic manifold for Ẽc, then m∗ ◦Wchar ◦
m−1
∗ is a characteristic manifold for Ẽcm .

Corollary 31 ([2, Theorem 3]). If 0c ∈ (W 0
c ,W 0

c−) ⊆ Õ0
c is a Gro-

moll–Meyer pair for the degenerate part Ẽ0
c , then m∗(W 0

c ,W 0
c−) is a homeo-

morphic compact Gromoll–Meyer pair for Ẽ0
cm (formed by the iterated char-

acteristic manifold) and the chosen Riemannian metric.

Proof. We have ‖ξm
c ‖21,mmc

+ 1
m2 ηẼ0

cm(ξm
c ) = ‖ξc‖21,mc

+ηẼ0
c (ξc) and, more-

over, ξm
c + 1

m2 η gradmmc
Ẽ0

cm(ξm
c ) = ξm

c + ηm∗ gradmc
Ẽ0

c (ξc).

Lemma 32. There is an arbitrarily small invariant Gromoll–Meyer pair
(W 1

cm ,W 1
cm−) of 0±cm corresponding to the nondegenerate part Ẽ1

cm , an in-
variant local h-decomposition pair (Ucm , Ũcm) ' (W 1

cm ,W 1
cm−)× (W 0

c ,W 0
c−)

of 0cm and an invariant local h-decomposition pair (V, Ṽ ), kV of the zero
section 0G.cm with (V, Ṽ ) ' G×Gcm (Ucm , Ũcm). Furthermore, there exists a
homeomorphic invariant local h-decomposition pair (V ′, Ṽ ′), kV of the orbit
G.cm. Given %, ε > 0, there is a homotopy equivalent local h-decomposition
pair (U, Ũ), kU of the orbit with TU ⊆ B%(G.cm) ∩ [m2κ − ε,m2κ + ε]
corresponding to E and ϕ.

Proof. By Lemma 27 there is an equivariant extended Morse chart Φ̃ :
(D±

%3
(0G.cm) × D0

%2
(0G.cm), 0G.cm) → (Õ, 0G.cm) extending m∗ ◦ Wchar ◦

m−1
∗ . Denote by Ẽ1

cm := E ◦ ẽxp ◦ Φ̃|D±
%3

(0cm). The function Ẽ1
cm(ξ±) =

1
2 (‖ξ+

c ‖2mc
− ‖ξ−c ‖2mc

) satisfies (C) with respect to 〈 , 〉mc on every closed
neighborhood D±

cm ⊆ D±
%3

(0cm).
From Product Proposition 28 with D1 = D±

cm and D0 = D0
%0

(0cm) it fol-
lows that there are a Gromoll–Meyer pair (W 1

cm ,W 1
cm−) of 0±cm with W 1

cm ⊆
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B±
%3

(0cm) corresponding to Ẽ1
cm and 〈 , 〉±mmc

and a local h-decomposition
pair (Ucm , Ũcm), k of 0cm with Ucm ⊆ B±

%3
(0cm) × B0

%2
(0cm) corresponding

to (Ẽ ◦ Φ̃)cm and 〈 , 〉mmc , with (Ucm , Ũcm) ' (W 1
cm , W̃ 1

cm−)× (W 0
c ,W 0

c−).
From Lemma 16 it follows that (U, Ũ) := (G.Ucm , G.Ũcm), k is a local

h-decomposition pair of 0G.cm corresponding to Ẽ and the canonical metric
〈 , 〉ξp of Lemma 26 formed by 〈 , 〉mc . From Proposition 23 (change
of metric) it follows that there is a local h-decomposition pair (V, Ṽ ), kV

corresponding to Ẽ ◦ Φ̃ and to the pull back metric g̃. (V ′, Ṽ ′) := (ẽxp ◦
Φ̃(V ), ẽxp◦Φ̃(Ṽ )), kV is a local h-decomposition pair of G.cm corresponding
to ϕ and E with properties [exc] by Corollary 18. The assertion of the
lemma follows from Proposition 23.

Lemma 33. If λ := λ(cm) is the index of the iterated geodesic and
(W 0

c ,W 0
c−) ' (K,L) is homotopy equivalent to some relative CW-complex

and G.cm ' P to some CW-complex, then (U, Ũ) is homotopy equivalent to
a relative CW-complex (Y, B) having as many cells of the same dimension
as P × (Dλ, Sλ−1)× (K, L).

Proof. From Lemma 19 it follows that (W 1
c ,W 1

c−) ' (Dλ, Sλ−1). The claim
follows from Corollary 22.

Note that the iteration map m∗ induces a homeomorphism between the
orbits G.c and G.cm because it is equivariant.

2.2. h-Morse Decomposition of ΛM .

Proof of Theorem 1. Let there be n prime distinct nontrivial closed geo-
desics {cn}n∈{1,... ,nmax} on M and denote κn := E(cn). For every prime
geodesic choose a partition

{linmijn} of N∗, {lin}i∈{1,... ,rn},

(mijn)i∈{1,... ,rn},j∈N∗ with ν(climij
n ) = ν(cli

n ) as in [2, Lemma 2] or [13,
Proposition 4.2.6]. For every n and i choose a characteristic manifold
W in

char : D0(G.clin
n ) → Õ(G.clin

n ) and a Gromoll–Meyer pair (W 0
in,W 0

in−) ⊆
D0(0clin

n
) for 0clin

n
corresponding to Ẽ0

clin
n

with Ẽ0
clin

n
(W 0

in) ≥ κin − δin, and

0 < 3δin < κin := l2inκn.
There are only finitely many critical orbits in Eu for all u and W 0

in
is compact. From Lemma 32 with m = linmijn it follows that there is
a local h-decomposition pair (Vnm, Ṽnm), k′nm of 0G.cm

n
containing only

this critical orbit and having the property [exc] and (Vnm, Ṽnm) ∩ Ncm
n
'

(W 1
nm, W 1

nm−)× (W 0
in, W 0

in−) for some Gromoll–Meyer pair (W 1
nm,W 1

nm−).
The pair can be chosen such that Ẽ(Vnm) ≥ m2

ijn(κin − 2δin). Set
(V ′

nm, Ṽ ′
nm) := ẽxp(Vnm, Ṽnm), k′nm. Because Eu intersects only finitely
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many V ′
nm and G.cm

n is compact there are homotopy equivalent local h-
decomposition pairs (Unm, Ũnm), knm of the orbits G.cm

n with knm ≥ k′nm
and tops Tnm disjoint from all other Un′m′ . Set K0 := Λ0M ∼= M and
choose k0 < minn, i{κin − 2δin} which is not critical. Then k0 < knm,
K0 ↪→ Λk0M is a deformation retract and (U0,∅) := (Λk0M,∅), k0 is a
local h-decomposition pair of K0. The set {K0, Knm := G.cm

n }n, m is a
partition of the critical points of E. Choose J = N, enumerate {k0, knm}
in nondecreasing order and obtain a (absolute) h-Morse decomposition of
ΛM .

Choosing fixed relative CW-complexes (Kin, Lin) ' (W 0
in,W 0

in−) and
Pn ' G.cn and (Ynm, Bnm) := Pn × (Dλ(cm

n ), Sλ(cm
n )−1) × (Kin, Lin) '

(Unm, Ũnm), the claim follows from combinatorial considerations as in [2,
Corollary 2, Theorem 4] and [13, Lemma 4.2.5].
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