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ASYMPTOTIC BEHAVIOR OF SINGULAR AND ENTROPY
NUMBERS FOR SOME RIEMANN–LIOUVILLE TYPE

OPERATORS

A. MESKHI

Abstract. The asymptotic behavior of the singular and entropy numbers
is established for the Erdelyi–Köber and Hadamard integral operators (see,
e.g., [15]) acting in weighted L2 spaces. In some cases singular value decom-
positions are obtained as well for these integral transforms.
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In this paper, we investigate the asymptotic behavior of singular and entropy
numbers for the following integral operators:

Iα,σf(x) =
1

Γ(α)

x∫

0

(xσ − yσ)α−1f(y) dy, x > 0, α > 0, σ > 0,

(Erdelyi–Köber operator) and

Hαf(x) =
1

Γ(α)

x∫

1

(
ln

x

y

)α−1

f(y) dy, x > 1, α > 0,

(Hadamard operator) in some weighted L2 spaces. We get singular value de-
compositions for these integral transforms.

Analogous problems for the Riemann–Liouville operator

Rαf(x) =
1

Γ(α)

x∫

0

(x− y)α−1f(y) dy, α > 0,

were studied in [1]–[6]. We refer also to [7]–[8], where some powerful tools
were developed for establishing the asymptotics of singular numbers of cer-
tain pseudo-differential operators (see also [9] for some properties of singular
numbers for the weighted Riemann–Liouville operator Rα,vf(x) ≡ v(x)Rαf(x),
where α > 1/2).

Two-sided estimates of singular (approximation) numbers for the weighted

Hardy operator Hv,wf(x) = v(x)
x∫
0

f(y)w(y) dy were given in [10]–[12] (for some

related topics concerning the weighted Volterra integral operators see [13], [14]).
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Note that some mapping properties of the operators Iα,σ and Hα were estab-
lished in [15].

Let A and B be infinite-dimensional Hilbert spaces. It is known that if
K : A → B is an injective compact linear operator, then there exist:

(a) an orthonormal basis {uj}Z+ in A;
(b) an orthonormal basis {vj}Z+ in B;
(c) a nonincreasing sequence {sj(K)}Z+ of positive numbers with limit 0 as

j → +∞ such that

Kuj = sj(K)vj, j ∈ Z+.

The numbers sj(K) are known as singular numbers or s-numbers of the operator
K, the system {sj(K), uj, vj}j∈Z+ is called a singular system of K. For the
operator K the singular value decomposition

Kf =
∞∑

j=0

sj(K)(f, uj)Avj, f ∈ A,

is valid.
Let w be a measurable a.e. positive function on Ω ⊂ R+. We denote by

L2
w(Ω) the class of all measurable functions f : Ω → R+ for which

‖f‖L2
w(Ω) =

( ∫

Ω

|f(x)|2w(x) dx
)1/2

< ∞.

In the sequel by writing an ≈ bn for sequences of positive numbers an and bn

we mean that there exist positive constants c1 and c2 such that c1 ≤ an/bn ≤ c2

for all n ∈ N.
The following result is well-known (see [5]):

Theorem A. Let α > 0, β > −1, ϕ(t) = t−βe−t, ψ(t) = t−(α+β)e−t. Then
the singular system {sj(Rα), uj, vj}j∈Z+ of the operator Rα : L2

ϕ(R+) → L2
ψ(R+)

is given by

sn(Rα) =
(

Γ(n + β + 1)

Γ(n + α + β + 1)

)1/2

, (1)

un(t) =
(

n!

Γ(n + β + 1)

)1/2

tβL(β)
n (t),

vn(t) =
(

n!

Γ(n + α + β + 1)

)1/2

tα+βL(α+β)
n (t),

and sn(Rα)/n−α/2 → 1 as n →∞, where L(γ)
n is the Laguerre polynomial:

L(γ)
n (x) =

n∑

k=0

(−1)k

(
n + γ

n− k

)
xk

k!
, γ > −1, n ∈ Z+.
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Theorem B ([4]). Let α > 0, λ > α − 1/2, λ 6= 0. Then the operator
Rα : L2

ϕ(R+) → L2
ψ(R+), where ϕ(x) = x1/2−λ(1 + x)2α, ψ(x) = x1/2−λ−α, has

the following singular system:

sn(Rα) =
(

Γ(n + λ− α + 1/2)

Γ(n + λ + α + 1/2)

)1/2

, (2)

un(t) = 2λantλ−1/2(1 + t)−λ−α−1/2Cλ
n

(
1− t

1 + t

)
,

vn(t) = 2λbntλ+α−1/2(1 + t)−λ−α−3/2P (λ−α−1/2,λ+α−1/2)
n

(
1− t

1 + t

)
,

where

an =
(

22λ−1(n + λ)n!

πΓ(n + 2λ)

)1/2

Γ(λ),

bn =
(

21−2λ(n + λ)n!Γ(n + 2λ)

Γ(n + λ− α + 1/2)Γ(n + λ + α + 1/2)

)1/2

,

Cλ
n(t) is the Gegenbauer polynomial

Cλ
n(t) =

1

Γ(α)

[n/2]∑

j=0

(−1)j Γ(α + n− j)

j!(n− 2j)!
(2t)n−2j,

and P (α,β)
m is the Jacobi polynomial

P (α,β)
n (t) = 2−n

n∑

m=0

(
n + α

m

)(
n + β

n−m

)
(t− 1)n−m(t + 1)m, n ∈ Z+.

Moreover, lim
n→∞ sn(Rα)/n−α = 1.

Theorem C ([6]). The singular values of the operator Rα : L2(0, 1) →
L2

x−γ (0, 1) have the following asymptotics:

sn(Rα) ≈ n−α, 0 ≤ γ < α.

When γ = 0, the upper estimate in the previous statement was derived in
[1], [2], while the lower estimate was given in [2].

The following lemma follows immediately:

Lemma 1. Let ϕ, ψ, v and w be measurable a.e. positive functions on Ω ⊆
R+. Then the operator A is compact from L2

ϕ(Ω) to L2
ψ(Ω) if and only if the

operator A1f(x) = v1/2(x)A(fw−1/2)(x) is compact from L2
ϕw−1(Ω) to L2

ψv−1(Ω).

Taking into account the definition of the singular system of the operator, we
easily derive the next statement.

Lemma 2. Let v and w be a.e. positive measurable functions on Ω ⊆ R+.
A system {sj(A), uj, vj}j∈Z+ is a singular system for the operator A : L2

ϕ(Ω) →
L2

ψ(Ω) if and only if the operator A1 : L2
ϕw−1(Ω) → L2

ψv−1(Ω) has the singular
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system {sj(A1), w
1/2uj, v

1/2vj}j∈Z+, where A1f(x) = v1/2(x)A(fw−1/2)(x) and
sj(A1) = sj(A).

Let Iα,σf(x) = Iα,σ(fρ)(x), where ρ(y) = yσ−1, α > 0, σ > 0 and x > 0.
From the definition of compactness we easily deduce

Lemma 3. Let α > 0, σ > 0 and let Ω = (0, 1) or Ω = (0,∞). Assume that
v and w are measurable a.e. positive functions on Ω. Then the operator Iα,σ

is compact from L2
w(Ω) to L2

v(Ω) if and only if Rα is compact from L2
W (Ω) to

L2
V (Ω), where W (x) = w(x1/σ)x1/σ−1, V (x) = v(x1/σ)x1/σ−1.

Now we prove the following statement:

Lemma 4. Let α > 0, σ > 0 and let v and w be measurable a.e. positive
functions on Ω, where Ω = (0,∞) or Ω = (0, 1). Then for the singular system
{sj(Iα,σ}, uj, vj}j∈Z+ of the operator Iα,σ : L2

w(Ω) → L2
v(Ω) we have sj(Iα,σ) =

σ−1sj(Rα), uj(x) = σ1/2uj(x
σ), vj(x) = σ1/2vj(x

σ), where {sj(Rα), uj, vj}j∈Z+

is a singular system for the operator Rα : L2
W (0,∞) → L2

V (0,∞), with W (x) =
w(x1/σ)x1/σ−1 and V (x) = v(x1/σ)x1/σ−1.

Proof. Let Ω = (0,∞). Using the change of variable y = t1/σ, we have

(Iα,σuj)(x) =
1

Γ(α)

x∫

0

(xσ − yσ)α−1yσ−1uj(y) dy

=
σ1/2

Γ(α)

x∫

0

(xσ − yσ)α−1uj(y
σ)yσ−1 dy =

σ−1/2

Γ(α)

xσ∫

0

(xσ − t)α−1uj(t) dt

= σ−1/2(Rαuj)(x
σ) = sj(Rα)σ−1/2vj(x

σ) = σ−1sj(Rα)vj(x).

Further, the change of variable yields

∞∫

0

vj(x)vi(x)v(x) dx = σ

∞∫

0

vj(x
σ)vi(x

σ)V (xσ)xσ−1dx

=

∞∫

0

vj(x)vi(x)V (x)dx = δij,

where δij denotes Kronecker’s symbol.
Analogously, we have

∞∫

0

uj(x)ui(x)w(x) dx =

∞∫

0

uj(x)ui(x)W (x) dx = δij,

Hence {vj} and {uj} are orthonormal systems in L2
v(R+) and L2

w(R+), re-
spectively.

The case Ω = (0, 1) follows in a similar way.
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Theorem 1. Let α > 0, σ > 0 and 0 ≤ γ < α. Then there exist positive
constants c1 and c2 depending on α, σ and γ such that for the singular numbers
of the operator Iα,σ : L2

x1−σ(0, 1) → L2
xσ−1−γσ(0, 1) we have sn(Iα,σ) ≈ n−α.

Proof. By Lemma 2 we have that sj(Iα,σ) = sj(Iα,σ), where Iα,σ acts from
L2

xσ−1(0, 1) to L2
xσ−1−γσ(0, 1), while Lemma 4 yields sj(Iα,σ) = 1/σsj(Rα), where

Rα is the Riemann–Liouville operator acting from L2(0, 1) to L2
x−γ (0, 1). The-

orem C completes the proof.

Theorem 2. Let α > 0, σ > 0, λ > α − 1/2 and λ 6= 0. Assume that
w(x) = x1−σ/2−σλ(1 + xσ)2α, v(x) = x3σ/2−σλ−σα−1. Then the operator Iα,σ :
L2

w(0,∞) → L2
v(0,∞) has a singular system {sn(Iα,σ), un, vn}n∈Z+, where

sn(Iα,σ) = 1
/

σ
(

Γ(n + λ− α + 1/2)

Γ(n + λ + α + 1/2)

)1/2

,

un(x) = σ1/22λanxσ(λ+1/2)−1(1 + xσ)−λ−α−1/2Cλ
n

(
1− xσ

1 + xσ

)
,

vn(x) = σ1/22λbnxσ(λ+α−1/2)(1 + xσ)−λ−α−3/2P (λ−α−1/2,λ+α−1/2)
n

(
1− xσ

1 + xσ

)
,

Cλ
n(x) and P (α,β)

n are Gegenbauer and Jacobi polynomials, respevetively (see
Theorem B), and an, bn are the constants defined in Theorem B. Moreover,

lim
n→∞ sn(Iα,σ)/n−α = 1/σ.

Proof. Lemma 2 implies that the singular system {sm(Iα,σ), um, vm}m∈Z+ of the
map Iα,σ :L2

w(0,∞)→L2
v(0,∞) coincides with the singular system {sm(Iα,σ), ũm,

ṽm}m∈Z+ of the map Iα,σ : L2
W (0,∞) → L2

V (0,∞), where W (x) = w(x)x2(σ−1),
V (x) = v(x), ũm(x) = x1−σum(x), ṽm(x) = vm(x). Further, by Lemma 4 we
have that the operator Rα : L2

ϕ(0,∞) → L2
ψ(0,∞) (ϕ(x) = x1/2−λ(1 + x)2α,

ψ(x) = x1/2−λ−α) has a singular system {sm(Rα), um, vm}m∈Z+ , where

sm(Rα)=σsm(Iασ) ≈ m−α, um(x)=σ1/2xσ−1um(xσ), vm(x)=σ1/2vm(xσ).

Analogously, we have

Theorem 3. Let α > 0, σ > 0, β > −1, w(y) = y−σβ−σ+1e−yσ
and v(y) =

y−σ(α+β)+σ−1e−yσ
. Then the operator Iα,σ : L2

w(0,∞) → L2
v(0,∞) has a singular

system {sm(Iα,σ), um, vm}m∈Z+ defined by

sn(Iα,σ) = 1
/

σ
(

Γ(n + β + 1)

Γ(n + α + β + 1)

)1/2

,

un(x) = σ1/2xσ−1+σβ
(

n!

Γ(n + β + 1)

)1/2

L(β)
n (xσ),

vn(x) = σ1/2
(

n!

Γ(n + α + β + 1)

)1/2

xσ(α+β)L(α+β)
n (xσ),
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where L(γ)
n (x) is a Laguerre polynomial (see Theorem A). Moreover,

lim
n→∞ sn(Iα,σ)/n−α/2 = 1/σ.

Now we consider the operator of Hadamard’s type Hα.
The following lemma holds:

Lemma 5. Let α > 0 and (v, w) be a pair of weights defined on (1,∞). Then
{sm(Lα), um, vm}m∈Z+ is a singular system for the operator Lα : L2

w(1,∞) →
L2

v(1,∞), where

Lαf(x) =
1

Γ(α)

x∫

1

(
ln

x

y

)α−1

f(y)
dy

y
,

if and only if the Riemann–Liouville operator Rα : L2
W (0,∞) → L2

V (0,∞)
has a singular system {sm(Rα), ũm, ṽm}m∈Z+, where W (x) = w(ex)ex, V (x) =
v(ex)ex, sm(Rα) = sm(Lα), ũm(x) = um(ex), ṽm(x) = vm(ex).

Proof. Using the change of variable y = ez we have

(Lαum)(x) =
1

Γ(α)

x∫

1

(
ln

x

y

)α−1

um(y)
dy

y

=
1

Γ(α)

ln x∫

0

(ln x− z)α−1ũm(z) dz = (Rαũm)(ln x) = ṽ(ln x)sj(Rα).

On the other hand,

∞∫

0

ũi(x)ũj(x)W (x) dx =

∞∫

0

ui(e
x)uj(e

x)w(ex)ex dx = δij,

∞∫

0

ṽi(x)ṽj(x)V (x) dx =

∞∫

1

vi(y)vj(y)v(y) dy = δij,

where δij is Kronecker’s symbol.

Lemmas 2 and 5 yield the following statements:

Theorem 4. Let α>0, β>−1, w(x)=ln−β x, v(x)=x−2 ln−(α+β) x. Then the
operator Hα :L2

w(1,∞)→L2
v(1,∞) has a singular system {sn(Hα), ũn, ṽn}n∈Z+,

where sn(Hα) = sn(Rα) (sm(Rα) is defined by (1)),

ũn(x) = x−1
(

n!

Γ(n + β + 1)

)1/2

L(β)
n (ln x) lnβ x,

ṽn(x) =
(

n!

Γ(n + α + β + 1)

)1/2

L(α+β)
n (ln x) lnα+β x,

and L(γ)
n is the Laguerre polynomial. Moreover,

lim
n→∞ sn(Hα)/n−α/2 = 1.
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Theorem 5. Let λ>α−1
2
, λ 6=0. Then the operator Hα :L2

w(1,∞)→L2
v(1,∞)

has a singular system {sn(Hα), ũm, ṽn}m∈Z+, where v(x) = x−1 ln1/2−λ−α x,

w(x) = (1 + ln x)2αx ln1/2−λ x, sn(Hα) = sn(Rα) (sn(Rα) is defined by (2)),

ũn(x) = 2λan(1 + ln x)−λ−α−1/2Cλ
n

(
1− ln x

1 + ln x

)
x−1 lnλ−1/2 x,

vn(x) = 2λbn(1 + ln x)−λ−α−3/2P (λ−α−1/2,λ+α−1/2)
n

(
1− ln x

1 + ln x

)
lnλ+α−1/2 x.

Moreover,

lim
n→∞ sn(Hα)/n−α = 1.

Definition 1. Let X and Y be Banach spaces and let T be a bounded linear
map from X to Y . Then for all k ∈ N , the kth entropy number ek(T ) of T is
defined by

ek(T ) = inf
{
ε > 0 : T (UX) ⊂

2k−1⋃

j=1

(bi + εUY ) for some b1, . . . , b2k−1 ∈ Y
}
,

where UX and UY are the closed unit balls in X and Y , respectively.

It is easy to verify that ‖T‖ = e1(T ) ≥ e2(T ) ≥ · · · ≥ 0.
For other properties of the entropy numbers see, e.g., [16].
It is known (see, e.g., [15]), that if T is a compact linear map of a Hilbert

space X into a Hilbert space Y , then sn(T ) ≈ n−λ if and only if en(T ) ≈ n−λ.
Hence we can get asymptotics of the entropy numbers for the operators Iα,σ

and Hα. In particular, Theorems 1, 2 and 3 yield

Proposition 1. Let α > 0 and σ > 0. Then the following statements are
valid:

(a) If 0 ≤ γ < α, then the asymptotic formula

en(Iα,σ) ≈ n−α (3)

holds for the operator Iα,σ : L2
x1−σ(0, 1) → L2

xσ−1−γσ(0, 1).
(b) Assume that λ > α − 1/2 and λ 6= 0. Then the asymptotic formula (3)

is valid for the map Iα,σ : L2
w(0,∞) → L2

v(0,∞), where w(x) = x−σ/2−σλ+1(1 +
xσ)2α and v(x) = x3σ/2−σλ−σα−1.

(c) For the entropy numbers en(Iα,σ) of the operator Iα,σ : L2
w(0,∞) →

L2
v(0,∞) (w(y) = y−σβ−σ+1e−yσ

, v(y) = y−σ(α+β)+σ−1e−yσ
, β > −1) we have

en(Iα,σ) ≈ n−α/2.

Let T : L2
w → L2

v be a compact linear operator. We shall denote by n(t, T )
the distribution function of singular values for the operator T , i.e.,

n(t, T ) ≡ ]
{
k : sk(T ) > t

}
.
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Theorem 6. Let α > 1/2 and σ > 0. Assume that v is a measurable a.e.
positive function of (0,∞) satisfying the condition

∑

k∈Z

( 2(k+1)/σ∫

2k/σ

v(y)y(2α−1)σ dy
)1/(2α)

< ∞. (4)

Then for the operator Iα,σ : L2
w(R+) → L2

v(R+), where w(x) = x1−σ, the asymp-
totic formula

lim
t→0

t1/αn(t, Iα,σ) =
σ−1/α+1

π

∞∫

0

v1/(2α)(y)y(1−σ)(1/(2α)−1) dy

holds.

Proof. Condition (4) implies that

∑

k∈Z

( 2k+1∫

2k

v2(y)y2α−1 dy
)1/(2α)

< ∞, (5)

where v(x) ≡ [v(x1/σ)x1/σ−1]1/2. By virtue of Theorem 1 from [9] we have that
for the operator Rα,v : L2(R+) → L2(R+), where Rα,vf(x) ≡ v(x)Rαf(x), the
asymptotic formula

lim
t→0

t1/αn(t, Rα,v) = π−1
∫

R+

v1/α(x) dx

holds. Further, using Lemmas 1, 2 and 3 we obtain that sk(Rα,v) = σ · sk(Iα,σ).
Consequently,

lim
t→0

t1/αn(t, Iα,σ) = σ−1/α lim
t→0

t1/αn(t, Rα,v)

= σ−1/α 1

π

∞∫

0

(v(x))1/α dx =
σ−1/α+1

π

∞∫

0

(v(y))1/(2α)y(1−σ)(1/(2α)−1) dy.

Theorem 7. Let α > 1/2 and σ > 0. Suppose that v is a measurable a.e.
positive function on (0, 1) satisfying the condition

∑

k∈Z

( ak+1∫

ak

v(x)x−σ+2ασ(1− xσ)−1 dx
)1/(2α)

< ∞, ak = (2k/(2k + 1))1/σ. (6)

Then for the operator Iα,σ acting from L2
w(0, 1) into L2

v(0, 1), where w(x) =
(1− xσ)2αx1−σ, we have

lim
t→0

t1/αn(t, Iα,σ) =
σ−1/α+1

π

1∫

0

v1/(2α)(x)x(1−σ)(1/(2α)−1)(1− xσ)−1 dx.
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Proof. Using Lemmas 1–4 we have that sn(Iα,σ) = 1/σsn(Rα), where Rα is the
Riemann–Liouville operator acting from L2

w1
(0, 1) into L2

v1
(0, 1), with

w1(x) = w(x1/σ)x1−1/σ, v1(x) = v(x1/σ)x1/σ−1.

Further, by the change of variable x = y/(1 − y) we obtain that the operator
Rα : L2

w2
(R+) → L2

v2
(R+) has singular numbers sn(Rα) = σsn(Iα,σ), where

w2(x) = w1(x/(x + 1))(x + 1)−2, v2(x) = v1(x/(x + 1))(x + 1)−2 and Rαf(x) =
ψ(x)Rα(fϕ)(x) with ψ(x) = (x + 1)−α+1, ϕ(x) = (x + 1)−1−α. Hence for the
singular numbers of the Riemann–Liouville operator Rα : L2

w3
(R+) → L2

v3
(R+)

we derive sn(Rα) = σsn(Iα,σ), where w3(x) = w2(x)(x+1)2α+2 = 1 and v3(x) =
v2(x)(x + 1)2−2α. Further, condition (6) implies (5) with v3 instead of v. Thus,
taking into account Theorem 1 from [9], we arrive at

lim
t→0

t1/αn(t, Iα,σ) = σ−1/α lim
t→0

t1/αn(t, Rα)

= σ−1/α 1

π

∞∫

0

v
1/α
4 (x) dx =

σ−1/α+1

π

1∫

0

(v(y))1/(2α)y(1−σ)(1/(2α)−1)(1− yσ)−1 dy.

In the last equality we used the change of variable twice.

Finally, we have

Theorem 8. Let α > 1/2 and let v be a measurable a.e. positive function
on (1,∞) satisfying the condition

∑

k∈Z

( ak+1∫

ak

v(x) ln2α−1 x dx
)1/(2α)

< ∞, ak = e2k

. (7)

Then for the operator Hα : L2
w(1,∞) → L2

v(1,∞), where w(x) = ex, the asymp-
totic formula

lim
t→0

t1/αn(t,Hα,σ) =
1

π

∞∫

1

v1/(2α)(x)x1/(2α)−1 dy (8)

holds.

Proof. Taking into account Lemmas 2 and 5 we obtain that sn(Rα) = sn(Hα),
where Rα is the Riemann–Liouville operator acting from L2(R+) into L2

v1
(R+),

v1(x) = v(ex)ex. By condition (7), Theorem 1 from [9] and the change of
variable x = ey we conclude that (8) holds.
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