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NUMERICAL SOLUTIONS TO THE DARBOUX PROBLEM
WITH THE FUNCTIONAL DEPENDENCE

Z. KAMONT AND H. LESZCZYŃSKI

Abstract. The paper deals with the Darboux problem for the equa-
tion Dxyz(x, y) = f(x, y, z(x,y)) where z(x,y) is a function defined by
z(x,y)(t, s) = z(x + t, y + s), (t, s) ∈ [−a0, 0]× [−b0, 0]. We construct
a general class of difference methods for this problem. We prove the
existence and uniqueness of solutions to implicit functional difference
equations by means of a comparison method; moreover we give an er-
ror estimate. The convergence of explicit difference schemes is proved
under a general assumption that given functions satisfy nonlinear es-
timates of the Perron type. Our results are illustrated by a numerical
example.

§ 1. Introduction

Given any two metric spaces X and Y , we denote by C(X,Y ) the class
of all continuous functions from X into Y . Take a, b > 0 and a0, b0 ∈ R+,
R+ = [0, +∞). Define

E = (0, a]× (0, b], E0 =
(

[−a0, a]× [−b0, b]
)

\E

and B = [−a0, 0] × [−b0, 0]. Given a function z : E0 ∪ E → R and a point
(x, y) ∈ E, we define the function z(x,y) : B → R by

z(x,y)(t, s) = z(x + t, y + s), (t, s) ∈ B. (1)

Suppose that f : E × C(B, R) → R and φ : E0 → R are given functions.
(Here E is the closure of E.) Consider the Darboux problem

Dxyz(x, y) = f(x, y, z(x,y)), (x, y) ∈ E, (2)

z(x, y) = φ(x, y) for (x, y) ∈ E0, (3)
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where Dxyz = ∂2z
∂x∂y . We consider classical solution to problem (2), (3). A

function v ∈ C(E0∪E,R) is regarded as a solution of (2), (3) if Dxyv exists
on E, Dxyv ∈ C(E,R), and v satisfies (2), (3). Sufficient conditions for the
existence and uniqueness of a solution to (2), (3) are given in [1], see also
[2].

For a few recent years, a certain number of papers concerning numerical
methods for functional partial differential equations have been published.

Difference methods for nonlinear parabolic functional differential prob-
lems were considered in [3]–[5]. The main problem in these investigations is
to find a difference approximation which is stable and satisfies consistency
conditions with respect to the original problem. A method of difference
inequalities or simple theorems on linear recurrent inequalities are used in
the investigation of stability.

The semidiscretizations in space variables of linear parabolic Volterra
integral-differential equations (the method of lines, Galerkin or collocation
techiques) lead to large systems of stiff ordinary integral-functional equa-
tions. The analysis of spatial and temporal disretizations of linear integral-
functional parabolic problems has received considerable attention during
the last years [6]–[11]. Most of these contributions seem to focus on the
convergence theory. There are very few numerical studies.

Difference methods for first order functional differential equations with
initial or initial-boundary conditions were studied in [12], [13]. The proofs
of the convergence were based either on functional difference inequalities
or on a general theorem on error estimates for approximate solutions to
functional difference equations of the Volterra type with initial or initial-
boundary conditions and with unknown function of several variables.

The convergence of difference methods for functional hyperbolic systems
in the Schauder canonic form was studied in [14].

For further biblioghaphical information concerning numerical methods
for functional partial differential equations we suggest to see the survey
papers [15] and [13].

The paper is organized as follows. In Section 2 we construct a general
class of difference schemes for (2), (3). This leads to implicit functional
difference problems. The existence and uniqueness of solutions to such
problems are considered in Section 3. The comparison method of investiga-
tion of functional difference equations is used. The next section deals with
a theorem on the convergence of explicit difference schemes with nonlinear
estimates for given functions. We assume that increment functions satisfy
nonlinear estimates of the Perron type with respect to the functional vari-
able. In Section 5, we establish an error estimate for implicit difference
methods. We give a numerical example.

Differential equations with a deviated argument and integral-differential
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problems can be obtained from (2), (3) by a specification of given operators.

§ 2. Discretization

Given any two sets X and Y , we denote by F [X, Y ] the class of all
functions defined on X and taking values in Y . We will denote by N and
Z the sets of natural numbers and integers, respectively.

We construct a mesh in E0 ∪ E in the following way. Suppose that
(h, k) ∈ (0, a]× (0, b] stand for steps of the mesh. Write

xi = ih, yj = jk, xi+ 1
2

= ih +
h
2
, yj+ 1

2
= jk +

k
2

, i, j ∈ Z.

Denote by I0 the set of all (h, k) ∈ (0, a] × (0, b] such that there exist
M0, N0 ∈ N such that M0h = a0, N0k = b0. We assume that I0 6= ∅ and
there is a sequence {(hn, kn)}, (hn, kn) ∈ I0, such that limn→∞(hn, kn) =
(0, 0). For (h, k) ∈ I0 we put Zhk = {(xi, yj) : i, j ∈ Z}, and E0

hk = Zhk ∩
E0, Ehk = Zhk ∩ E. There are M, N ∈ N such that Mh ≤ a < (M + 1)h,
Nk ≤ b < (N + 1)k. Let

Ahk =
{

(xi, yj) : 0 ≤ i ≤ M − 1, 0 ≤ j ≤ N − 1
}

.

Using the above definitions of M and N , we have

Ehk =
{

(xi, yj) : 1 ≤ i ≤ M, 1 ≤ j ≤ N
}

.

Let K, L ∈ Z be fixed and assume that −M0 ≤ K ≤ 1, −N0 ≤ L ≤ 1.
Write

Dhk =
{

(xi, yj) : −M0 ≤ i ≤ K, −N0 ≤ j ≤ L
}

.

For z ∈ F [E0
hk ∪Ehk, R] we write z(i,j) = z(xi, yj), (xi, yj) ∈ E0

hk ∪Ehk. In
the same way we define w(i,j) for w ∈ F [Dhk, R].

We will need a discrete version of the restriction operator given by (1).
If z : E0

hk ∪ Ehk → R and 0 ≤ i ≤ M − 1, 0 ≤ j ≤ N − 1 then the function
z[i,j] : Dhk → R is defined as follows:

z[i,j](t, s) = z(xi + t, yj + s), (t, s) ∈ Dhk.

We consider the difference operator δ given by

δz(i,j) =
1
hk

[

z(i+1,j+1) − z(i+1,j) − z(i,j+1) + z(i,j)].

Suppose that

Fhk : Ahk × F [Dhk, R] → R, φhk : E0
hk → R

are given functions. Consider the problem

δz(i,j) = Fhk(xi, yj , z[i,j]), (xi, yj) ∈ Ahk, (4)

z(i,j) = φ(i,j)
hk for (xi, yj) ∈ E0

hk. (5)
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Remark 2.1. If K = 1 and L = 1 then problem (4), (5) turns out to be
an implicit difference method. If K ≤ 0 or L ≤ 0, then problem (4), (5)
represents a simple functional difference equation of the Volterra type. It is
obvious that in this case there exists exactly one solution uhk : E0

hk∪Ehk →
R of (4), (5).

Example 1. Suppose that F : E × R → R and ϕ : [0, a] → R, ψ :
[0, b] → R are given functions. We assume that ϕ(0) = ψ(0). Put a0 = 0,
b0 = 0 and f(x, y, w) = F (x, y, w(0, 0)), (x, y, w) ∈ E ×C(B, R). Then (2),
(3) reduces to the classical Darboux problem

Dxyz(x, y) = F (x, y, z(x, y)), (x, y) ∈ E, (6)

z(x, 0) = ϕ(x) for x ∈ [0, a], z(0, y) = ψ(y) for y ∈ [0, b]. (7)

One of the implicit difference schemes for (6), (7) takes the form

δz(i,j) = F
(

xi+ 1
2
, yj+ 1

2
,

1
4
(

z(i,j) + z(i+1,j) + z(i,j+1) + z(i+1,j+1))
)

,

(xi, yj) ∈ Ahk,

z(i,0) = ϕ(xi) for 0 ≤ i ≤ M, z(0,j) = ψ(yj) for 0 ≤ j ≤ N.

The most natural explicit difference method for (6), (7) takes the form

δz(i,j) = F (xi, yj , z(i,j)), (xi, yj) ∈ Ahk,

with the above boundary condition.

Example 2. Suppose that a0 < 0, b0 < 0. For the same F we put

f(x, y, w) = F
(

x, y,
∫

B

w(t, s)dt ds
)

, (x, y, w) ∈ E × C(B, R).

Then problem (2), (3) is equivalent to the integral-differential equation

Dxyz(x, y) = F
(

x, y,
∫

B

z(x + t, y + s)dt ds
)

, (x, y) ∈ E, (8)

with boundary condition (3). Now, we construct an explicit difference
method for (8), (3). Let

Bhk =
{

(xi, yj) : −M0 ≤ i ≤ 0, −N0 ≤ j ≤ 0,
}

.

We define the operator Thk : F [Bhk, R] → F [B, R] in the following way.
Suppose that w ∈ F [Bhk, R] and (t, s) ∈ B. Then there is (xi, yj) ∈ Bhk
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such that i < 0, j < 0 and xi ≤ t ≤ xi+1, yj ≤ s ≤ yj+1. We put

Thkw(t, s) = w(i,j)
[

1− t− xi

h

] [

1− s− yj

k

]

+

+ w(i+1,j+1) t− xi

h
s− yj

k
+

+ w(i+1,j) t− xi

h

[

1− s− yj

k

]

+

+ w(i,j+1)
[

1− t− xi

h

] s− yj

k
. (9)

It is easy to see that Thk : F [Bhk, R] → C(B, R). We assume that Dhk =
Bhk, i.e., K = 0, L = 0. We will approximate solutions to problem (8), (3)
by means of solutions to the equation

δz(i,j) = F
(

xi, yj ,
∫

B

Thkz[i,j](t, s)dt ds
)

, (xi, yj) ∈ Ahk, (10)

with boundary condition (5).

Example 3. Suppose that

F : E ×R → R, ϕ : E → R, ψ : E → R, φ : E0 → R

are given functions, and

−a0 ≤ ϕ(x, y)− x ≤ 0, −b0 ≤ ψ(x, y)− y ≤ 0 for (x, y) ∈ E.

Let

f(x, y, w) = F
(

x, y, w(ϕ(x, y)− x, ψ(x, y)− y)
)

, (x, y, w) ∈ E × C(B, R).

Then problem (2), (3) reduces to the differential equation with a deviated
argument

Dxyz(x, y) = F
(

x, y, z(ϕ(x, y), ψ(x, y))big), (x, y) ∈ E,

with boundary condition (3). It is easy to construct difference methods for
the above equation using the ideas from Example 2. Further examples of
the operator Fhk are given in Sections 4 and 5.

§ 3. Existence and Uniqueness of Solutions of Functional
Difference Problems

The existence and uniqueness of a solution of problem (4), (5) is investi-
gated by the comparison method. This method is based on the association
of the operator Fhk with another operator σhk, which is followed by thor-
ough analysis of a comparison equation. If the latter equation possesses
adequate properties, then problem (4), (5) has exactly one solution which
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is the limit of a sequence of successive approximations. We obtain the sim-
plest case of the operator σhk corresponding to equation (4) if the function
Fhk satisfies the Lipschitz condition. The comparison problem is linear in
this case.

The following property of the operator δ is important:

Lemma 3.1. Problem (4), (5) is equivalent to

z(i,j) = hk
i−1
∑

µ=0

j−1
∑

ν=0

Fhk(xµ, yν , z[µ,ν]) + φ(i,0)
hk + φ(0,j)

hk − φ(0,0)
hk , (11)

1 ≤ i ≤ M, 1 ≤ j ≤ N,

z(i,j) = φ(i,j)
hk for (xi, yj) ∈ E0

hk. (12)

We omit the simple proof of the lemma.
Let ηhk : E0

hk ∪ Ehk → R be a function given by

ηhk(x, y) = φhk(x, y) for (x, y) ∈ E0
hk and ηhk(x, y) = 0 for (x, y) ∈ Ehk.

We define a sequence {zn}, zn : E0
hk ∪ Ehk → R, in the following way:

z(i,j)
0 = η(i,j)

hk for (xi, yj) ∈ E0
hk ∪ Ehk, (13)

and

z(i,j)
n+1 = hk

i−1
∑

µ=0

j−1
∑

ν=0

Fhk(xµ, yν , (zn)[µ,ν]) + φ(i,0)
hk + φ(0,j)

hk − φ(0,0)
hk , (14)

1 ≤ i ≤ M, 1 ≤ j ≤ N,

z(i,j)
n+1 = φ(i,j)

hk for (xi, yj) ∈ E0
hk, (15)

where n = 0, 1, 2, . . . .
We prove that, under suitable assumptions on the function Fhk, the se-

quence {zn} converges to the unique solution of problem (4), (5).
For w ∈ F (Dhk, R) we put

‖w‖hk = max
{

|w(i,j)| : (xi, yj) ∈ Dhk
}

.

For the above w we define the function |w|hk : Dhk → R+ by

|w|hk(x, y) = |w(x, y)|, (x, y) ∈ Dhk.

We will consider a comparison function σhk : Ahk × F [Dhk, R+] → R+

coresponding to the function Fhk.

Assumption H1. Suppose that
10 for each (x, y) ∈ Ahk the function σhk(x, y, ·) : F [Dhk, R+] → R+ is

nondecreasing, and σhk(x, y, Θhk) = 0 for (x, y) ∈ Ahk, where Θhk(x, y) = 0
for (x, y) ∈ Dhk,
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20 for (x, y, w) ∈ Ahk × F [Dhk, R], w ∈ F [Dhk, R] we have

|Fhk(x, y, w)− Fhk(x, y, w)| ≤ σhk(x, y, |w − w|hk), (16)

30 there exists a function ghk : E0
hk ∪ Ehk → R+ which is a solution to

the problem

ω(i,j) ≥ hk
i−1
∑

µ=0

j−1
∑

ν=0

σhk(xµ, yν , ω[µ,ν]) + η(i,j)
hk , (17)

1 ≤ i ≤ M, 1 ≤ j ≤ N,

ω(i,j) = |φ(i,j)
hk | for (xi, yj) ∈ E0

hk, (18)

with the function ηhk satisfying the condition

η(i,j)
hk ≥ hk

i−1
∑

µ=0

j−1
∑

ν=0

∣

∣Fhk(xµ, yν , (ηhk)[µ,ν])
∣

∣ +

+ |φ(i,0)
hk |+ |φ(0,j)

hk |+ |φ(0,0)
hk |, (19)

where 1 ≤ i ≤ M , 1 ≤ j ≤ N ,
40 the function ω(x, y) = 0, (x, y) ∈ E0

hk ∪Ehk, is the unique solution to
the problem

ω(i,j) = hk
i−1
∑

µ=0

j−1
∑

ν=0

σhk(xµ, yν , ω[µ,ν]), 1 ≤ i ≤ M, 1 ≤ j ≤ N, (20)

ω(i,j) = 0 for (xi, yj) ∈ E0
hk (21)

in the class of functions satisfying the condition 0 ≤ ω(x, y) ≤ ghk(x, y),
(x, y) ∈ Ehk.

Theorem 3.2. If Assumption H1 is satisfied then there exists a solution
z : E0

hk ∪ Ehk → R of problem (4), (5). The solution is unique in the class
of functions z : E0

hk ∪ Ehk → R satisfying the condition

|z(x, y)| ≤ ghk(x, y) for (x, y) ∈ Ehk.

Proof. Consider the sequence {gn}, gn : E0
hk ∪ Ehk → R+ given by

g0 = ghk,

and

g(i,j)
n+1 = hk

i−1
∑

µ=0

j−1
∑

ν=0

σhk(xµ, yν , (gn)[µ,ν]), 1 ≤ i ≤ M, 1 ≤ j ≤ n, (22)

g(i,j)
n+1 = 0 for (xi, yj) ∈ E0

hk, (23)
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where n = 0, 1, 2, . . . . We prove that

gn+1(x, y) ≤ gn(x, y) for (x, y) ∈ Ehk, n = 0, 1, 2, . . . , (24)

lim
n→∞

gn(x, y) = 0, (x, y) ∈ Ehk, (25)

|zn(x, y)| ≤ ghk(x, y), (x, y) ∈ Ehk, n = 0, 1, 2, . . . , (26)

|zn+r(x, y)− zn(x, y)| ≤ gn(x, y), (x, y) ∈ Ehk, n, r = 0, 1, 2, . . . . (27)

It follows from condition 30 of Assumption H1 that g1(x, y) ≤ g0(x, y) for
(x, y) ∈ Ehk. Assume that, for fixed n ∈ N, we have gn(x, y) ≤ gn−1(x, y),
(x, y) ∈ Ehk. It follows from the monotonicity of σhk with respect to the
functional variable and from (22) that gn+1(x, y) ≤ gn(x, y) for (x, y) ∈ Ehk.
Then we have (24) by induction on n ∈ N.

Since 0 ≤ gn(x, y) for (x, y) ∈ Ehk, n ∈ N, there exists

g(x, y) = lim
n→∞

gn(x, y), (x, y) ∈ Ehk.

It follows from (22), (23) that g is a solution to problem (20), (21). Condi-
tion 40 of Assumption H1 implies g(x, y) = 0 for (x, y) ∈ Ehk.

Now we prove (26). This relation is obvious for n = 0. If we assume that
|zn(x, y)| ≤ ghk(x, y), (x, y) ∈ Ehk, then we deduce from (16), (19) and the
monotonicity of σhk that

|z(i,j)
n+1 | ≤ hk

i−1
∑

µ=0

j−1
∑

ν=0

∣

∣Fhk(xµ, yν , (zn)[µ,ν])− Fhk(xµ, yν , (ηhk)[µ,ν])
∣

∣ +

+ hk
i−1
∑

µ=0

j−1
∑

ν=0

∣

∣Fhk(xµ, yν , (ηhk)[µ,ν])
∣

∣ + |φ(i,0)
hk |+ |φ(0,j)

hk |+ |φ(0,0)
hk | ≤

≤ hk
i−1
∑

µ=0

j−1
∑

ν=0

σhk
(

xµ, yν , (ghk)[µ,ν]
)

+

+ |φ(i,0)
hk |+ |φ(0,j)

hk |+ |φ(0,0)
hk |+ ηi,j)

hk ≤ g(i,j)
hk ,

where 1 ≤ i ≤ M , 1 ≤ j ≤ N ; and it is seen that inequality (26) is obtained
by induction on n ∈ N.

We prove (27) by induction on n ∈ N. Estimate (27) for n = 0 follows
from (26). If we assume that for fixed n ∈ N we have

|z(i,j)
n+r − z(i,j)

n | ≤ g(i,j)
n , (xi, yj) ∈ Ehk, r = 0, 1, 2, . . . ,

then, applying (14), (16), (22) and the monotonicity of σh, we get

∣

∣z(i,j)
n+r+1 − z(i,j)

n+1

∣

∣ ≤ hk
i−1
∑

µ=0

j−1
∑

ν=0

∣

∣Fhk(xµ, yν , (zn+r)[µ,ν])−
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− Fhk(xµ, yν , (zn)[µ,ν])
∣

∣ ≤

≤ hk
i−1
∑

µ=0

j−1
∑

ν=0

σhk
(

xµ, yν , |(zn+r)[µ,ν] − (zn)[µ,ν]|hk
)

≤

≤ hk
i−1
∑

µ=0

j−1
∑

ν=0

σhk(xµ, yν , (gn)[µ,ν]) = g(i,j)
n+1 ,

which completes the proof of assertion (27).
It follows from (25), (27) that there is z : E0

hk ∪ Ehk → R such that

z(x, y) = lim
n→∞

zn(x, y), (x, y) ∈ E0
hk ∪ Ehk.

Relations (14), (15) imply the function z is a solution to problem (11), (12).
Suppose that u : E0

hk ∪ Ehk → R is another solution to problem (11),
(12), and that |u(x, y)| ≤ ghk(x, y) for (x, y) ∈ Ehk. Then we obtain by
induction on n ∈ N the relation

|u(x, y)− zn(x, y)| ≤ gn(x, y) for (x, y) ∈ Ehk, n = 0, 1, 2, . . . .

It follows from (25) that u = z, which completes the proof of Theorem
1.2.

Now, we prove a result on the global uniqueness of solution to (11), (12).

Lemma 3.3. Suppose that Assumption H1 is satisfied and the function
ω(x, y) = 0 for (x, y) ∈ E0

hk ∪ Ehk is the only solution of the problem

ω(i,j) ≤ hk
i−1
∑

µ=0

j−1
∑

ν=0

σhk(xµ, yν , ω[µ,ν]), 1 ≤ i ≤ M, 1 ≤ j ≤ N, (28)

ω(i,j) = 0 for (xi, yj) ∈ E0
hk. (29)

Then the solution z : E0
hk ∪ Ehk → R to problem (11), (12) is unique.

Proof. If z, u : E0
hk ∪ Ehk → R are solutions to (11), (12), then ω̃ = z − u

satisfies (28), (29), and the assertion follows.

Now, we give sufficient conditions for the uniqueness of the solution ω = 0
to problem (28), (29).

Lemma 3.4. Suppose that the function σhk satisfies the conditions:
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10 for each function λhk : Ehk → R+ there exists a solution to the problem

ω(i,j) ≥ hk
i−1
∑

µ=0

j−1
∑

ν=0

σhk(xµ, yν , ω[µ,ν]) + λ(i,j)
hk , (30)

1 ≤ i ≤ M, 1 ≤ j ≤ N,

ω(i,j) = 0 for (xi, yj) ∈ E0
hk, (31)

20 the function ω = 0 is a unique solution to problem (20), (21).
Under these assumptions, the function ω(x, y) = 0, (x, y) ∈ E0

hk ∪ Ehk,
is the only solution to problem (28), (29).

Proof. Suppose that ω̃ : E0
hk ∪ Ehk → R+ is a solution to problem (28),

(29). Consider the sequence {ωn}, ωn : E0
hk ∪ Ehk → R+ given by

(i) ω0 is a solution of (30), (31) for λhk = ω̃,
(ii) if ωn is a given function then

ω(i,j)
n+1 = hk

i−1
∑

µ=0

j−1
∑

ν=0

σhk(xµ, yν , (ωn)[µ,ν]), 1 ≤ i ≤ M, 1 ≤ j ≤ N, (32)

ω(i,j)
n+1 = 0 for (xi, yj) ∈ E0

hk. (33)

We obtain

ω̃(x, y) ≤ ωn(x, y) for (x, y) ∈ Ehk, n = 0, 1, 2, . . . ,

0 ≤ ωn+1(x, y) ≤ ωn(x, y) for (x, y) ∈ Ehk, n = 0, 1, 2, . . . .

The above relations can be proved by induction on n ∈ N.
Let ω : E0

hk ∪ Ehk → R+ be defined by

ω(x, y) = lim
n→∞

ωn(x, y).

It follows from (32), (33) that ω = 0. Since ω̃ ≤ ω, the assertion follows.

§ 4. Convergence of Difference Methods with Nonlinear
Estimates for Increment Functions

In this section we consider the particular case of the set Dhk. We assume
that K = 0, L = 0. We will use the following comparison lemma:

Lemma 4.1. Suppose that K = 0 and L = 0 in the definition of Dhk

and
10 the function Ghk : Ahk×F [Bhk, R] → R is non-decreasing with respect

to the functional variable,
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20 the functions u, v : E0
hk ∪ Ehk → R satisfy the relations

u(i,j) − hk
i−1
∑

µ=0

j−1
∑

ν=0

Ghk(xµ, yν , u[µ,ν]) ≤

≤ v(i,j) − hk
i−1
∑

µ=0

j−1
∑

ν=0

Ghk(xµ, yν , v[µ,ν]),

whenever 1 ≤ i ≤ M , 1 ≤ j ≤ N ; and u(i,j) ≤ v(i,j) on E0
hk.

Then u(i,j) ≤ v(i,j) for (xiyj) ∈ Ehk.

We omit the simple proof of the lemma.
Denote by Ξ the class of all functions α : I0 → R+ such that

lim
(h,k)→(0,0)

α(h, k) = 0.

Assumption H2. Suppose that K = 0, L = 0 and
10 conditions 10, 20, 40 of Assumption H1 are satisfied,
20 the solution ω(xi, yj) = 0, (xi, yj) ∈ E0

hk ∪ Ehk, of the problem

δω(i,j) = σhk(xi, yj , ω[i,j]), (xi, yj) ∈ Ahk,

ω(i,j) = 0 for (xi, yj) ∈ E0
hk,

(34)

is stable in the following sense: if ωhk : E0
hk ∪ Ehk → R+ is the solution of

the problem

δω(i,j) = σhk(xi, yj , ω[i,j]) + α(h, k), (xi, yj) ∈ Ahk, (35)

ω(i,j) = α0(h, k) for (xi, yj) ∈ E0
hk, (36)

where α, α0 ∈ Ξ then there is β ∈ Ξ such that ω(i,j)
hk ≤ β(h, k) for (xi, yj) ∈

Ehk.

Theorem 4.2. Suppose that Assumption H2 is satisfied, and
10 uh : E0

hk ∪ Ehk → R is a solution to problem (4), (5) and there is
α0 ∈ Ξ such that

|φ(i,j) − φ(i,j)
hk | ≤ α0(h, k) for (xi, yj) ∈ E0

hk; (37)

20 v : E0 ∪E → R is a solution to problem (2), (3) and v is of class C3,
on E;

30 the following compatibility condition is satisfied: there is α̃ ∈ Ξ such
that

∣

∣Fhk(xi, yj , (vhk)[i,j])− f(xi, yj , v(xi,yj))
∣

∣ ≤ α̃(h, k), (38)

(xi, yj) ∈ Ahk,
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where the function vhk is the restriction of the function v to the set E0
hk ∪

Ehk.
Under these assumptions there exists β ∈ Ξ such that

∣

∣u(i,j)
hk − v(i,j)

hk

∣

∣ ≤ β(h, k), (xi, yj) ∈ Ehk. (39)

Proof. Let Γhk : Ahk → R be defined by

δv(i,j)
hk = Fhk(xi, yj , (vhk)[i,j]) + Γ(i,j)

hk , (xi, yj) ∈ Ahk. (40)

It follows from assumption 20 that there is α1 ∈ Ξ such that

∣

∣δv(i,j)
hk −Dxyv(i,j)

∣

∣ ≤ α1(h, k), (xi, yj) ∈ Ahk. (41)

From the above inequality and from the compatibility condition (39) we
deduce that there is α ∈ Ξ such that |Γ(i,j)

hk | ≤ α(h, k) for (xi, yj) ∈ Ahk.
Let ωhk = |uhk − vhk|. Then the function ωhk satisfies the relations

ω(i,j)
hk ≤ hk

i−1
∑

µ=0

j−1
∑

ν=0

σhk(xµ, yν , (ωhk)[µ,ν]) + ih jk α(h, k), (42)

1 ≤ i ≤ M, 1 ≤ j ≤ N,

ω(i,j)
hk ≤ α0(h, k) for (xi, yj) ∈ E0

hk. (43)

Let ω̃ : E0
hk ∪ Ehk → R+ be a solution of the problem

ω(i,j) = hk
i−1
∑

µ=0

j−1
∑

ν=0

σhk(xµ, yν , (ω)[µ,ν]) + abα(h, k), (44)

1 ≤ i ≤ M, 1 ≤ j ≤ N,

ω(i,j) = α0(h, k) for (xi, yj) ∈ E0
hk. (45)

Relations (42), (43) and Lemma 4.1 imply ω(i,j)
hk ≤ ω̃(i,j)

hk for (xi, yj) ∈
Ehk. Now we obtain the assertion of our theorem from the stability of the
functional difference problem (34).

Remark 4.3. If the assumptions of Theorem 4.2 are satisfied then we have
the following estimate for the error of approximate solutions to problem (2),
(3):

∣

∣u(i,j)
hk − v(i,j)

hk

∣

∣ ≤ ω̃(i,j)
hk , (xi, yj) ∈ Ehk,

where the function ω̃h is the only solution to problem (44), (45) with α0
given by (37), α = α̃ + α1, and α̃, α1 are defined by (39), (41).
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Now, we consider problem (2), (3) and the difference method

δz(i,j) = f(xi, yj , Thkz[i,j]), (xi, yj) ∈ Ahk,

z(i,j) = φ(i,j)
hk for (xi, yj) ∈ E0

hk,
(46)

where the operator Thk is defined in Example 2. It is obvious that there
exists exactly one solution to problem (46).

Assumption H3. Suppose that the function f : E × C(B,R) → R is
continuous, and there is a function σ : E ×R+ → R+ such that

10 σ is continuous, and σ(x, y, 0) = 0 for (x, y) ∈ E;
20 σ is nondecreasing with respect to all variables and the function

ω(x, y) = 0, (x, y) ∈ E is the unique solution to the problem

Dxyz(x, y) = σ(x, y, z(x, y)), (x, y) ∈ E,

z(x, 0) = 0 for x ∈ [0, a], z(0, y) = 0 for y ∈ [0, b];

30 the estimate

|f(x, y, w)− f(x, y, w)| ≤ σ(x, y, ‖w − w‖B)

is satisfied on E × C(B, R).

Theorem 4.4. Suppose that Assumption H3 is satisfied, and
10 uhk : E0

hk∪Ehk → R is a solution to problem (46), and there is α0 ∈ Ξ
such that estimate (37) holds;

20 v : E0 ∪E → R is a solution to problem (2), (3), and v is of class C3

on E.
Then there is β ∈ Ξ such that

∣

∣u(i,j)
hk − v(i,j)

hk

∣

∣ ≤ β(h, k), (xi, yj) ∈ Ehk, (47)

where vhk is the restriction of the function v to the set E0
hk ∪ Ehk.

Proof. We apply Theorem 4.2 in the proof of assertion (47). Put Dhk = Bhk

and

Fhk(x, y, w) = f(x, y, Thkw), (x, y, w) ∈ Ahk × F [Dhk, R]. (48)

Then we have
∣

∣Fhk(x, y, w)− Fhk(x, y, w)
∣

∣ ≤ σ
(

x, y, ‖Thk(w − w)‖B
)

=

= σ
(

x, y, ‖w − w‖hk
)

on Ahk × F [Dhk, R].

Consider the problem

δω(i,j) = σ(xi, yj , ω(i,j)), 0 ≤ i ≤ M − 1, 0 ≤ j ≤ N − 1, (49)

ω(i,j) = 0 for (xi, yj) ∈ E0
hk. (50)
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We prove that the solution ω(x, y) = 0, (x, y) ∈ E0
hk ∪ Ehk, to the problem

δω(i,j) = σ(xi, yj , ω(i,j)), (xi, yj) ∈ Ahk, ω(i,j) = 0 for (xi, yj) ∈ E0
hk,

is stable in the sense of condition 20 of Assumption H2.
Let ωhk : E0

hk ∪ Ehk → R+ be a solution to the problem

δω(i,j) = σ(xi, yj , ω(i,j)) + α(h, k), (xi, yj) ∈ Ahk, (51)

ω(i,j) = α0(h, k) for (xi, yj) ∈ E0
hk, (52)

where α α0 ∈ Ξ. Consider the Darboux problem

Dxyz(x, y) = σ(x, y, z(x, y)) + α(h, k), (x, y) ∈ E,

z(x, 0) = α0(h, k) for x ∈ [0, a], z(0, y) = α0(h, k) for y ∈ [0, b].

Since there is ε0 > 0 such that if h + k ≤ ε0, there is also a solution
zhk : E → R to the above problem, and

lim
(h,k)→(0,0)

zhk(x, y) = 0 uniformly on E. (53)

It follows from the monotonicity of σ that for h + k ≤ ε0, (xi, yj) ∈ Ahk, we
have the relations

z(i,j)
hk =

xi
∫

0

yj
∫

0

[σ(t, s, zhk(t, s)) + α(h, k)]dt ds + α0(h, k) ≥

≥ hk
i−1
∑

µ=0

j−1
∑

ν=0

[σ(xµ, yν , z(µ,ν)
hk ) + α(h, k)] + α0(h, k).

Then the function zhk satisfies the difference inequality

z(i,j)
hk ≥ hk

i−1
∑

µ=0

j−1
∑

ν=0

[σ(xµ, yν , z(µ,ν)
hk ) + α(h, k)] + α0(h, k),

1 ≤ i ≤ M, 1 ≤ j ≤ N.

The function ωhk satisfies the equation

ω(i,j)
hk = hk

i−1
∑

µ=0

j−1
∑

ν=0

[σ(xµ, yν , ω(µ,ν)
hk ) + α(h, k)] + α0(h, k),

1 ≤ i ≤ M, 1 ≤ j ≤ N.

It follows from Lemma 4.1 that ω(i,j)
hk ≤ z(i,j)

hk for (xi, yj) ∈ Ehk. Thus the
stability of problem (49), (50) follows from condition (53).

Now, we prove the consistency condition for equation (48). We will use
the following property of the operator Thk ([12]): if w ∈ F [B, R], w is of
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class C3 and whk is the restriction of w to the set Bhk, then there is C > 0
such that

‖Thkwhk − w‖B ≤ C(h2 + k2).

It follows from the above property of Thk and from assumption 20 that the
operator Fhk given by (48) satisfies condition (39) with α̃ ∈ Ξ.

§ 5. Convergence of Implicit Difference Methods

In this section, we consider a general class of difference problems con-
sistent with (2), (3) which satisfy Assumption H1 and are convergent. We
formulate a functional difference equation.

Let K = 1, L = 1 in the definition of Dhk. We define the operator

˜Thk : F [Dhk, R] → F [ [−a0, h]× [−b0, k], R ]

in the following way. Let w ∈ F [Dhk, R] and (t, s) ∈ [−a0, h]×[−b0, k]. Then
there is (xi, yj) such that −M0 ≤ i < 1, −N0 ≤ j < 1 and xi ≤ t ≤ xi+1,
yj ≤ j ≤ yj+1. We define ( ˜Thkw)(t, s) as the right-hand side of formula (9).
Denote by Shk : F [Dhk, R] → F [B,R] the operator given by

(Shkw)(t, s) = ( ˜Thkw)
(

t +
h
2
, s +

k
2

)

, (t, s) ∈ B.

The function Shkw is the restriction of the function ˜Thkw to the set [−a0 +
h
2 , h

2 ]× [−b0 + k
2 , k

2 ] which is shifted to the set B.
Consider problem (2), (3) and the difference equation

δz(i,j) = f(xi+ 1
2
, yj+ 1

2
, Shkz[i,j]), 0 ≤ i ≤ M − 1, 0 ≤ j ≤ N − 1, (54)

with boundary condition (5).

Assumption H4. Suppose that the function f : E × C(B,R) → R is
continuous and there is ˜L ∈ R+ such that

|f(x, y, w)− f(x, y, w)| ≤ ˜L‖w − w‖D on E × C(B,R).

Theorem 5.1. Suppose that Assumption H4 is satisfied and
10 v : E0 ∪E → R is a solution to problem (2), (3), and v is of class C4

on E,
20 ab˜L < 1, and there is α0 ∈ Ξ such that inequality (37) holds true.
Then there exists exactly one solution uhk : E0

hk ∪ Ehk → R to problem
(54), (5), and there is C ∈ R+ such that the following error estimate holds:

∣

∣u(i,j)
hk − v(i,j)

∣

∣ ≤ Cxiyj(h2 + k2) + 2α0(h, k)

1− xiyj ˜L
, (xi, yj) ∈ Ehk. (55)
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Proof. We put

Fhk(xi, yj , w) = f
(

xi+ 1
2
, yj+ 1

2
, Shkw

)

, (xi, yj , w) ∈ Ahk × F [Dhk, R].

Then Fhk satisfies the Lipschitz condition with respect to the functional
variable with the constant ˜L. Put

σ(x, y, w) = ˜L‖w‖hk, (x, y, w) ∈ Ahk × F [Dhk, R+]. (56)

Then equation (20) is equivalent to

ω(i,j) = hk
i

∑

µ=1

j
∑

ν=1

˜L‖ω[µ−1,ν−1]‖hk, 1 ≤ i ≤ M, 1 ≤ j ≤ N.

The above equation with boundary condition (21) is equivalent to the prob-
lem

ω(i,j) = hk
i

∑

µ=1

j
∑

ν=1

˜Lω(µ,ν), 1 ≤ i ≤ M, 1 ≤ j ≤ N,

ω(i,j) = 0 for (xi, yj) ∈ E0
hk.

(57)

It follows from assumption 20 that problem (57) satisfies conditions 30, 40

of Assumption H1 and that the unique solution to problem (28) (29) with
σ given by (56) is ω(x, y) = 0. Then there exists exactly one solution
uhk : E0

hk ∪ Ehk → R to problem (54), (5).
Let Γhk : Ahk → R be defined by

δv(i,j)
hk = f

(

xi+ 1
2
, yj+ 1

2
, Shk(vhk)[i,j]

)

+ Γ(i,j)
hk , (xi, yj) ∈ Ahk.

There is ˜C ∈ R+ such that we have
∣

∣δv(i,j)
hk −Dxyv(xi+ 1

2
, yj+ 1

2
)
∣

∣ ≤ ˜C(h2 + k2), (xi, yj) ∈ Ahk,

and
∣

∣ ˜Thk(vhk)[i,j](t, s)− v(xi+1,yj+1)(t, s)
∣

∣ ≤ ˜C(h2 + k2),

where (t, s) ∈ [−a0, h] × [−b0, k], 0 ≤ i ≤ M − 1, 0 ≤ j ≤ N − 1. Then
there is C ∈ R+ such that |Γ(i,j)

hk | ≤ C(h2 + k2) for (xi, yj) ∈ Ahk. Let
ωhk = uhk − vhk. Obviously, the function ωhk satisfies the inequalities

|ω(i,j)
hk | ≤ hk

i−1
∑

µ=0

j−1
∑

ν=0

[

˜L(‖ωhk)[µ,ν]‖hk + C(h2 + k2)
]

+ 2α0(h, k),

1 ≤ i ≤ M, 1 ≤ j ≤ N,

ωi,j)
hk ≤ α0(h, k) for (xi, yj) ∈ E0

hk.
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The function

ω̃(i,j)
hk =

Cxiyj(h2 + k2) + 2α0(h, k)

1− xiyj ˜L
, (xi, yj) ∈ Ehk,

ω̃(i,j)
hk = 2α0(h, k) for (xi, yj) ∈ E0

hk,

satisfies the inequalities

ω(i,j)
hk ≥ hk

i−1
∑

µ=0

j−1
∑

ν=0

[

˜L‖(ω)[µ,ν]‖hk + C(h2 + k2)
]

+ 2α0(h, k),

1 ≤ i ≤ M, 1 ≤ j ≤ N,

ω(i,j) ≥ α0(h, k) for (xi, yj) ∈ E0
hk.

Consequently, we obtain assertion (55) from Lemma 4.1.

Numerical example. Define E = (0, 1]×(0, 1], E0 = ([− 1
2 , 1]×[ 12 , 1])\E

and B = [− 1
2 , 0]× [− 1

2 , 0]. Consider the Darboux problem

Dxyz(x, y) = 2(x + y)
(

z(x− 0.25, y − 0.25)− z(x, y)
)

−

− (x + y)

0
∫

− 1
2

0
∫

− 1
2

z(x + t, y + s)dt dx + f(x, y), (58)

(x, y) ∈ E,

z(x, y) = sin(1 + x + y) for (x, y) ∈ E0, (59)

where

f(x, y) = (x + y − 1) sin(1 + x + y)− (x + y) sin(x + y).

Let M0, N0, M , N be natural numbers which satisfy

M0h = 0.5, N0k = 0.5, M = 2M0, N = 2N0.

Assume that M0 and N0 are even numbers. Consider the difference equation
corresponding to equation (58)

δz(i,j) = 2(xi+ 1
2

+ yj+ 1
2
)
(

Shkz(i,j)(−0.25,−0.25)− Shkz(i,j)(0, 0)
)

−

− (xi+ 1
2

+ yj+ 1
2
)

0
∫

− 1
2

0
∫

− 1
2

Thkz(i,j)(t, s)dt ds + f (i,j),

0 ≤ i ≤ M − 1, 0 ≤ j ≤ N − 1.

Let m0 = 1
2M0 and n0 = 1

2N0. Then we have

Shkz(i,j)(−0.25,−0.25) = I(−)[i, j], Shkz(i,j)(0, 0) = I(0)[i, j],
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where

I(−)[i, j] =
1
4
(

z(i−m0,j−n0) + z(i−m0+1,j−n0) +

+ z(i−m0,j−n0+1) + z(i−m0+1,j−n0+1)),

I(0)[i, j] =
1
4
(

z(i,j) + z(i+1,j) + z(i,j+1) + z(i+1,j+1)).

Let w ∈ F (Bhk, R). Then

xi+1
∫

xi

yj+1
∫

yj

Thkw(t, s)dt ds =
hk
4

(

w(i,j) + w(i+1,j) + w(i,j+1) + w(i+1,j+1))

and consequently

0
∫

− 1
2

0
∫

− 1
2

Thkz(i,j)(t, s)dt ds = I[i, j],

where

I[i, j] =
hk
4

(

z(i−M0,j−N0) + z(i,j−N0) + z(i−M0,j) + z(i,j)) +

+
hk
2

M0−1
∑

i′=1

(

z(i−M0+i′,j−N0) + z(i−M0+i′,j)) +

+
hk
2

N0−1
∑

j′=1

(

z(i−M0,j−N0+j′) + z(i,j−N0+j′)) +

+ hk
M0−1
∑

i′=1

N0−1
∑

j′=1

z(i−M0+i′,j−N0+j′).

We approximate the solution v : E0 ∪ E → R of problem (58), (59) by
means of solutions of the implicit difference equation

z(i+1,j+1) − z(i+1,j) − z(i,j+1) + z(i,j) =

= −hk(xi+ 1
2

+ yj+ 1
2
)I[i, j] +

+ 2hk(xi+ 1
2

+ yj+ 1
2
)
(

I(−)[i, j]− I(0)[i, j]
)

+ hkf (i,j), (60)

0 ≤ i ≤ M − 1, 0 ≤ j ≤ N − 1,

with the boundary condition

z(i,j) = sin(1 + xi + yj), (xi, yj) ∈ E0
hk. (61)
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The function v(x, y) = sin(1 + x + y), (x, y) ∈ E0 ∪ E, is the solution to
problem (58), (59). Let uhk : E0

hk ∪ Ehk → R be a solution to problem
(60), (61), and εhk = vhk − uhk, where uhk is the restriction of the function
v to the set E0

hk ∪ Ehk. Some values of ε(i,j)
hk are listed in the table for

h = k = 10−3.

TABLE OF ERRORS

x = 0.80 x = 0.85 x = 0.90 x = 0.95 x = 1
y = 0.80 1.325 10−4 1.597 10−4 1.898 10−4 2.229 10−4 2.593 10−4

y = 0.85 1.587 10−4 1.905 10−4 2.244 10−4 2.618 10−4 3.028 10−4

y = 0.90 1.898 10−4 1.244 10−4 2.627 10−4 3.048 10−4 3.510 10−4

y = 0.95 2.229 10−4 2.618 10−4 3.048 10−4 3.521 10−4 4.041 10−4

y = 1 2.593 10−4 3.028 10−4 3.510 10−4 3.641 10−4 4.625 10−4

The computation was performed by the computer IBM AT.
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