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A MULTIDIMENSIONAL SINGULAR BOUNDARY VALUE
PROBLEM OF THE CAUCHY–NICOLETTI TYPE

J. DIBLÍK

Abstract. A two-point singular boundary value problem of the Cau-
chy–Nicoletti type is studied by introducing a two-point boundary
value set and using the topological principle. The results on the exis-
tence of solutions whose graph lies in this set are proved. Applications
and comparisons to the known results are given, too.

Introduction

Consider the system of ordinary differential equations

y′ = f(x, y), (1)

where x ∈ I = (a, b), −∞ ≤ a < b ≤ ∞, y ∈ Rn and n > 1.
We will study the following singular boundary value problem of the

Cauchy–Nicoletti type:

yi(a+) = Ai (i = 1, . . . ,m), yk(b−) = Ak (k = m + 1, . . . , n) (2)

where Ai, i = 1, . . . , n, are some constants and 1 ≤ m < n.
It is assumed that the vector-function f ∈ C(Ω,Rn), where Ω is an open

set such that Ω ∩ {(x∗, y) : y ∈ Rn} 6= ∅ for each x∗ ∈ I and, moreover, f
satisfies local Lipschitz condition in the variable y in Ω (f ∈ Lloc(Ω)). In
this case the solutions of system (1) are uniquely determined by the initial
data in Ω.

We define the solution of problem (1), (2) as a vector-function y =
(y1, . . . , yn) ∈ C1(I,Rn) which satisfies system (1) on I, (x, y1(x), . . . , yn(x))
⊂ Ω if x ∈ I and yi(a+) = Ai (i = 1, . . . ,m), yk(b−) = Ak (k =
m + 1, . . . , n).
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In the paper certain sufficient conditions for the existence of solutions
of problem (1), (2) will be given whose graph lies on the interval I in a
two-point boundary value set Ω0 defined in the following way.

Definition 1. Let Ω0 ⊂ Ω and Ω0 ∩ {(x∗, y) : y ∈ Rn} 6= ∅ for each
x∗ ∈ I. We will call the set Ω0 a two-point boundary value set if each
continuous curve l = {(x, y) : x ∈ I, y = y(x)} defined on I, for which the
relation (x, y(x)) ⊂ Ω0 holds on I, has the following limit values:

lim
x→a+

yi(x) = Ai (i = 1, . . . , m), (3)

lim
x→b−

yk(x) = Ak (k = m + 1, . . . , n). (4)

In the sequel Ω0
a,b will denote such a type of set Ω0.

Boundary value problems for systems of ordinary differential equations
were considered by many authors (see [1]–[9], for example). Singular bound-
ary value problems of such types were studied in [3]–[8], [10]–[16]. Our re-
sults are independent of the known ones. Some specific comparisons to the
known results will be made in the paper. The main results are formulated
as Theorems 2 and 3.

Main results

Let Ω0 ⊂ Ω be some open set with the boundary ∂Ω0. According to
Ważewski ([1], [17]), a point (x0, y0) ∈ ∂Ω0 ∩ Ω is a point of egress from
Ω0 with respect to system (1) and the set Ω0 if, for the solution y = y(x)
of the problem y(x0) = y0, there exists ε > 0 such that (x, y(x)) ∈

∫

Ω0

if x ∈ [x0 − ε, x0). A point of egress is a point of strict egress from Ω0 if,
moreover, there exists ε1 > 0 such that (x, y(x)) 6∈ Ω0 if x ∈ (x0, x0 + ε1].

As usual, the set of all points of egress (strict egress) from Ω0 will be
denoted by Ω0

e (Ω0
se).

Theorem 1 ([1], [17]). Let Ω0 ⊂ Ω be some open set such that Ω0
e =

Ω0
se. Assume that S is a nonempty subset of Ω0∪Ω0

e such that the set S∩Ω0
e

is not a retract of S but is a retract of Ω0
e.

Then there is at least one point (x0, y0) ∈ S ∩ Ω0 such that the graph
of the solution y(x) of the Cauchy problem y(x0) = y0 lies in Ω0 on its
right-hand maximal interval of existence.

In a further discussion we will suppose that all sets of the type Ω0 satisfy
all the conditions of Definition 1, i.e., Ω0 = Ω0

a,b.

Theorem 2. Let Ω0 = Ω0
a,b and Ω0

e = Ω0
se. Assume that there are

nonempty subsets Si ⊂ {(x, y) ∈ Ω, x = xi} ∩ (Ω0 ∪ Ω0
e), i = 1, 2, . . . ,

where {xi} is some decreasing sequence of real numbers with xi ∈ (a, b) and
limi→∞ xi = a such that Si∩Ω0

e is not a retract of Si but is a retract of Ω0
e.
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Then there is at least one solution y = y(x) of problem (1), (2) such that
its graph lies in Ω0 on the interval (a, b).

Proof. Let the index i be fixed. Then, as follows from Theorem 1, there is
at least one point (xi, yi) ∈ Si such that the graph of the solution yi(x) of
the Cauchy problem yi(xi) = yi for (1) lies in Ω0 on its right-hand maximal
interval of existence, i.e., on the interval [xi, b). Further, we denote by Mi

the set of all initial points from the set Ωi = {(x, y) ∈ Ω0, x = xi} with
the property that each point (xi, y∗i) ∈ Ωi defines a solution y = y∗(x)
such that its graph lies in Ω0 on [xi, b). Obviously, Mi 6= ∅. The set
Mi is closed in Ωi (including the case where Mi consists of one point only)
since otherwise we get the contrary with continuous dependence of solutions
on the initial data. Let χ{Mi, [xi, b)} be the set of all solutions of (1) on
[xi, b) defined by the initial data from the set Mi. Then M ′

i ⊂ M1 where
M ′

i ≡ χ{Mi, [xi, b)} ∩ Ω1, and if i > 2 then M ′
i ⊂ M ′

i−1. Then, as the sets
M ′

i , i = 1, 2 . . . , are compact, there is a nonzero set M0 = ∩∞i=1M
′
i . If a

point (x1, y0) ∈ M0 then for the corresponding solution y = y0(x) we have
(x, y0(x)) ⊂ Ω0 on (a, b). As Ω0 = Ω0

a,b, by (3) and (4) limx→a+ y0i(x) = Ai,
i = 1, . . . , m, and limx→b− y0i(x) = Ai, i = m + 1, . . . , n, i.e., the solution
y0(x) is a solution of problem (1), (2) with appropriate properties.

Now we will suppose that the open region Ω0 can be described by the
functions ni ∈ C1(Ω), i = 1, . . . , l, and pj ∈ C1(Ω), j = 1, . . . , q, as follows:

Ω0 =
{

(x, y) ∈ Ω, x ∈ I, ni < 0, i = 1, . . . , l, pj < 0, j = 1, . . . , q
}

. (5)

For α ∈ {1, . . . , l} we denote

Nα =
{

(x, y) ∈ Ω0 ∩ Ω, nα = 0, ni ≤ 0, i = 1, . . . , l; i 6= α,

pj ≤ 0, j = 1, . . . , q
}

and for β ∈ {1, . . . , q}

Pβ =
{

(x, y) ∈ Ω0 ∩ Ω, pβ = 0, ni ≤ 0, i = 1, . . . , l;

pj ≤ 0, j = 1, . . . , q, j 6= β
}

.

Definition 2 ([1]). The open set Ω0 ⊂ Ω given by (5) is called an (n, p)-
subset with respect to system (1) if for derivatives of the functions nα (α =
1, . . . , l) and pβ (β = 1, . . . , q) along the trajectories of system (1)

dnα(x, y)/dx < 0, for (x, y) ∈ Nα, (6)

dpβ(x, y)/dx > 0, for (x, y) ∈ Pβ . (7)



306 J. DIBLÍK

Theorem 3. Let f ∈ C(Ω,Rn), f ∈ Lloc(Ω), Ω0 = Ω0
a,b and Ω0 be

an (n, p)-subset with respect to system (1). Let us assume that there are
nonempty subsets Si ⊂ {(x, y) ∈ Ω, x = xi} ∩ (Ω0 ∪ Ω0

e), i = 1, 2, . . . ,
where {xi} is some decreasing sequence of numbers with xi ∈ (a, b) and
limi→∞ xi = a such that Si ∩Ω0

e is not a retract of Si but is a retract of Ω0
e.

Then there is at least one solution y = y(x) of problem (1), (2) such that
its graph lies in Ω0 on interval I, i.e., the inequalities

ni(x, y(x)) < 0, i = 1, . . . , l, (8)

pj(x, y(x)) < 0, j = 1, . . . , q, (9)

hold on interval I.

Proof. From the known result in [1] (Lemma 3.1, §3, Chapter X) it follows
that Ω0

e = Ω0
se = ∩q

β=1Pβ\ ∩l
α=1 Nα. Then Theorem 3 is a consequence of

Theorem 2 and that result. In this case (x, y(x)) ⊂ Ω0 on I (instead of
(x, y(x)) ⊂ Ω0 on I) because in view of (6), (7) {(x, y) ∈ Ω, x ∈ I, y =
y(x)} ∩ ∂Ω0 = ∅.

Applications

(A) Let system (1) be of the form

y′ = A(x)y + g(x, y), (10)

where A = {aij}i,j=1,...,n, aij ∈ C(I,R), g ∈ C(Ω,Rn) and g ∈ Lloc(Ω).
Let δi(x), i = 1, . . . , n be some functions continuously differentiable and

positive on the interval I with the property

lim
x→a+

δi(x) = 0 = lim
x→b−

δk(x) (i = 1, . . . , m, k = m + 1, . . . , n). (11)

For some integers m1, 0 ≤ m1 ≤ m and n1, 0 ≤ n1 ≤ n − m and for
(x, y) ∈ Ω we define the functions

Nk(x, y) ≡ Nk(x, yk) ≡ (yk −Ak)2 − δ2
k(x), (12)

where k ∈ {1, . . . , m1} ∪ {m + 1, . . . , m + n1} and

Pr(x, y) ≡ Pr(x, yr) ≡ (yr −Ar)2 − δ2
r(x), (13)

where r ∈ {m1 + 1, . . . , m} ∪ {m + n1 + 1, . . . , n}. If we put l = m1 + n1
and q = n− l then by formulas (12), (13) the functions ni (i = 1, . . . , l) and
pj (j = 1, . . . , q) are defined as follows:

ni ≡

{

Ni if i ∈ {1, . . . , m1},
Ni−m1+m if i ∈ {m1 + 1, . . . , m1 + n1},

(14)
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pj ≡

{

Pj+m1 if j ∈ {1, . . . , m−m1},
Pj+m1+n1 if j ∈ {m−m1 + 1, . . . , n−m1 − n1}. (15)

In such a case the sets Ω0, Nα, α ∈ {1, . . . , l}, and Pβ , β ∈ {1, . . . , q},
have the following simpler form:

Ω0 =
{

x ∈ I, |yi −Ai| < δi(x), i = 1, . . . , n
}

, (16)

Nα =
{

x ∈ I, |yα −Aα| = δα(x), |yi −Ai| < δi(x),

i = 1, . . . , n, i 6= α
}

, (17)

Pβ =
{

x ∈ I, |yβ −Aβ | = δβ(x), |yi −Ai| < δi(x),

i = 1, . . . , n, i 6= β
}

, (18)

In the proof of the next theorem we apply Theorem 3.

Theorem 4. Assume that:
(a) There are continuously differentiable and positive functions δi(x),

i = 1, . . . , n, on the interval I with property (11).
(b) The inequality

n
∑

j=1,j 6=α0

|aα0j(x)|δj(x) +
n

∑

j=1

|aα0j(x)Aj |+ |gα0(x, y)| <

< δ′α0(x)− aα0α0(x)δα0(x) (19)

holds for each α0 ∈ {1, . . . , m1}∪{m+1, . . . ,m+n1} and (x, y) ∈ Nα, where
α = α0 if α0 ∈ {1, . . . , m1} and α = α0+m1−m if α0 ∈ {m+1, . . . , m+n1}.

(c) The inequality
n

∑

j=1,j 6=β0

|aβ0j(x)|δj(x) +
n

∑

j=1

|aβ0j(x)Aj |+ |gβ0(x, y)| <

< aβ0β0(x)δβ0(x)− δ′β0(x) (20)

holds for each β0 ∈ {m1 + 1, . . . , m} ∪ {m + n1 + 1, . . . , n} and (x, y) ∈ Pβ,
where β = β0 − m1 if β0 ∈ {m1 + 1, . . . ,m} and β = β0 − n1 − m1 if
β0 ∈ {m + n1 + 1, . . . , n}.

Then there is at least one solution y = y(x) of problem (10), (2) such
that for its components the inequalities

|yi(x)−Ai| < δi(x), i = 1, . . . , n, (21)

hold on the interval I.
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Proof. First we prove that the set Ω0 described by (16) (where the functions
ni (i = 1, . . . , l), pj (j = 1, . . . , q) are defined by formulas (14), (15)) satisfies
the property Ω0 = Ω0

a,b and generates some (n, p)-subset with respect to
system (10). The property Ω0 = Ω0

a,b is a consequence of formulas (11) and
(16). Indeed, if l = {(x, y) : x ∈ I, y = y(x)} is a continuous curve for
which the relation (x, y(x)) ⊂ Ω0 holds on I, then from (11) and (16) it
follows that

lim
x→a+

yi(x) = Ai, i ∈ {1, . . . , m}, lim
x→b−

yk(x) = Ak k ∈ {m + 1, . . . , n}.

Further we will compute the derivative of the function nα, α ∈ {1, . . . , l},
along the trajectories of system (10) on the set Nα. In view of (17) and (19)
we obtain

dnα(x, y)
dx

= 2(yα −Aα)y′α − 2δαδ′α = 2(yα −Aα)
[ n

∑

j=1,j 6=α

aαj(yj −Aj) +

+
n

∑

j=1

aαjAj + gα + aαα(yα −Aα)
]

− 2δαδ′α <

< 2δα

[

aααδα − δ′α +
n

∑

j=1,j 6=α

|aαj |δj +
n

∑

j=1

|aαjAj |+ |gα|
]

< 0.

By analogy we can compute that in view of (18) and (20) for the derivative
of the function pβ , β ∈ {1, . . . , q}, along the trajectories of system (10) the
inequality dpβ/dx > 0 holds on the set Pβ . Inequalities (6) and (7) hold
and, by Definition 2, the set Ω0 is an (n, p)-subset with respect to system
(10).

Let {xi} be some decreasing sequence of numbers with xi ∈ I and
limi→∞ xi = a. For each fixed i we denote Si = (Ω0∪Ω0

e)∩{(xi, y) : y ∈ Rn},
where

Ω0
e = Ω0

se =
q

⋃

β=1

Pβ\
l

⋃

α=1

Nα

(see the proof of Theorem 3). The set Si ∩ Ω0
e is a retract of the set Ω0

e
because the continuous mapping

Π : (x, y) ∈ Ω0
e 7→ (xi, y0) ∈ Si ∩ Ω0

e,

with

y0
j = Aj − δj(xi) +

(

yj −Aj + δj(x)
)δj(xi)

δj(x)
, j = 1, . . . , n,
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is identical on Si ∩ Ω0
e. On the other hand, the set Si ∩ Ω0

e is not a retract
of the set Si. This follows from the fact that the set ˜Si ⊂ Si, where

˜Si =
{

(x, y) ∈ Si, x = xi, yj = Cj ∈ (Aj − δj(xi), Aj + δj(xi)),

Cj = const, j = 1, . . . , m1; m + 1, . . . , m + n1

}

with the property that ˜Si ∩Ω0
e ⊂ Si ∩Ω0

e, is not a retract of the set ˜Si ∩Ω0
e

as the boundary of the sphere is not its retract ([18]). Consequently, all the
assumptions of Theorem 3 are fulfilled and therefore Theorem 4 is valid.
We obtain inequalities (21) from inequalities (8) and (9) or from (16).

Example 1. Let problem (10), (2) be of the form

y′1 = −4x−2y1 + x5(x− 1)−1y2 + cos y2,

y′2 = (x− 1)4x−1y1 + 4(x− 1)−2y2 + cos y1,

y1(0+) = y2(1−) = 0.

Then all the assumptions of Theorem 4 are fulfilled if we put n = 2, a11(x) =
−4x−2, a12(x) = x5(x − 1)−1, a21(x) = (x − 1)4x−1, a22(x) = 4(x − 1)−2,
g1(x, y) = cos y2, g2(x, y) = cos y1, m1 = 1, n1 = 0, m = 1, a = 0, b = 1,
A1 = A2 = 0, δ1(x) = x, δ2(x) = 1 − x. Consequently, problem (10), (2)
has at least one solution y = y(x) such that |y1(x)| < x, |y2(x)| < 1− x on
(0, 1).

Remark 1. [6] contains some theorems on the existence and uniqueness
of solutions of singular Cauchy–Nicoletti problems for systems of ordinary
differential equations. We note that these theorems are independent of
the above-proved results. For example, if we apply Theorem 4.1 from [6,
Chapter II, §4, pp. 37–38] to Example 1 then, in addition, the inequality
(

− 4x−2y1 + x5(x− 1)−1y2 + cos y2
)

sign y1 ≤ −a(x)|y1|+ g(x, |y1|, |y2|)

must be valid on a set {(x, y) : 0 < x < 1, y ∈ R2}, where a(x) ≥ 0,
a(x) ∈ L(0+, 1−) on (0, 1), and

sup
{

|g(x, |y1|, |y2|)| : |y1|+ |y2| ≤ ρ
}

∈ L(0, 1) (22)

for each ρ ∈ (0,+∞). In our case a(x) ≡ −4x−2, g(x, |y1|, |y2|) ≡ x5(x −
1)−1|y2|+ cos |y2| and, consequently, relation (22) does not hold.

(B) Let system (23) be of the form

y′1 = f(x)y1 + F (x, y1, y2), y′2 = y1, (23)



310 J. DIBLÍK

where f ∈ C(I,R), F ∈ C(Ω,R2) ∩ Lloc(Ω). For system (23) we consider
problem (2) if a = 0, b = T , 0 < T = const, m = 1, A1 = 0, A2 = −α,
0 ≤ α = const.

Theorem 5. Let there exist a positive function h ∈ C1(I1,R+), I1 =
(0, T ) and a negative function ω ∈ C1(I1,R−) such that h(0+) = 0, ω(x) <
−α on I1, ω(T−) = −α, h(x) < ω′(x) on I1 and on the set

D =
{

(x, y2) : x ∈ I1, ω(x) < y2 < −α
}

the following inequalities hold:

f(x)h(x)− h′(x) + F (x, h(x), y2) < 0 < F (x, 0, y2). (24)

Then there is at least one solution y = y(x) of problem (23), (25) where

y1(0+) = 0, y2(T−) = −α (25)

such that the inequalities 0 < y1(x) < h(x), ω(x) < y2(x) < −α hold on I1.

Proof. Let n1 ≡ y1(y1−h(x)) and p1 ≡ (y2−ω(x))(y2+α). Then the set Ω0

defined by (5) satisfies the condition Ω0 = Ω0
0,T . Compute the derivatives

along the trajectories of system (23). We obtain

dn1(x, y)
dx

=
[

f(x)y1 + F (x, y1, y2)
]

(y1 − h(x)) +

+ y1
[

f(x)y1 + F (x, y1, y2)− h′(x)
]

.

For the value y1 we have y1 = h(x) or y1 = 0 on the set N1(x, y). Then
from (24) it follows that dn1(x, y)/dx < 0. Analogously, dp1(x, y)/dx > 0
on the set P1(x, y). Consequently, the set Ω0 is an (n, p)-subset.

The property that for some decreasing sequence of numbers {xi} with
xi ∈ I1 and limi→∞ xi = 0 there is a set Si with the properties described
in Theorem 3 can be verified in a similar fashion as in the corresponding
part of the proof of Theorem 4. Now all the assumptions of Theorem 3 are
fulfilled and therefore Theorem 5 holds.

Example 2. In system (23) let us put f(x) = −Lx−m, where 0 < L =
const and 0 < m = const. Let h(x) = εxp where εT p < α, 0 < ε = const, p
is an even positive number, ω(x) = [−α−(x−T )p] exp(T −x), F (x, 0, y2) >
0, and F (x, h(x), y2) < εxp(Lx−m + px−1) on D. Then all the assumptions
of Theorem 5 are valid and its conclusion is true.

Remark 2. Some classes of singular problems were studied in [14], [15].
For example, in [15] the problem

y′1 = −(N − 1)y1/x + F1(y2, x), y′2 = y1, (26)

y1(0+) = 0, y2(T−) = −α ≤ 0, (27)
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where 2 ≤ N , N is an integer, x ∈ I1 and F1 ∈ C1(R− × I1,R+), is consid-
ered in connection with the study of increasing negative radial solutions of
semilinear elliptic equations. In particular, this work contains the following
result:

Let 0 ≤ d ≤ l ≤ NT−1, 0 < K < sT−1, and 0 < F1(y2, x) < (N −
lx)K exp(−lx) hold for some constants d, l, K, and s if ψ(x) ≡ −α− s(T −
x) exp(−dx) < y2 < −α and x ∈ I1. Then problem (26), (27) has at least
one solution y = y(x) which satisfies the inequalities 0 < y1(x) < ϕ(x) ≡
Kx exp(−lx) and ψ(x) < y2(x) < −α on I1.

We note that problem (23), (25) is more general that the one given above.
If we put f(x) = −(N − 1)x−1 and F (x, y1, y2) ≡ F1(y2, x) then from
Theorem 5 (if h ≡ ϕ and ω ≡ ψ) it follows that there is at least one solution
of problem (26), (27) with the mentioned properties. Moreover, as Example
2 shows, we may obtain more precise estimations of this solution if the
functions h and ω are chosen in a proper way.
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