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ON UNCOUNTABLE UNIONS AND INTERSECTIONS OF
MEASURABLE SETS

M. BALCERZAK AND A. KHARAZISHVILI

Abstract. We consider several natural situations where the union or
intersection of an uncountable family of measurable (in various senses)
sets with a “good” additional structure is again measurable or may fail
to be measurable. We primarily deal with Lebesgue measurable sets
and sets with the Baire property. In particular, uncountable unions
of sets homeomorphic to a closed Euclidean simplex are considered
in detail, and it is shown that the Lebesgue measure and the Baire
property differ essentially in this aspect. Another difference between
measure and category is illustrated in the case of some uncountable
intersections of sets of full measure (comeager sets, respectively). We
also discuss a topological form of the Vitali covering theorem, in con-
nection with the Baire property of uncountable unions of certain sets.

0. Introduction

A mathematician working in probability theory, the theory of random
processes or in various fields of modern analysis is quite frequently obliged
to show that the union

⋃

{Xa : a ∈ A} or the intersection
⋂

{Xa : a ∈ A} of
a given uncountable family {Xa : a ∈ A} of measurable sets is measurable
provided that the sets Xa have some additional “good” structure. Here
the measurability is meant in the sense of the respective σ-algebra S of
subsets of a given nonempty basic set E containing each set Xa (a ∈ A).
For instance, let E coincide with the real line R and let S be the σ-algebra
of all Lebesgue measurable subsets of R. Let us consider the family T of
all S-measurable sets X ⊆ R such that each point x from X is a density
point of X. It is well known (see, e.g., [1], Chapter 22) that T forms a
topology which is usually called the density topology on the real line. Thus
the union of each subfamily of T belongs to T , and hence is S-measurable.
In particular, we see that uncountable unions of S-measurable sets belonging
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to T are S-measurable, too. The same situation holds for the von Neumann-
Maharam topology which is a generalization of the density topology and
can be introduced for an arbitrary measure space (E,S, µ) where E is a
nonempty basic set, S is a σ-algebra of subsets of E and µ is a nonzero
σ-finite complete measure defined on S (see [1], Chapter 22). Note that a
number of interesting examples and questions concerning the measurability
of uncountable unions of measurable sets are discussed in [2].

The main aim of this paper is to illustrate that the phenomenon produc-
ing measurable unions (or intersections) for uncountable families of “good”
measurable sets depends on very delicate conditions. Another goal is to
express some similarities and differences between measure and category in
that aspect. In Section 1, we briefly consider the most classical situation
dealing with an arbitrary family {St : t ∈ T} of closed n-simplexes in the
n-dimensional Euclidean space Rn. Applying some well-known properties
of the standard Lebesgue and Jordan measures in Rn (see, e.g., [3]), we
show that the set

⋃

{St : t ∈ T} is Lebesgue measurable and has the Baire
property. In Section 2, we are concerned with arbitrary families of sets that
are homeomorphic to a closed n-simplex in Rn (such sets are called topolog-
ical n-simplexes). It turns out that, in this situation, the measure and the
category cases differ essentially. Namely, an arbitrary family of topological
n-simplexes has the union with the Baire property. On the other hand, there
exists a family of topological n-simplexes in Rn (n ≥ 2) with the union non-
measurable in the Lebesgue sense. Therefore, from this point of view, the
Baire property behaves better than Lebesgue measure. Section 3 witnesses
that in some situations it can happen conversely, that is, measure behaves
better than the Baire property. Namely, in connection with a theorem of
Goldstern [4] concerning certain uncountable intersections of coanalytic sets
with the full probability measure, we show that an analogous result fails to
be true in the category case. In Section 4, we introduce the notion of a
topological Vitali space. It turns out that these spaces characterize the
situation where, for a wide class of sets (called admissible), the union of
an arbitrary subfamily is countably approximable and consequently has the
Baire property.

Our notation and terminology concerning set theory, general topology,
measure and category are fairly standard. In particular, we denote:

ω – the set of all natural numbers, i.e., ω = {0, 1, 2, . . . , n, . . . };
µ – a measure on a given basic space (as a rule, we assume that µ is

nonzero, σ-finite and complete);
dom(µ) – the family of all µ-measurable sets;
νn – the classical Jordan measure in Rn;
λn – the classical Lebesgue measure in Rn.
Let E be an arbitrary topological space. If X ⊆ E, then cl(X), int(X)

and bd(X) stand for the closure, the interior and the boundary of X, re-
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spectively. We denote:
NWD(E) – the ideal of all nowhere dense subsets of E;
K(E) – the σ-ideal of all meager (i.e., first category) subsets of E;
Br(E) – the σ-algebra of all subsets of E with the Baire property.
Recall that a set X ⊆ E has the Baire property iff X can be represented

as the symmetric difference X = U4P where U is open and P is meager in
E. Moreover, if X ⊆ E can be expressed in the form X = U4P where U is
open and P is nowhere dense in E, then X is called an open set modulo a
nowhere dense set (cf. [5], §8, V) or, briefly, an open set modulo NWD(E).

We shall say that a subset X of a topological space E is admissible if

X ⊆ cl(int(X)).

Clearly, every open set is admissible. If X is a regular closed set (i.e., X =
cl(int(X))), then X is admissible, as well. In addition, if X is admissible,
then from the relations

int(X) ⊆ X ⊆ cl(int(X)), cl(int(X)) \ int(X) ∈ NWD(E)

it follows that X is open modulo a nowhere dense set (in general, the con-
verse is false).

In our further considerations, the notion of a Vitali covering plays an
essential role. So, we introduce this notion for a general topological space
and for an arbitrary subset of that space. We say that a family V of subsets
of a topological space E forms a Vitali covering of a given set X ⊆ E if,
for each point x ∈ X and for each neighbourhood U of x, there exists a set
V ∈ V such that x ∈ V ⊆ U . Consequently, if V is a Vitali covering of X,
then the family of sets {V ∩X : V ∈ V} forms a net for the subspace X of
E. As a rule, the Vitali coverings considered below are assumed to consist
of admissible sets. We also recall that a topological space E satisfies the
Suslin condition (the countable chain condition) if each disjoint family of
nonempty open sets in E is countable.

1. Unions of n-Simplexes

By an n-simplex we mean a closed nondegenerate simplex in the Eu-
clidean space Rn. If a real α > 0 is fixed, we say that a bounded set
X ⊆ Rn is α–regular if λn(X) ≥ αλn(V (X)) where V (X) denotes a closed
ball with the minimal diameter, for which we have the inclusion X ⊆ V (X)
(clearly, in this definition a ball can be replaced by a cube). Note that every
n-simplex is an α–regular set for some α > 0.

Theorem 1.1. Let {St : t ∈ T} be an arbitrary family of n-simplexes in
Rn. Then the set X =

⋃

{St : t ∈ T} is Lebesgue measurable and possesses
the Baire property.
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Proof. Obviously, the set X can be expressed in the form

X =
⋃

m∈ω, m>0

⋃

t∈Tm

St

where
Tm = {t ∈ T : St is 1/m−regular}.

It suffices to show that, for a fixed integer m > 0, the set

Xm =
⋃

{St : t ∈ Tm}

is Lebesgue measurable. For any t ∈ Tm, x ∈ St and c ∈ ]0, 1[, let Sc
t (x)

denote the image of St under the homothetic transformation

y → x + c(y − x) (y ∈ Rn).

Observe that the family of n-simplexes

Fm = {Sc
t (x) : t ∈ Tm & x ∈ St & c ∈ ]0, 1[}

forms a Vitali covering of Xm. Additionally, Fm consists of simplexes which
are 1/m–regular sets. Thus, by the generalized Vitali theorem (see [6],
Chapter 4, Theorem 3.1), there exists a countable disjoint family F∗m ⊆ Fm

such that λn(Xm \
⋃

F∗m) = 0. Evidently,
⋃

F∗m is Lebesgue measurable.
Also, we have

⋃

F∗m ⊆ Xm by the definition of Fm. Hence Xm is Lebesgue
measurable.

Our argument in the category case also uses measure-theoretical tools.
Namely, we apply the Jordan measure νn in Rn and the respective inner
measure (νn)∗. By the classical criterion, a bounded set Y ⊆ Rn is Jordan
measurable iff νn(bd(Y )) = 0 where bd(Y ) stands for the boundary of Y .
Since bd(Y ) is compact, the equality νn(bd(Y )) = 0 implies that bd(Y )
is nowhere dense. Consequently, every Jordan measurable set Y can be
expressed as the union of the open set int(Y ) and the nowhere dense set
Y ∩ bd(Y ). In particular, we see that Y possesses the Baire property.

In view of the above remark, it suffices to express our set X as a countable
union of Jordan measurable sets. For an arbitrary integer m > 0, we denote

Bm = {x ∈ Rn : ||x|| ≤ m}, Gm = {St : t ∈ T & St ⊆ Bm},

where ||x|| stands for the usual Euclidean norm of x ∈ Rn. We obviously
have

X =
⋃

m∈ω, m>0

⋃

Gm.

Now, let us consider the inner Jordan density of an arbitrary set Z ⊆ Rn

at a point x ∈ Rn, given by the formula

d∗(Z, x) = inf{((νn)∗(Z ∩Q))/νn(Q) : Q ∈ Q(x)},
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where Q(x) stands for the family of all closed cubes with centre x and with
diameters ≤ 1. According to the well-known result (see [3], Chapter 3), if
there exists ε > 0 such that, for each point z of a bounded set Z ⊆ Rn, we
have d∗(Z, z) ≥ ε, then Z is Jordan measurable. Observe that

Gm =
⋃

k∈ω, k>0

Gk
m

where

Gk
m = {St ∈ Gm : (∀x ∈ St)(d∗(St, x) ≥ 1/k)}.

Then the set
⋃

Gk
m is bounded and d∗(

⋃

Gk
m, x) ≥ 1/k for each point x ∈

⋃

Gk
m. Consequently,

⋃

Gk
m is Jordan measurable. We thus see that the set

X is expressible as a countable union of Jordan measurable sets. Hence it
has the Baire property.

We want to finish this section with several simple remarks concerning the
theorem just proved. First of all let us note that the union of a family of
n-simplexes may have a rather bad descriptive structure. Indeed, suppose
that n ≥ 2 and consider some hyperplane Γ in the space Rn. Let Y be
any subset of Γ. It is easy to construct a family of n-simplexes in Rn, such
that the intersection of its union with the hyperplane Γ coincides with the
set Y . Consequently, if Y is not λn−1-measurable or does not possess the
Baire property in Γ, then the above-mentioned union is not an analytic
(coanalytic) subset of Rn. In a similar way one can construct a family of
n-simplexes whose union is not a projective subset of Rn.

It immediately follows from Theorem 1.1 that the union of an arbitrary
family of convex bodies in Rn is λn-measurable (because any convex body
in Rn can be represented as the union of a family of n-simplexes). Analo-
gously, the union of an arbitrary family of convex bodies in Rn has the Baire
property. The latter fact remains true for any family of convex bodies in
a topological vector space (see, e.g., Theorem 2.1 below containing a more
general result).

2. Unions of Topological n-Simplexes

By a topological n-simplex we mean a topological space homeomorphic to
an n-simplex. Our purpose in this section is twofold. First, we are going to
show that the union of an arbitrary family of topological n-simplexes in Rn

has the Baire property. Next, we shall prove that, for n ≥ 2, an analogous
statement fails to be true if the possession of the Baire property is replaced
by Lebesgue measurability. The first of these two results will be derived
from the following general theorem:
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Theorem 2.1. Let E be an arbitrary topological space and let F be a
family consisting of admissible subsets of E. Then

⋃

F is open modulo
NWD(E). In particular,

⋃

F has the Baire property.

Proof. We put V =
⋃

{int(F ) : F ∈ F}. Since F consists of admissible sets,
we have, for each F ∈ F ,

F ⊆ cl(int(F )) ⊆ cl(V ).

Thus, we obtain
⋃

F ⊆ cl(V ) and, therefore,

V =
⋃

{int(F ) : F ∈ F} ⊆
⋃

F ⊆ cl(V ).

Hence
⋃

F = V ∪Z for some set Z ⊆ cl(V )\V , which gives the assertion.

Corollary 2.1. For each integer n ≥ 1 and for each family of topological
n-simplexes {St : t ∈ T} in Rn, the set

⋃

{St : t ∈ T} has the Baire property.

Obviously, Corollary 2.1 yields another (purely topological) proof of the
category part of Theorem 1.1.

The next statement shows that the measure case for unions of topological
simplexes is completely different.

Theorem 2.2. For each integer n ≥ 2, there exists a family {Zt : t ∈ T}
of topological n-simplexes in Rn such that the set

⋃

{Zt : t ∈ T} is not
measurable in the Lebesgue sense.

Proof. It is enough to consider the case n = 2 since, if a family {Zt :
t ∈ T} satisfies the assertion of our theorem for n = 2, then the family
{Zt× [0, 1]n−2 : t ∈ T} satisfies the assertion of the theorem for an arbitrary
integer n > 2. So, we restrict our further consideration to the case n =
2. In the sequel, by a Jordan curve we mean a homeomorphic image of
the unit circle. It is well known that there exists a Jordan curve L in
R2 possessing a positive two-dimensional Lebesgue measure, i.e., λ2(L) >
0. The construction of L can be done directly. Another idea is to derive
from the Denjoy-Riesz theorem (see, e.g., [5], §61, V, Theorem 5) that each
compact zero-dimensional set C in R2 is contained in a Jordan curve. Taking
as C a Cantor-type set in R2 with λ2(C) > 0, we get the desired curve L.
Now, by the Jordan Curve Theorem, R2 \ L has exactly two components:
one bounded and one unbounded. The bounded component will be denoted
by U . We shall use the Schönflies theorem (see [5], §61, II, Theorem 11)
according to which, for any points x ∈ L and y ∈ U , there is a simple arc
l, with end-points x and y, such that l \ {x} ⊆ U . In fact, a bit sharper
version is needed where the simple arc l is a quasi-polygonal curve, i.e., the
set l \ {x} consists of countably many linear segments which converge (in
the Hausdorff metric) to {x}. (Cf., e.g., [7], Appendix to Chapter IX.)
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Now, let us pick a Lebesgue nonmeasurable set L∗ ⊆ L. (The existence
of L∗ is well known - see, e.g., [1], Chapter 5.) We shall define a family
{Zx,y : x ∈ L∗, y ∈ U} of sets lying in the plane and satisfying the following
conditions:

(1) Zx,y is homeomorphic to a closed nondegenerate triangle;
(2) Zx,y \ {x} ⊆ U ;
(3) x and y are boundary points of Zx,y.
So, fix x ∈ L∗ and y ∈ U and pick a point y′ such that the segment [y, y′]

is contained in U . By the above-mentioned sharp version of the Schönflies
theorem, we choose quasi-polygonal curves Px,y (joining x and y) and Px,y′

(joining x and y′) such that Px,y \ {x} ⊆ U , Px,y′ \ {x} ⊆ U. First, by a
simple modification, we can ensure that Px,y ∩ [y, y′] = {y}, Px,y′ ∩ [y, y′] =
{y′}. Next, using the fact that the segments of Px,y and of Px,y′ converge
to the point {x}, we modify Px,y and Px,y′ (step by step) to ensure that
Px,y ∩ Px,y′ = {x}. If it is done, the set Lx,y = Px,y ∪ [y, y′] ∪ Px,y′ forms
a Jordan curve. We define Zx,y as the closure of the bounded component
of R2 \ Lx,y. Finally, we put t = (x, y), Zt = Zx,y, T = L∗ × U . Then
the family {Zt : t ∈ T} satisfies the assertion of the theorem. Indeed, each
set Zt (t ∈ T ) is homeomorphic to a closed nondegenerate triangle (this
is a strong version of the Jordan theorem for the plane, which does not
hold for an Euclidean space of higher dimension). Since the set

⋃

{Zt : t ∈
T} \U = L∗ is Lebesgue nonmeasurable, the set

⋃

{Zt : t ∈ T} is Lebesgue
nonmeasurable, too.

3. Uncountable Intersections of Thick Sets

Here we consider the following problem concerning uncountable inter-
sections of measurable sets. Let S be a σ-algebra of subsets of a given
nonempty set E and let I be a σ-ideal of subsets of E such that I ⊆ S.
In such a case, the triple (E,S, I) is called a measurable space with a σ-
ideal. Additionally, let the pair (S, I) fulfil the countable chain condition
(in short, ccc), which means that each disjoint subfamily of S \ I is count-
able. One can ask the question what should be assumed, for an uncountable
family {Xt : t ∈ T} of subsets of E, such that (∀t ∈ T )(E \ Xt ∈ I), to
get the relation E \

⋂

{Xt : t ∈ T} ∈ I. The main difficulty is to have
⋂

{Xt : t ∈ T} ∈ S. It seems natural to introduce the set

W = {(t, x) ∈ T × E : x ∈ Xt},

and thus the sets Xt are equal to the vertical sections Wt = {x ∈ E : (t, x) ∈
W} of W . So, our problem can now be formulated as follows. Let W be a
set of some “good” structure in the product set T × E, with thick sections
Wt, t ∈ T , (i.e., E \ Wt ∈ I). How is it possible to obtain the relation
E \

⋂

{Wt : t ∈ T} ∈ I?
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In connection with the general question posed above, let us mention
especially the result of Goldstern [4] which deals with a particular (but
important for various applications) case. Namely, let E be a perfect Polish
space with a probability Borel measure µ. The completion of µ is denoted
by µ̄. Then S and I stand for the σ-algebra of µ̄-measurable sets and the
σ-ideal of µ̄-null sets (respectively). It is well known that (S, I) fulfils the
ccc. The role of T is played by the zero-dimensional perfect Polish product
space ωω where ω is equipped with the discrete topology. A natural order
in this product space is defined by t ≤ t′ ⇔ (∀n ∈ ω)(t(n) ≤ t′(n)) for any
t and t′ from ωω.

M. Goldstern proved the following result (see [4], Lemma 6).

Theorem 3.1. Assume that W ⊆ ωω × E is a coanalytic set satisfying
the conditions:

(a) (∀t ∈ ωω)(µ̄(Wt) = 1);
(b) (∀t, t′ ∈ ωω)(t ≤ t′ ⇒ Wt ⊇ Wt′).

Then µ̄(
⋂

{Wt : t ∈ ωω}) = 1.

We are going to show that the category analogue of Goldstern’s theorem
is false. Now, we have that E = [0, 1], the σ-algebra S consists of subsets of
E with the Baire property and the σ-ideal I consists of all meager subsets
of E. It is well known that the pair (S, I) fulfils the ccc.

Theorem 3.2. There is an open set W ⊆ ωω × [0, 1] such that
(a) (∀t ∈ ωω)(Wt is comeager in [0, 1]),
(b) (∀t, t′ ∈ ωω)(t ≤ t′ ⇒ Wt ⊇ Wt′),
(c) the set

⋂

{Wt : t ∈ ωω} is countable.

Proof. Let {pj}j∈ω be a one-to-one sequence of all rationals in [0, 1] and let
B(p, r) stand for the open ball in [0, 1] with centre p and radius r. Let the
set W ⊆ ωω × [0, 1] be given by

(t, x) ∈ W ⇔ x ∈
⋃

j∈ω

B(pj ,
∞
∑

k=j

1
2t(k)+k ).

Then W is open since it can be written as

W =
⋃

j∈ω

∞
⋃

m=j+1

f−1
j,m[(−∞, 0)],

where a function fj,m : ωω × [0, 1] → R given by the formula

fj,m(t, x) = |x− pj | −
m

∑

k=j

1
2t(k)+k ((t, x) ∈ ωω × [0, 1])
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is continuous. Condition (a) clearly follows from the fact that the set

Wt =
⋃

j∈ω

B(pj ,
∞
∑

k=j

1
2t(k)+k )

is open and dense, for each t ∈ ωω (thus it is comeager). To check (b),
consider any t, t′ ∈ ωω with t ≤ t′. Then

∞
∑

k=j

1
2t′(k)+k ≤

∞
∑

k=j

1
2t(k)+k ,

which implies that Wt′ ⊆ Wt. Finally, to obtain (c), let us show that
⋂

{Wt : t ∈ ωω} = {pj : j ∈ ω}.

Obviously, we have pj ∈
⋂

{Wt : t ∈ ωω} for every natural number j.
Consider any point x ∈ [0, 1] \ {pj : j ∈ ω}. We shall find t ∈ ωω such that
x 6∈ Wt. First, pick t(0) ∈ ω such that |x− p0| > 1/2t(0). Suppose now that
natural numbers t(0), t(1), . . . , t(n) are chosen so that

(∗) |x− pj | >
n

∑

k=j

1
2t(k)+k for j = 0, . . . , n.

Then pick t(n + 1) ∈ ω so that

|x− pj | >
n

∑

k=j

1
2t(k)+k +

1
2t(n+1)+n+1 for j = 0, . . . , n,

|x− pn+1| >
1

2t(n+1)+n+1 .

We have thus defined the sequence t ∈ ωω satisfying (∗) for each n ∈ ω. If
n →∞ in (∗), we obtain

|x− pj | ≥
∞
∑

k=j

1
2t(k)+k

for each j ∈ ω. Hence x 6∈ Wt.

4. Vitali Spaces

In this section, we consider some strong version of the measurability of
uncountable unions of measurable sets. Let (E,S, I) be again a measurable
space with a σ-ideal. (Recall that two triples connected, respectively, with
measure and category are classical examples of a measurable space with a
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σ-ideal.) We shall say that a family F ⊆ S is countably approximable if
there exists a countable subfamily G of F such that

⋃

F \
⋃

G ∈ I.

Plainly, if a family is countably approximable, then its union is in S but, in
general, the converse is not true.

In connection with the problem concerning the S-measurability for unions
of uncountable subfamilies of S, it is natural to ask about useful criteria for
the countable approximability of such subfamilies provided that the ele-
ments of a subfamily have some additional “good” structure. In particular,
we are going to consider this question for a triple (E, Br(E),K(E)), where
E is a topological space, and for a family of admissible subsets of E. As
we know (see Introduction), every admissible set is open modulo NWD(E)
and, consequently, belongs to Br(E).

We say that a Vitali covering V of a given subset X of E is admissible if
V consists of admissible sets. A space E is called a Vitali space if, for each
set X ⊆ E and for each admissible Vitali covering V of X, there exists a
disjoint countable family W ⊆ V with X \

⋃

W belonging to K(E).
We say that E almost satisfies the Suslin condition if there exists a set

Z ∈ K(E) such that the subspace E \Z of E satisfies the Suslin condition.
Clearly, if a topological space satisfies the Suslin condition, then it almost
satisfies the Suslin condition but it is easy to find examples of spaces which
disprove the converse assertion.

We are going to give a full characterization of topological spaces for which
any family of admissible sets is countably approximable. For this purpose,
we need several auxiliary facts.

We begin with the following consequence of the classical Banach theorem
on the unions of open first category sets.

Lemma 4.1. Every topological space E can be expressed in the form
E = E0 ∪ E1 where E0 and E1 are disjoint sets, E0 is an open Baire
subspace of E and E1 is a closed first category subspace of E.

Proof. (Cf. [8], Theorem 2.4.) According to the Banach Category Theorem
(see [1], Theorem 16.1), we have the equality E = E′ ∪ E′′ where E′ is the
largest (with respect to inclusion) open meager set in E, and E′′ = E \E′.
Let us put E1 = E′ ∪ bd(E′), E0 = E \ E1. Since bd(E′) ∈ NWD(E), we
have E1 ∈ K(E) and, moreover, E1 is closed in E. Hence E0 is open in E
and, by the maximality of E′, we can infer that E0 is a Baire space.

The set E0 in the above-mentioned expression E = E0∪E1 will be called
a Baire kernel of the space E. Obviously, the Baire kernel of E is unique
modulo the σ-ideal K(E).
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Lemma 4.2. For a topological space E, the following assertions are
equivalent:

(1) E almost satisfies the Suslin condition;
(2) the Baire kernel E0 of E satisfies the Suslin condition;
(3) for each disjoint family F of open sets in E, there exists a countable

family G ⊆ F such that
⋃

F \
⋃

G ∈ K(E).

The proof of this lemma easily follows from Lemma 4.1 and will be omit-
ted.

Lemma 4.3. Let Z be a subset of a given topological space E. Suppose
also that V is an admissible Vitali covering of Z. Then there exists a disjoint
family W ⊆ V such that Z \

⋃

W is a nowhere dense set.

Proof. (Cf. [9], Proposition 1.) We apply Zorn’s lemma to choose W as
a maximal (with respect to inclusion) disjoint subfamily of V. To get the
assertion, we suppose to the contrary that int(cl(Z \

⋃

W)) 6= ∅. Hence we
can pick a nonempty open set U ⊆ cl(Z \

⋃

W). The latter relation implies
that Z is dense in U and U ∩ int(W ) = ∅ for each W ∈ W. Since all sets
from W are admissible, we also have U ∩ W = ∅ for each W ∈ W. Pick
x ∈ U ∩ Z. Since V is a Vitali covering of Z, there exists V ∈ V such
that x ∈ V ⊆ U . Then W ∪ {V } forms a disjoint subfamily of V which
contradicts the maximality of W .

Now, we can formulate and prove

Theorem 4.1. For a topological space E, the following three assertions
are equivalent:

(1) E almost satisfies the Suslin condition;
(2) E is a Vitali space;
(3) each family F of admissible subsets of E is countably approximable.

Proof. (1) ⇒ (2). Suppose that (1) is true. Let Z ⊆ E and let V be an
admissible Vitali covering of Z. By Lemma 4.3, there exists a disjoint family
W ⊆ V such that Z \

⋃

W ∈ NWD(E). From Lemma 4.2 it follows that
there exists a countable family W∗ ⊆ W such that

⋃

{int(X) : X ∈ W} \
⋃

{int(X) : X ∈ W∗} ∈ K(E). Hence we easily infer that Z\
⋃

W∗ ∈ K(E).
Consequently, E is a Vitali space.

(2) ⇒ (3). Suppose that (2) is true. Let F be a family of admissible
subsets of E. We put Z =

⋃

{int(X) : X ∈ F}. Then
⋃

F \ Z ∈ NWD(E)
(compare with the proof of Theorem 2.1). Let

V = {V : V is open in E & (∃X ∈ F)(V ⊆ int(X))}.

Clearly, V forms an admissible Vitali covering of Z. Since E is a Vitali
space, there exists a countable disjoint family W ⊆ V such that Z \

⋃

W ∈
K(E). For each W ∈ W, choose XW ∈ F such that W ⊆ int(XW ) and
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put G = {XW : W ∈ W}. Then G is a countable subfamily of F and
⋃

F \
⋃

G ∈ K(E). We have thus proved that the family F is countably
approximable.

(3) ⇒ (1). Suppose that (3) is true. Let F be an arbitrary disjoint family
of open sets in E. Then F consists of admissible sets. By assumption (3),
there exists a countable family G ⊆ F such that

⋃

F \
⋃

G ∈ K(E). This,
by Lemma 4.2, immediately yields assertion (1).

Finally, we wish to note that the last theorem can be generalized (under
certain natural assumptions, of course) to the situation of a measurable
space with a σ-ideal. This generalization can be obtained by using some
abstract versions of the Banach Category Theorem. One of such versions is
contained, for instance, in the monograph by Morgan [10].
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