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ON NORMAL APPROXIMATION OF LARGE PRODUCTS OF
FUNCTIONS: A REFINEMENT OF BLACKWELL’S RESULT

ALBERT Y. LO AND V. V. SAZONOV

Abstract. An asymptotic expansion for the approximation of standardized
products of large numbers of smooth positive functions by exp(−x2/2) is
given. This result is closely related to the Bernstein–von Mises theorem on
the normal approximation of posterior distributions.
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1. Introduction

In [1] D. Blackwell, using a simple elementary way, proved that under some
conditions standardized products of large numbers of smooth positive functions
are close to exp(−x2/2). Moreover, he gave an estimation of this closeness. In
the present note we observe that, under additional smoothness conditions, a
little more effort provides an asymptotic expansion making this closeness still
more precise.

As was pointed out by D. Blackwell, the result he proved is closely related
to the Bernstein–von Mises theorem stating the approximability of posterior
distributions by normal ones. More precisely, he noted that if one considers
the product of smooth positive functions as a likelihood function, one obtains
that properly normalized it is often nearly normal, but under wide conditions
the likelihood function is close to the posterior density of the parameter. The
Bernstein–von Mises theorem was deeply studied by Le Cam [5], [6], Le Cam
and Yang [7] (see Historical Remarks therein), De Groot [2] and others, with
refinements made by Lindley [8], Johnson [4], Ghost et. al. [3].

2. Approximation of Sums

Let F be a class of real functions defined on an interval (a, b). Assume that
the functions in F are t + 3 times continuously differentiable, where t is an
integer ≥ 0 and there are positive constants Mi, i = 3, . . . , t + 3, and m such
that

sup
{
|f (k)(x)| : x ∈ (a, b), f ∈ F

}
≤ Mk, k = 3, . . . , t + 3,

sup
{
f (2)(x) : x ∈ (a, b), f ∈ F

}
≤ −m.

(1)
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Let a sum S of n functions from F satisfy S(1)(x0) = 0 at a point x0 ∈ (a +
d, b− d), d > 0. Denote σ2 = −1/S(2)(x0). Then, by the Taylor formula

S(x0 + σy) = S(x0)− y2

2
+

t+2∑

k=3

1

k!
S(k)(x0)(σy)k

+
1

(t + 3)!
S(t+3)(x0 + θσy)(σy)t+3, (2)

where 0 < θ < 1. Obviously condition (1) implies

σ ≤ (mn)−1/2, |S(k)(x0)σ
k| ≤ Mkm

−k/2n1−k/2, k = 3, . . . , t + 3. (3)

Moreover, if y is bounded, say |y| ≤ A, then

x0 + σθy ∈ (a, b), (4)

if σ|y| ≤ (mn)−1/2A < d, i.e., if

n > A2m−1d−2. (5)

When (4) is satisfied we have as in (3)

|S(t+3)(x0 + θσy)σt+3| ≤ Mt+3m
−(t+3)/2n−(t+1)/2. (6)

Thus we have proved the following

Proposition. If a sum S of n functions from F has a maximum at a point
x0 ∈ (a + d, b − d), d > 0, and condition (5) is satisfied, then expansion (2) is
true with the terms in it satisfying (3), (6).

3. Approximation of Products

Now we will use the above proposition to construct an approximation of
products.

Consider a product Q =
n∏

i=1
gi of n positive functions defined on (a, b), and

assume that Q(1)(x0) = 0, where x0 ∈ (a + d, b− d), d > 0, and that fi = log gi,
i = 1, . . . , n, satisfy condition (1). Furthermore, let

S = log Q, σ2 = −Q(x0)/Q
(2)(x0) = −1/S(2)(x0)

and denote

QS = Q(x0 + σy)/Q(x0)

the standardized form of Q. Then for |y| ≤ A, if condition (5) is satisfied, the
above proposition implies

QS(y) = exp
(

log Q(x0 + σy)− log Q(x0)
)

= exp
(
S(x0 + σy)− S(x0)

)
= exp(−y2/2)I,
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where

I = exp

(
t+2∑

k=3

1

k!
S(k)(x0)(σy)k +

1

(t + 3)!
S(t+3)(x0 + θσy)(σy)t+3

)
. (7)

Next, using the expansion eu = 1 + u + · · ·+ ut

t!
+ ut+1

(t+1)!
eλu, 0 < λ < 1, we can

write

I = 1 +
t+2∑

s=3

s∑

r=1

∑ ′(k1! . . . kr!)
−1S(k1)(x0) . . . S(kr)(x0)(σy)2r+s + R,

where the summation
∑′ is over all integers k1, . . . , kr such that kj ≥ 3, j =

1, . . . , r, k1 + · · · kr = 2r + s. By (1) we have (3), and hence
∣∣∣S(k1)(x0) . . . S(kr)(x0)σ

2r+3
∣∣∣ ≤ Mk1 · · ·Mkrm

−(2r+s)/2n−s/2.

It is straightforward to check that when condition (5) is also satisfied

|R| ≤ c(t,m, M3, . . . , Mt+3, A)n−(t+1)/2.

4. Examples

In the examples that follow we take for simplicity t = 2.
a. Let 0 < a < b < 1 and consider on (a, b) the product Q(x) = xl(1− x)n−l,

where n is an integer and 0 ≤ l ≤ n; Q is a product of n functions each equal
to x or 1− x.

Considered on (0, 1), the function Q attains its maximum at x0 = l/n. We will
assume that a+d ≤ l/n ≤ b−d for some d > 0. Now an elementary computation
shows that for the derivatives of S(x) = log Q(x) = l log x + (n − l) log(1 − x)
we have

S(2)(x0) = −1/σ2 = − n3

l(n− l)
,

S(3)(x0)|S(2)(x0)|−3/2 =
2(n− 2l)

(l(n− l)n)1/2
,

S(4)(x0)(S
(2)(x0))

−2 = −6
3l2 − 3ln + n2

l(n− l)n
.

Thus in the case we consider

Q(x0 + σy)

Q(x0)
= exp(−y2/2)Σ + R, (8)

where

Σ = 1 +
1

3

n− 2l

(l(n− l)n)1/2
y3 − 1

4

3l2 − 3ln + n2

l(n− l)n
y4 +

1

16

(n− 2l)2

l(n− l)n
y6,

and when |y| ≤ A and (5) is satisfied

|R| ≤ cn−3/2 (9)

with c depending only on a, b, A.
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b. Next consider Q(x) = xne−x, x > 0. As is pointed out in [1], the case of
this function reduces to the case of Q1(x) = (xe−x)n since, as is easy to check,
they have the same standardized forms:

QS(x) = Q1S(x) = (1 + n−1/2y)n exp(−n1/2y).

For Q1 we have S1 = log Q1 = nf , f = log x− x, and f (1)(x) = (1/x)− 1, and
f (k)(x) = (−1)k−1(k− 1)!x−k, k ≥ 2. Thus x0 = 1, σ = 1 and the general result
of Secion 2 is applicable with 0 < a < 1 < b < ∞, d = min(|a − 1|, |b − 1|),
m = b−2. Namely, we have

QS(y) = Q1S(y) = exp(−y2/2)
(
1 +

1

3
y3n−1/2 −

(
1

4
y4 − 1

16
y6

)
n−1

)
+ R,

and when |y| ≤ A and condition (5) is satisfied |R| ≤ cn−3/2 with c depending
only on a, b, A.
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