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OSCILLATORY BEHAVIOUR OF SOLUTIONS OF
TWO-DIMENSIONAL DIFFERENTIAL SYSTEMS WITH
DEVIATED ARGUMENTS

R. KOPLATADZE AND N. PARTSVANIA

ABSTRACT. Sufficient conditions are established for the oscillation of
proper solutions of the system

u’l(t) = fl (t,u1(7’1(t)), v 7ul(Tm(t))7u2(al(t))v s ,’LLQ(O'm(t)))7
() = (b1 (11 (), - 01 (Fm (), w201 (), - w2 om (6))),

where f; : Ry x R?™ — R (i = 1,2) satisfy the local Carathéodory

conditions and 7,0; : Ry — Ry (¢ =1,...,m) are continuous func-

tions such that o;(t) < tfort € Ry, lim 7;(t) =400, lim o;(t) =
t——+o0 t——+oo

400 (i =1,...,m).

8 1. STATEMENT OF THE PROBLEM AND FORMULATION OF THE MAIN
RESULTS

Consider the system

uy(t) = fi(t,un(mi(t), .- ua (T (1)), uz(oi(t)), . . ., ua(om(t))),
uh(t) = fat, ur(m(t)), - . ., ur (T (1)), ua (o1 (1)), - . ., uz(om(t))),

(1.1)

where f; : Ry xR?™ — R (i = 1,2) satisfy the local Carathéodory conditions

and 7;,0; : Ry — R4 (¢ = 1,...,m) are continuous functions such that
o;(t) <tfort € Ry, lim 7;(t) = +o0, lim o;(t) =400 (i=1,...,m).
t——+oo t——+oo

Definition 1.1. Let ¢y € R4 and a, = inf [min{r;(¢), o:(t) : ¢ =
1,...,m} : t > to]. A continuous vector-function (u1,us) defined on
[a,,+oo[ is said to be a proper solution of system (1.1) in [to, +oof if it
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is absolutely continuous on each finite segment contained in [tg, +oo[, sa-
tisfies (1.1) almost everywhere on [ty, +-00[, and

sup {|ui(s)| + ua(s)| : s>t} >0 for t>t.

Definition 1.2. A proper solution (u1,us) of system (1.1) is said to be
weakly oscillatory if either u; or us has a sequence of zeros tending to infinity.
This solution is said to be oscillatory if both u; and us have sequences of
zeros tending to infinity. If there exists ¢. € Ry such that ug(¢t)ua(t) # 0
for ¢ > t,, then (u1,us) is said to be nonoscillatory.

In this paper, sufficient conditions are obtained for the oscillation of
proper solutions of system (1.1) which make the results contained in [1, 2
more complete.

Throughout the paper we will assume that the inequalities

m
Silt, @1, Tm, 1, Ym) SEDYL 2> Zpi(tﬂyi\,
=t (1.2)

m
fQ(taxlw" ;xmaylau-aym) sgn < *ZQZ(t)l‘TJ
=1

hold for ¢t € Ry, zx; > 0, y1y; > 0 (1 = 1,...,m), where p;, ¢; €
Lioe(Ry;Ry) (i =1,...,m), and we will use the notation

PO =m0 alt)=d a he)= [ p(s)ds

Theorem 1.1. Let

h(400) = 40, (1.3)
+oo

/ ho(t)q(t) dt = +0o, (1.4)

where ho(t) = min{h(t), h(7;(t)) : ¢ = 1,...,m}, and there exist a non-
decreasing function o € C(Ry;Ry) such that oi(t) < o(t) <t fort € Ry
(i=1,...,m),
, h(r(o(t)))
1 MANANANY YY)
P A 0

If, moreover, there exists €, > 0 such that for any A €10, 1],

< 4o00. (1.5)

“+o0
liminf A (t)h! = (7(a(t))) / p(s)h =20 (s)g(s,\)ds > 1, (1.6)

t——+4o0
(o (1))
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where
7(t) = max {max{ri(s), n(s): i=1,...,m}: 0<s<tf,

n(t) =sup{s: o(s) <t},
9t = [ b5) 3 ar(s) s (1.7)
0

then every proper solution of system (1.1) is oscillatory.

Theorem 1.2. Let conditions (1.3)—(1.5) be fulfilled, where the function
o € C(R4;R,) is nondecreasing, o;(t) < o(t) <t fort e Ry (i=1,...,m).
If, moreover, there exists € > 0 such that for any A €]0,1],
o

1751Ln+1r01<}f A (t) / h(s) Zqi(s)h)‘(ﬂ-(s)) ds>1—A+e, (1.8)
o i=1

then every proper solution of system (1.1) is oscillatory.

Theorem 1.3. Let conditions (1.3), (1.4) be fulfilled,

. h(7;(t))
tmsup =)

<400 (i=1,...,m), (1.9)

and there exist € > 0 such that for any A €]0, 1],

t

lim inf h*l(t)/hz(s) zm:qi(s) [h(”(s))rds > A(1—A)+e. (1.10)

t—+oo h(s)

s i=1
Then every proper solution of system (1.1) is oscillatory.

Corollary 1.1. Let conditions (1.3), (1.4), (1.9) be fulfilled and a; €
10,+o0[ (i =1,...,m), where

e M)
o = lminf =

(i=1,...,m). (1.11)

If, moreover, there exists € > 0 such that for any X €]0,1],

t

. -1 2 A > .
1751Ln+1£1c)f h (t)/h (S)Z;al gi(s)ds > A1 —X) +¢,
0 3

then every proper solution of system (1.1) is oscillatory.
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Corollary 1.2. Let conditions (1.3), (1.4), (1.9) be fulfilled, a; €10, +00]
(t=1,...,m), ¢(t) > ciq,(t) fort € Ry (i = 1,...,m), where a; (i =
1,...,m) are defined by (1.11), ¢; >0 (i = 1,...,m), and ¢, € Lioc (R; RYy).
Then the condition

t

lim inf h_l(t)/h2(s)qo(s) ds > max {)\(1 — A)(Em:ag\ci)_l : Ae|o, 1]}
i=1

t——+4oo
0

is sufficient for the oscillation of every proper solution of system (1.1).

Corollary 1.3. Let q, € Lioc(Ry;Ry), a €]0,1], and

t

lim inf t71/51+°‘q0(5) ds > 0.

t——+oo
0

Then every proper solution of the equation
u(t) + g, (Hu(t®) =0

is oscillatory.

§ 2. SOME AUXILIARY STATEMENTS

Lemma 2.1. Let condition (1.3) be fulfilled and (uy1,us) be a nonosci-
llatory solution of system (1.1). Then there exists tg € Ry such that

up(t)ua(t) >0 for t>to. (2.1)

If, moreover,
+oo

/ h(t)q(t) dt = +o0,

then

lim |uq(t)] = +oo.
t——+o0

Lemma 2.2. Let

400 —+o0

/ p(s)ds >0, / q(s)ds >0 for teRy. (2.2)

t t

Then every weakly oscillatory solution of system (1.1) is oscillatory.*

IFor the proofs of Lemma 2.1 and Lemma 2.2 see [2].
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Lemma 2.3. Let condition (1.3) be fulfilled and (uy1,us) be a nonosci-
llatory solution of system (1.1). Then either the inequality

ur (8)] < h(t)|uz(t)] (2.3)
is fulfilled for sufficiently large t or there exists tg € Ry such that

+o0 a(s) m

@200 [ ZEL [ 00 ale)lus o] deds for 2 10, (29

i i=1

where o € C(Ry;R) is a nondecreasing function and o;(t) < o(t) <t for
tER+ (2:1,,m)

Proof. Since (u1,uz) is a nonoscillatory solution of system (1.1) and condi-

tion (1.3) is fulfilled, by Lemma 2.1 there exists ¢, € Ry such that condition
(2.1) holds for ¢ > t,. By (1.2) and (2.1), from (1.1) we have

lui (t) Z_: ‘uz oi(t ’
ua ()] < — Z ai(t)|ua (7 (1))
i=1

Consider the function p(t) = |uy(¢)| — h(f)|uz(t)]. Taking into account
(2.5) and the fact that |uz(f)| is a nonincreasing function, we get

P () = lur ()" = h()|uz(t)| — p(t)ua(t)] =
> sz‘(t)|uz(ffz )| = p(t)lua(t)] — h(t)|uz(t)] >
> fii(t)\w(tﬂ’ >0 for ¢>t,.
Thus there exists t; > t, such that either
lur (8)] — h(t)uz(t)| < 0 for ¢ >t (2.6)
or
|ui ()] — h(t)|ua(t)] >0 for t>t. (2.7)

If condition (2.6) holds, then the validity of the lemma is obvious. Thus
assume that (2.7) is fulfilled and show that in that case estimate (2.4) is
valid.
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Multiplying the second inequality of system (2.5) by h(t) and integrating
from ¢; to o(t), we obtain
a(t) o(t)

/ h(s) qu(s)‘ul(n(s))’ ds < — / h(s)|ua(s)| ds =
o(t)

= —h(o (1)) us(o())] + / p(s)|us(s)| ds + h(tr) us (t1)] for ¢ > 4.

Multiplying the latter inequality by h2((t)) , integrating from ¢ to 400, and

taking into account (2.5), (2.7) and the fact that |us(t)| is a nonincreasing
function, we get

+o0 a(s)

p(s) -
/ 72 (s) [ HO S @l (m(©) deds <

t t i=1

+o0 o(s) +oo

< / B [ welua@ldsds ~ [ B ol uatotsn] s +

t1 t

+oo a(s)

+h(t) ) / B as= [ B [ p@uae)las as -

t t1

+oo

- / ;:72((2)) [/Sp(g) dg — /Sp(f) df} luz(a(s))| ds + h(tl)}JZ&Q)(tl)' <

t 0 o(s)

+o0 a(s) +oo

p(s) p(s)
= / h?(s) t/p(f)‘uz(o(f))’dgds_ t/ @’UQ(U(S))‘ds-&-
+ s
+/ zfz(é)) / p<g>|u2(g(§))|d§ds+iw _

+/ }f?(s))/ )| uz(0(€))] dé ds —
/ / )ua(o(€))] de + 2 2@)@1»_
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t h 1)|U2(l1
— %/p(sﬂuz(a(s))’ds_k (t)h|(t)(t)| <

ty

| (8)]

1 [
0] [|u1(t1)+!;pi(s)’u2(ai(s))}ds <50 for t > to,

where to > ¢ is a sufficiently large number. Therefore (2.4) is fulfilled.
Thus the lemma is proved. [J

Lemma 2.4. Let tg € Ry, ¢, ¢ € C([to, +o0l; |0, 4+00[),

ltlglﬁgj e(t) =0, ¥(t) 1T 400 for t7T +oo, (2.8)
and
Jlim B ())() = +oo, (2.9)
where
§(t) = min {p(s) : to <s <t} (2.10)
and o : Ry — Ry is a nondecreasing continuous function such that o(t) <t
for t € Ry, tligloo o(t) = +oo. Then there exists a sequence of points

{tk}iiﬁ such that ty T +oo for k | 400 and

P(o(te))v(te) < plo(s))y(s) for s>t
Plo(te)) = plo(te) (k=1,2,...).
Proof. Define the sets F; (i = 1,2) in the following manner:

te By = 3(o(t)(t) < Blo(s)(s) for s>t,

t € By <= ¢(o(t) = p(o(t))-
In view of (2.8)—(2.10) it is clear that
supF; = +oo (i =1,2). (2.11)

Show that F1 N FEs is a nonempty set. Let m € N. According to (2.11) there
exist t%) € E; (i =1,2) such that m < tg) < tg,ll). Suppose that ts,}b) ¢ Es.
Then we can find ¢, € [tﬁg), ﬁ,ll)[ such that

P(a(t) = @a(tly)) for te [ty t5)] (2.12)
and

plo(ty)) = e(a(t,))- (2.13)
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On the other hand, since ) e E,, on account of (2.8), (2.12), we have

Plo(t))v(tn,) < @(o(s))y(s) for s>t (2.14)

By virtue of (2.13) and (2.14), t* € E; N E3. Taking into account the
arbitrariness of m, by the above reasoning we can easily conclude that
sup F1 N By = 4o00. This implies that the lemma is valid. [

§ 3. PROOF OF THE MAIN RESULTS

Proof of Theorem 1.1. Let (u1,us) be a proper solution of system (1.1).
Suppose that this solution is not oscillatory. From (1.3), (1.4) follow in-
equalities (2.2). Thus by Lemma 2.2 (u1,us9) is nonoscillatory. Therefore,
due to Lemma 2.1, one can find ¢, € Ry so that condition (2.1) will be
fulfilled for ¢ > ty and

li? luq (t)| = +o0. (3.1)

t—

By (1.2) and (2.1), from (1.1) we have

luy (8)] > pi(t)|ua(os(t))|
i=1 for t > tg. (3.2)

Jus ()" < =D ai(®)]ur (i(1)))|
i=1

Since (u1,us2) is a nonoscillatory solution of system (1.1) and condition
(1.3) holds, by Lemma 2.3 either (2.3) or (2.4) is fulfilled.

Suppose that (2.3) is fulfilled. Then taking into account (3.2) and the
fact that |uz(t)| is a nonincreasing function, we obtain

lur ()" Jur (O)]'h(t) — p(t)|us (?)]
( w0 )= w2
h(t) in: pi(t)ua(oi(t))] — p(t)|ui(t)]
> =1 >
h2(t)
pO)[h(#)|u2(t)] — ui(?)]]
> hZQ(t) >0 for t>tq,

where t; > tg is a sufficiently large number. Thus there exist ¢ > 0 and
t* > t1 such that

lur (75(t))| = ch(mi(t)) for t>t* (i=1,...,m).
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In view of the latter inequalities, from the second inequality of system (3.2)
we get

—+oo

lua(t*)| > ¢ / qu ))ds > ¢ / ho(s)q(s)ds.
bl b
But the latter inequality contradicts (1.4). Therefore below (2.4) will be

assumed to be fulfilled.
Denote by A the set of all A €]0, 1] satisfying

lur(t)|
fim inf B () =0

By (3.1) it is obvious that 0 ¢ A, and by using (1.4) we can easily show
that 1 € A.

Let A\p = inf A. Then by (1.6) there exist \* €]0,1] N [N\g,1] and &, €
10,¢&,] such that A* — e, €[0,1],

lui ()] i (t)]
fm nf () 0, t=too A e (1) +00, (3.3)
and
o0
liminf h¥ ()R (7(o(1))) / p(s)h™2%1 (5)g(s, \*) ds > 1, (3.4)

(o (1))

where g(¢, A) is defined by (1.7).
Introduce the notation

o(t) :min{|:)\1*((7;_((88))))| : 1o <s<t}.

It is obvious that ¢(¢) | 0 for ¢ T +00 and

|u (7:(2))|
W () =
By virtue of (1.3), (1.5) and (3.3) all the conditions of Lemma 2.4 are

fulfilled. Thus there exists a sequence of points {t fo such that ¢t T +o0
for k T 400,

>p(t) for t>ty (i=1,...,m). (3.5)

P(o(tr))h®r (tr) < p(o(s))h1(s) for s > tg, (3.6)

SRR CCC P
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Taking into account conditions (3.5)—(3.7), for sufficiently large k from
(2.4) we get

|ua (7(o(t))) |

> h(r(o(t))) / p(s)h2(5)3(0 (s)) / BE)S G(OR (1i(6)) de ds >

(o (1)) to i=1

> 3o (t))h (t)h(r(0 (1)) / p(5)h=21 (5)
T(o(tr))
o(s)

Therefore

+oo
B ()R (7(0 (1)) / p(5)h=21 (5)
T(o(tx))
o(s) m
< [ 1O Y wn (r(©)dgds < 1.

to i=1

But the latter inequality contradicts (3.4). The contradiction obtained
proves that the theorem is valid. O

Proof of Theorem 1.2. By Theorem 1.1 it is sufficient to show that we can
find €, €]0,¢] such that condition (1.6) will hold. Indeed, choose &, €]0, €]
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so that
1+¢ 1\ %o
— 1 3.8
1+4¢, (27) > (3:8)
where
h t
~ = lim sup hir(o®)) . (3.9)

t—+oo h(t)
In view of (1.8), (3.8) and (3.9), we obtain
+oo
RO (o ®) [ b (s)g(s, A ds =

(o (t))
+oo

> (1 - At )% (R (r(o(t)) / W25 (s) dh(s) =
o)
1-XA+e . —e,
B h¥o (t)h =50 (1(o(t)))
L—Ade /1% L4c /1%
> [ — > — >
_1—)\—1—50(27) —1+50( ) >1 for ¢ =+,

2y
where to € Ry is a sufficiently large number. Therefore condition (1.6) is
fulfilled. Thus the theorem is proved. [J

Y

Proof of Theorem 1.3. By virtue of Theorem 1.2 it is sufficient to show that
condition (1.8) is fulfilled with o(t) = t. Indeed, on account of (1.10) we
get2

h_”\(t) /h(s) Zqi(s)h’\(ri(s))ds =

i=1

=

=) [0 iqi(s) [h(;zij”rds _

=120 [0t 120 S e [MEE] e =

0 0 i=1

2Here we mean that A < 1. In the case where A = 1 the validity of (1.8) is obvious.
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h(7:(€))
h(€)

HI= 00 [ o2 / 120 30 002D e g >
0 0 i=1

> (M=) o)+ (1— VAL =N +e)h @) /p(s)hA_l(s) ds —
0

621—)\4—5 for t > tg,

T—xy A1 =A)+
T

where ty € R, is a sufficiently large number. Therefore condition (1.8)
holds. Thus the theorem is proved. [

= (A= +e)(1+
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