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A NOTE ON WEIGHT ENUMERATORS OF LINEAR
SELF-DUAL CODES

N. LOMADZE

Abstract. A partial description of (complete) weight enumerators
of linear self-dual codes is given.

0. Let F = Z/pZ, where p is a prime number. If C is a linear code on
F of length n, i.e., a linear subspace in Fn, then its (complete) weight
enumerator WC is defined to be

∑

u∈C

(
∏

a∈F

xsa(u)
a

)

.

Here xa, a ∈ F are indeterminates; sa(u) denotes the number of entries of
u in C equal to a. This is a homogeneous polynomial in p indeterminates
of degree n. Define the additive character ψ of F by

k 7→
(

e
2πi

p
)k

, k ∈ F,

and let
A =

1
√

p
(

ψ(ij)
)

i,j∈F .

Further, for each a ∈ F , let Ua be the diagonal matrix with ψ(ai2) at the
(i, i)th place for each i ∈ F ; for each b ∈ F ∗, let Vb be the matrix with 1 at
the (bi, i)th place for each i and 0 elsewhere. One knows well that weight
enumerators of linear self–dual codes are invariant relative to A, Ua, and
Vb (see [2]). Therefore, a natural problem is to determine all invariants of
these transformations. The problem seems to be difficult. At the moment
there are solutions for the case p = 2 (Gleason) and p = 3 (McEliece) (see
[2]).

In [3] we have described the invariant ring of A, which is undoubtely the
most interesting transformation. The goal of this short paper is to describe
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the invariants of A and Vb, b ∈ F ∗. It should be pointed out that the
exposition is elementary and uses no technique of invariant theory of finite
groups.

In what follows p 6= 2. Let R = C
[

(xa)a∈F
]

be the ring of polynomials
with complex coefficients and let G be the group generated by A and Vb,
b ∈ F ∗.

We remark that the generators of this group satisfy the following relations
only:

(1) b 7→ Vb is a multiplicative homomorphism;
(2) A2 = V−1;
(3) VbA = AVb−1 .

1. Choose a generator b of the multiplicative group of F , and denote by
V the transformation Vb. Let G0 be the subgroup in G generated by V .
Clearly, G0 is isomorphic to F ∗. It is easy to see that G0 is a normal
subgroup in G of index 2 and G = G0 ∪AG0.

Let us find the invariants of G0. Denote by χ that multiplicative character
of F which takes b to e

2πi
p−1 . For each k = 0, 1, . . . , p− 2, put

yk =
p−2
∑

l=0

χk(bl)xbl .

Clearly, R = C[x0, y0, y1, . . . , yp−2].

Lemma 1.1. One has
(1) V (x0) = x0;
(2) V (y0) = y0;
(3) V (yk) = e−

2πki
p−1 yk, k = 1, . . . , p− 2.

Proof. (1) and (2) are obvious. To prove (3) take any yk with k 6= 0. We
have

V (yk) =
p−2
∑

l=0

χk(bl)xbl+1 =
p−1
∑

l=1

χk(bl−1)xbl =

= χ−k(b)
p−1
∑

l=1

χk(bl)xbl = e−
2πki
p−1 yk.

Denote by I the set of all mappings i : [1, p− 2] → [0, p− 2] which satisfy
the congruence

p−2
∑

k=1

ki(k) ≡ 0 mod (p− 1).

For each i ∈ I, put ηi = yi(1)
1 · · · yi(p−2)

p−2 . Let R0 denote C[x0, y0, y
p−1
1 , . . . ,

yp−1
p−2 ]. This is a subring in R.
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Lemma 1.2. The invariant ring of G0 is RG0 = ⊕
i∈I

ηiR0.

Proof. Let i run over all the mappings of [1, p − 2] into [0, p − 2]. Then,
every element in R can be written uniquely as a sum

∑

i

(
p−2
∏

k=1

yi(k)
k

)

fi,

where fi ∈ R0. Notice that V f = f for each f ∈ R0. So letting ci denote

(

e−
2πi
p−1

)

p−2
∑

k=1

ki(k)

, we have

V
(

∑

i

(
p−2
∏

k=1

yi(k)
k

)

fi

)

=
∑

i

(
p−2
∏

k=1

yi(k)
k

)

cifi.

One can therefore see that

V
(

∑

i

(
p−2
∏

k=1

yi(k)
k

)

fi

)

=
∑

i

(
p−2
∏

k=1

yi(k)
k

)

fi

if and only if, for each i, either ci = 1 or fi = 0. Certainly, ci = 1 ⇐⇒
i ∈ I.

2. For each k = 1, . . . , p− 2 put

τ(k) =
1
√

p

p−2
∑

l=0

χk(bl)ψ(bl).

These are the so-called Gaussian sums. They satisfy the relations

τ(k)τ(p− 1− k) = χk(−1), k = 1, . . . , r − 1.

Here and below r = p−1
2 . These relations are immediate consequences of

Theorem 4 in [1, Ch. I, §2] and the fact that τ(k) = χk(−1)τ(p − 1 − k).
One has also

τ(r) =

{

1 if p ≡ 1mod 4,
i if p ≡ 3mod 4

(see Theorem 7 in [1, Ch. V, §4]).

Lemma 2.1. One has

Ax0 =
1
√

p
(x0 + y0),

Ay0 =
1
√

p
((p− 1)x0 − y0),

Ayk = τ(k)yp−1−k, k = 1, . . . , p− 2.



472 N. LOMADZE

Proof. This can easily be checked. See also [1, Ch. V, §4, Exercise 17].
From the above lemma follows in particular that

AR0 ⊆ R0.

We want now to find the absolute and relative invariants of A belonging to
R0, in other words, those polynomials f , g ∈ R0 which satisfy the conditions

Af = f, Ag = −g.

Put

z01 = (1 +
√

p)x0 + y0;

z02 = (1−√p)x0 + y0;

zk1 = yp−1
k + τ(k)p−1yp−1

p−1−k, k = 1, . . . , r − 1;

zk2 = yp−1
k − τ(k)p−1yp−1

p−1−k, k = 1, . . . , r − 1;

zr = yp−1
r .

Certainly, R0 = C[z01, z02, z11, z12, . . . , zr−1,1, zr−1,2, zr].

Lemma 2.2. One has

Az01 = z01, Az02 = −z02,

Azk1 = zk1, Azk2 = −zk2, k = 1, . . . , r − 1;

Azr = (−1)rzr.

Proof. Follows easily from the preceding lemma. One should have in mind
the relations τ(k)p−1τ(p − 1 − k)p−1 = 1 (k = 1, . . . , r − 1) and τ(r)p−1 =
(−1)r.

Consider two cases.
(1) p ≡ 1(mod 4). Let α, β run over all the mappings [0, r − 1] → {0, 1}

satisfying the conditions

r−1
∑

k=0

α(k) ≡ 0 mod 2,
r−1
∑

k=0

β(k) ≡ 1 mod 2

respectively. Put

fα = zα(0)
02 · · · zα(r−1)

r−1,2 , gβ = zβ(0)
02 · · · zβ(r−1)

r−1,2 .

Set

S1 = ⊕
α
fαC[z01, . . . , zr−1,1, z2

02, . . . , z
2
r−1,2, zr],

S2 = ⊕
β
gβC[z01, . . . , zr−1,1, z2

02, . . . , z
2
r−1,2, zr].
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(2) p ≡ 3(mod 4). Let α, β run over all the mappings [0, r] → {0, 1}
satisfying the conditions

r
∑

k=0

α(k) ≡ 0 mod 2,
r

∑

k=0

β(k) ≡ 1 mod 2,

respectively. Put

fα = zα(0)
02 · · · zα(r−1)

r−1,2 zα(r)
r , gβ = zβ(0)

02 · · · zβ(r−1)
r−1,2 zβ(r)

r .

Set

S1 = ⊕
α
fαC[z01, . . . , zr−1,1, z2

02, . . . , z
2
r−1,2, z

2
r ],

S2 = ⊕
β
gβC[z01, . . . , zr−1,1, z2

02, . . . , z
2
r−1,2, z

2
r ].

In both cases there holds the following

Lemma 2.3.
(a) S1 =

{

f ∈ R0|Af = f
}

and S2 =
{

g ∈ R0|Ag = −g
}

;
(b) R0 = S1 ⊕ S2.

Proof. Left to the reader.

3. We are now ready to describe the invariants of G.
For each i ∈ I, put

ai =
p−2
∏

k=1

τ(k)i(k).

For each i ∈ I, let i be the function defined by the formula

i(k) = i(p− 1− k) k = 1, . . . , p− 2.

It is clear that i ∈ I and i = i. Let I0 =
{

i ∈ I|i = i
}

. The complement
to I0 in I breaks into two parts I1 and I2 so that i ∈ I1 ⇒ i ∈ I2 and
i ∈ I2 ⇒ i ∈ I1.

Lemma 3.1. For each i ∈ I aiai = 1.

Proof. We have

aiai =
p−2
∏

k=1

τ(k)i(k)
p−2
∏

k=1

τ(p− 1− k)i(k) =

=
p−2
∏

k=1

(χk(−1))i(k) = χ(−1)
∑p−2

k=1
ki(k) = 1.

Lemma 3.2. For each i ∈ I Aηi = aiηi.
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Proof. It is obvious.

Lemma 3.3. Suppose we are given a polynomial
∑

i∈I

ηihi ∈ RG0

with hi ∈ R0. It is invariant under A if and only if, for each i, Ahi = aihi.

Proof. We have
A

(
∑

i∈I

ηihi

)

=
∑

i∈I

ηi(aiAhi).

From this and from the fact that AR0 ⊆ R0 follows the assertion.
By Lemma 3.1, if i ∈ I0, then ai = ±1. Put

I01 =
{

i ∈ I0|ai = 1
}

and I02 =
{

i ∈ I0|ai = −1
}

.

Theorem. Every polynomial which is invariant relative to the action of
G can be written uniquely as

∑

i∈I01

fi +
∑

i∈I02

gi +
∑

i∈I1

(ηihi + aiηiAhi),

where fi ∈ S1, gi ∈ S2, hi ∈ R0.

Proof. Follows from Lemmas 2.3 and 3.2.
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