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NON-NOETHER SYMMETRIES IN SINGULAR DYNAMICAL
SYSTEMS


G. CHAVCHANIDZE


Abstract. The Hojman–Lutzky conservation law establishes a certain cor-
respondence between non-Noether symmetries and conserved quantities. In
the present paper the extension of the Hojman–Lutzky theorem to singular
dynamical systems is carried out.
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1. Introduction


Noether’s theorem associates conservation laws with particular continuous
symmetries of the Lagrangian. According to the Hojman’s theorem [1–3] there
exist the definite correspondence between non-Noether symmetries and con-
served quantities. In 1998 M. Lutzky showed that several integrals of motion
might correspond to a single one-parameter group of non-Noether transforma-
tions [4]. In the present paper, the extension of the Hojman–Lutzky theorem
to singular dynamical systems is considered.


First let us recall some basic knowledge of the description of regular dynamical
systems (see, e.g., [5]). Since the trajectories are solutions of the Euler–Lagrange
equations


d


dt


∂L


∂va
− ∂L


∂qa
= 0,


the tangent vector of trajectory satisfies Hamilton’s equation


iXh
ωL + dh = 0,


where ωL is the closed (dωL = 0) and non-degenerate (iXωL = 0 ⇔ X = 0)
2-form, h is the Hamiltonian and iXωL = XcωL denotes the contraction of X to
ωL. In the local coordinates ωL = dθL, where θL = ∂L


∂va dqa and h = ∂L
∂va va − L.


Since ωL is non-degenerate, this gives rise to an isomorphism between the vector
fields and the 1-forms given by iXωL + α = 0. The vector field is said to be the
Hamiltonian if it corresponds to the exact form


iXfωL + df = 0.
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The Poisson bracket is defined as follows:


{f, g} = Xfg = −Xgf = iXf iXgω.


By introducing a bivector field W satisfying


iXiY ω = W ciXω ∧ iY ω,


the Poisson bracket can be rewritten as


{f, g} = W cdf ∧ dg.


It is easy to show that


iXiY LZω = [Z, W ]ciXω ∧ iY ω, (1)


where the bracket [ , ] is actually a supercommutator (for an arbitrary bivector
field W =


∑
i V


i ∧ U i we have [X,W ] =
∑


i[X, V i] ∧ U i +
∑


i V
i ∧ [X, U i]).


Equation (1) is based on the following useful property of the Lie derivative:


LXiW ω = i[X,W ]ω + iW LXω.


Indeed, for an arbitrary bivector field W =
∑


i V
i ∧ U i we have


LXiW ω = LXi∑
i
V i∧U iω = LX


∑


i


iU iiV iω =
∑


i


i[X,U i]iV iω


+
∑


i


iU ii[X,V i]ω +
∑


i


iU iiV iLXω = i[X,W ]ω + iW LXω,


where LZ denotes the Lie derivative along the vector field Z. According to
Liouville’s theorem the Hamiltonian vector field preserves ωL


LXfω = 0;


therefore it commutes with W :


[Xf , W ] = 0.


In the local coordinates ξi, where ω = ωijdξi ∧ ξj, the bivector field W has the
form W = W ij ∂


∂ξi
∧ ∂


∂ξj
, where W ij is the matrix inverse to ωij.


2. The Hojman–Lutzky Theorem for Regular Lagrangian
Systems


We can say that a group of transformations g(a) = eaLE generated by the
vector field E maps the space of solutions of the equation onto itself if


iXh
g∗(ωL) + g∗(dh) = 0. (2)


For Xh satisfying


iXh
ωL + dh = 0


Hamilton’s equation. It is easy to show that the vector field E should satisfy
[E, Xh] = 0 (Indeed, iXh


LEωL+dLEh = LE(iXh
ωL+dh) = 0 since [E, Xh] = 0).







NON-NOETHER SYMMETRIES IN SINGULAR DYNAMICAL SYSTEMS 29


When E is not Hamiltonian, the group of transformations g(a) = eaLE is non-
Noether symmetry (in a sense that it maps solutions onto solutions but does
not preserve action).


Theorem (Lutzky, 1998). If the non-Hamiltonian vector field E generates
non-Noether symmetry, then the following functions are constant along solu-
tions:


I(k) = W kcωk
E, k = 1, . . . , n,


where W k and ωk
E are the outer powers of W and LEω.


Proof. We have to prove that I(k) is constant along the flow generated by the
Hamiltonian. In other words, we should find that LXh


I(k) = 0 is fulfilled. Let
us consider


LXh
I(1) = LXh


(W cωE) = [Xh,W ]cωE + W cLXh
ωE,


where, according to Liouville’s theorem, both terms ([Xh,W ] = 0 and
W cLXh


LEω = W cLELXh
ω = 0 since [E, Xh] = 0 and LXh


ω = 0) vanish.
In the same manner one can verify that LXh


I(k) = 0.


Note 1. The theorem is valid for a larger class of generators E. Namely, if
[E, Xh] = Xf where Xf is an arbitrary Hamiltonian vector field, then I(k) is still
conserved. Such a symmetries map the solutions of the equation iXh


ωL+dh = 0
on the solutions of the equation iXh


g∗(ω) + d(g∗h + f) = 0.


Note 2. Discrete non-Noether symmetries give rise to the conservation of
I(k) = W kcg∗(ω)k where g∗(ω) is transformed ω.


Note 3. If I(k) is a set of conserved quantities associated with E and f is
any conserved quantity, then the set of functions {I(k), f} (which due to the
Poisson theorem are integrals of motion) is associated with [Xh, E]. Namely,
it is easy to show by taking the Lie derivative of (2) along vector field E that
{I(k), f} = i[W,Xh]kω


k
E is fulfilled. As a result, the conserved quantities associated


with Non-Noether symmetries form a Lie algebra under the Poisson bracket.


3. The Case of Irregular Lagrangian Systems


The singular Lagrangian (a Lagrangian with the vanishing Hessian
det ∂L


∂vi∂vj = 0) leads to the degenerate 2-form ωL and we no longer have an
isomorphism between the vector fields and the 1-forms. Since there exists a
set of “null vectors” uk such that iukω = 0, k = 1, 2, . . . , n − rank(ω), every
Hamiltonian vector field is defined up to a linear combination of vectors uk. By
identifying Xf with Xf +Cku


k, we can introduce an equivalence class X̃f (then
all uk belong to 0̃ ). The bivector field W is also far from being unique, but if
W1 and W2 both satisfy


iXiY ω = W1,2ciXω ∧ iY ω,


then
(W1 −W2)ciXω ∧ iY ω = 0 ∀X,Y
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is fulfilled. This is possible only when


W1 −W2 = vk ∧ uk,


where vk are some vector fields and iukω = 0 (in other words, when W1 −W2


belongs to the class 0̃.


Theorem. If the non-Hamiltonian vector field E satisfies the commutation
relation [E, X̃h] = 0̃ (generates non-Noether symmetry), then the functions


I(k) = W kcωk
E, k = 1, . . . , rank(ω),


(where ωE = LEω) are constant along the trajectories.


Proof. Let us consider I(1):


LX̃h
I(1) = LX̃h


(W cωE) = [X̃h,W ]cωE + W cLX̃h
ωE = 0


The second term vanishes since [E, X̃h] = 0̃ and LX̃h
ω = 0. The first one is


zero as far as [X̃h, W̃ ] = 0̃ and [E, 0̃] = 0̃ are satisfied. So I(1) is conserved.
Similarly, one can show that LXh


I(k) = 0 is fulfilled.


Note 1. W is not unique, but I(k) does not depend on choosing a represen-
tative from the class W̃ .


Note 2. Theorem is also valid for the generators E satisfying [E, X̃h] = X̃f .


Note 3. Theorem can be applied to irregular Hamiltonian systems (Hamilto-
nian systems with degenerate ω).


Example. Hamiltonian description of the relativistic particle leads to the
action ∫ √


p2 + m2dx0 + pkdxk


with the vanishing canonical Hamiltonian and degenerate 2-form


1√
p2 + m2


(pkdpk ∧ dx0 +
√


p2 + m2dpk ∧ dxk).


ω possesses the “null vector field” iuω = 0,


u =
√


p2 + m2
∂


∂x0


+ pk
∂


∂xk
.


One can check that the non-Hamiltonian vector field


E =
√


p2 + m2x0
∂


∂x0


+ p1x
1 ∂


∂x1
+ · · ·+ pnxn ∂


∂xn


generates non-Noether symmetry. Indeed, E satisfies [E, X̃h] = 0̃ because of
X̃h = 0̃ and [E, u] = u. The corresponding integrals of motion are combinations
of momenta:


I(1) =
√


p2 + m2 + p1 + · · ·+ pn =
∑
µ


pµ; I(2) =
∑
µν


pµpν ; . . . I(n) =
∏
µ


pµ.
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This example shows that the set of conserved quantities can be obtained from
a single one-parameter group of non-Noether transformations.


4. The Case of Dynamical Systems on Poisson Manifold


The previous two sections dealt with dynamical systems on symplectic and
presymplectic manifolds. Now let us consider the case of dynamical systems on
the Poisson manifold. In general, the Poisson manifold is an even-dimensional
manifold equipped with the Poisson bracket which can be defined by means of
the bivector field W satisfying [W,W ] = 0 as follows:


{f, g} = iW df ∧ dg


Due to skewsymmetry of the Poisson bracket W is also skewsymmetric and, in
general, it is degenerate. The commutation relation [W,W ] = 0 (where [ , ]
denotes the supercommutator of vector fields) ensures that the Poisson bracket
satisfies the Jacobi identity. Like in the case of symplectic (presymplectic)
manifold, we have the correspondence between the vector fields and the 1-forms


β(X) + α ∧ β(W ) = 0 ∀β ∈ Ω1(M).


The vector field is called the Hamiltonian if it corresponds to exact the 1-form


β(Xh) + dh ∧ β(W ) = 0 ∀β ∈ Ω1(M).


According to Liouville’s theorem such a vector field preserves bivector field
W satisfying [Xh,W ] = 0. Now let us consider the one-parameter group of
transformations g(a) = eaLE generated by the vector field E. When W is
nondegenerate, it is easy to show that every vector field E satisfying [E, Xh] = 0
generates the symmetry of Hamilton’s equation (maps the space of solutions
onto itself). In the case of degenerate W there exists a subspace of 1-forms A
such that


α ∧ β(W ) = 0 ∀α ∈ A ∀β ∈ Ω1(M).


This set of 1-forms gives rise to the set of constraints


α ∧ dh(W ) = 0 ∀α ∈ A.


These constraints will be preserved if A is an invariant subspace under the
action of g, in other words, if LEα ∈ A ∀α ∈ A. So if the vector field E satisfies


[E, Xh] = 0 and LEα ∈ A ∀α ∈ A,


then it generates the symmetry of Hamilton’s equation. Now let us consider
the correspondence between such symmetries and the conservation laws.


Theorem. If the non-Hamiltonian vector field E generates the symmetry of
Hamilton’s equation, then the set of functions I(k) = iW kωk


E is conserved.


Here ω is the 2-form defined by W k(ω) = W k−1 and ωE = LEω; such a form
always exists, but in the case of degenerate W it is far from being unique.
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Proof. Let us consider I(1). We have to prove that LXh
I(1) = 0 . Indeed,


LXh
I(1) = LXh


iW ωE = i[Xh,W ]ωE + iW LXh
ωE.


In this expression the first term vanishes since according to Liouville’s theo-
rem [Xh,W ] = 0. Using [E, Xh] = 0, the second term can be rewritten as
iW LXh


LEω = iW LELXh
ω. Now from the definition of ω one can show that


LXh
ω(W k) = 0. This means that LXh


ω can be expressed in the following form:


LXh
ω =


∑


i


αi ∧ βi, αi ∈ A, βi ∈ Ω(1)(M).


As far as A is invariant under the action of E we have


iW LELXh
ω = iW LE


∑


i


αi ∧ βi =
∑


i


iW LE(αi ∧ βi) =
∑


i


iW (LE(αi) ∧ βi)


−∑


i


iW (αi ∧ LE(βi)) =
∑


i


iW α̃i ∧ βi −
∑


i


iW αi ∧ β̃i = 0


because of α, α̃ ∈ A. The proof of LXh
I(k) = 0 is similar.


Note 1. The 2-form ω is far from being unique, but if ω1 and ω2 both satisfy
W k(ω) = W k−1, then ω1 − ω2 can be expressed as LXh


ω =
∑


i αi ∧ βi, αi ∈ A,
βi ∈ Ω(1)(M), and therefore it does not contribute in I(k).


Note 2. The theorem is valid for a larger class of generators E satisfying


[E, Xh] = 0 and LEα ∈ A ∀α ∈ A.
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