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HÖLDER VERSIONS OF BANACH SPACE VALUED
RANDOM FIELDS

ALFREDAS RAČKAUSKAS AND CHARLES SUQUET

Abstract. For rather general moduli of smoothness ρ, like ρ(h)=hα lnβ(c/h),
we consider the Hölder spaces Hρ(B) of functions [0, 1]d → B where B is a
separable Banach space. We establish an isomorphism between Hρ(B) and
some sequence Banach space. With this analytical tool, we follow a very nat-
ural way to study, in terms of second differences, the existence of a version
in Hρ(B) for a given random field.
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1. Introduction

Let ρ(δ), 0 ≤ δ ≤ 1 be a modulus of smoothness and B a separable Banach
space. Denote by Hρ(B) = Hρ([0, 1]d; B) the space of all functions x : [0, 1]d →
B such that

‖x(t + h)− x(t)‖B = O
(
ρ(|h|)

)
(1.1)

uniformly in t ∈ [0, 1)d. Ho
ρ(B) = Ho

ρ([0, 1]d; B) is the subspace of functions for

which O
(
ρ(|h|)

)
can be replaced by o

(
ρ(|h|)

)
in (1.1). Equipped with the re-

lated Hölder norm (precise definitions are given in Section 2), Hρ(B) becomes a
non-separable Banach space with Ho

ρ(B) as a closed separable subspace. Letting
the modulus ρ vary gives a very natural scale of spaces allowing us to classify
by their global regularity the functions more than continuous. This functional
framework is interesting in the theory of stochastic processes since very often
the continuous stochastic process under study has a better regularity than the
bare continuity. Moreover, for obvious topological reasons, weak convergence
in Hölder spaces is stronger than in the classical space C([0, 1]d; B) of B valued
continuous functions on [0, 1]d.

In the previous papers [11], [10], the authors discussed the following problem
in the special case B = R:

(I) For a given real valued random field indexed by [0, 1]d, find sufficient
conditions for the existence of a version with sample paths in Ho

ρ(B).

The present contribution studies (I) in the general case of a separable Banach
space B. The history of this problem began with the well known Kolmogorov’s
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condition: if the real valued stochastic process
(
ξ(t), t ∈ [0, 1]

)
satisfies

P
(
|ξ(t + h)− ξ(t)| > λ

)
≤ cλ−γh1+ε, (1.2)

where c, ε > 0 and γ > 1 are constants, then it has a version with almost surely
continuous paths. This was the root of successive generalizations leading to
processes indexed by an abstract parameter set T . The modern theory expresses
condition for the existence of a continuous version in terms of the geometry of
T , i.e., some metric entropy or majorizing measure condition which estimates
the size of T with respect to a pseudo metric related to ξ. The study of Hölder
regularity is another branch stemming from Kolmogorov’s condition. Indeed,
(1.2) is sufficient for ξ to have a version with sample paths in the Hölder space
Ho

ρ([0, 1];R) with ρ(h) = |h|α for any 0 < α < ε/γ. Ciesielski [3] gave sufficient
conditions for a Gaussian process to have a version with α-Hölderian paths.
Using the method of triangular functions, Delporte [4] established sufficient
conditions for the existence of a version of ξ in Ho

ρ([0, 1];R) for general moduli
of smoothness ρ. Ibragimov [6] and Nobelis [9] studied the problem (I) for
general ρ and B = R.

The method of triangular functions used by Ciesielski [2, 3], Delporte [4],
Kerkyacharian and Roynette [7] relies on the following well known decomposi-
tion of a real valued continuous function x:

x(t) =
∞∑

j=0

∑

v∈Vj

λj,v(x)Λj,v(t), t ∈ T, (1.3)

where Λj,v’s are the Faber–Schauder triangular functions and Vj is the set of
dyadic numbers of level j in T = [0, 1]. In fact the triangular functions form
a basis (in Schauder’s sense) of Ho

ρ([0, 1];R) when ρ(h) = |h|α. Moreover,
the Hölder regularity of a continuous function is characterized by the rate of
decreasing of its coefficients λj,v(x) in this basis. This provides the Ciesielski [2]
isomorphisms between these Hölder spaces and some sequence spaces. These
isomorphisms give a very convenient discretization procedure in [10] to study
(I). In [11] we use the same method, replacing the basis of triangular functions
by the basis of skew pyramidal functions defined on T = [0, 1]d, denoted again by
Λj,v and indexed by the dyadic points v of level j in [0, 1]d. The scalar coefficients
λj,v(x) are some dyadic second differences of x. In the present contribution, we
keep formally the same decomposition (1.3) of B-valued Hölder functions into
series of pyramidal functions. But now the pyramidal functions are scalar while
their coefficients are vectors lying in B. The important fact is the preservation
in this new setting of the equivalence between the initial Hölder norm ‖x‖ρ with
the sequential norm

‖x‖seq
ρ := sup

j≥0

1

ρ(2−j)
max
v∈Vj

‖λj,v(x)‖B . (1.4)

Of course, this cannot be the question of any Schauder basis for Ho
ρ(B) in the

general case since B itself does not necessarily possess such a basis.
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From (1.3) and (1.4) it should be clear that the control of the coefficients
λj,v(x) is the key tool in our study. It is then relevant to state the basic asump-
tions in problem (I) in terms of the second differences

∆2
hξ(t) := ξ(t + h) + ξ(t− h)− 2ξ(t) (1.5)

of the random fields considered. This brings more flexibility than the classical
use of first increments (for more argumentation see [10]).

The paper is organized as follows. Section 2 exposes the analytical prelimi-
naries: expansion in a series of pyramidal functions, equivalence of norms. In
Section 3, we discuss problem (I) of the existence of Hölderian versions. The
systematic use of the sequential norm (1.4) enables us to provide sufficient con-
ditions whose general form may be sketched as follows. Assuming some uniform
control of second differences like

P
(∥∥∥∆2

hξ(t)
∥∥∥

B
> rσ(|h|)

)
≤ Ψ(r), r > 0, (1.6)

we consider the series

R(u) :=
∞∑

j=0

2jdΨ
(
u

ρ

σ
(2−j)

)
. (1.7)

Then the convergence of R(u0) for some u0 > 0 gives the existence of a version
of ξ in Hρ(B), while the convergence for every u > 0 gives a version in Ho

ρ(B).
When (1.6) is obtained through weak p-moments, the corresponding result im-
proves the Ibragimov’s classical result for the case B = R by a logarithmic factor
in the modulus ρ [6]. When (1.6) is verified through exponential Orlicz norms,
we have practical conditions precise enough to discriminate between Hρ(B) and
Ho

ρ(B). For instance, our conditions detect the optimal Hölder regularity of
B-valued Brownian motions. Examples of Ornstein–Uhlenbeck processes in c0

and of p-stable processes in `r illustrate our general results.

2. Analytical Background

Throughout T = [0, 1]d and Rd is endowed with the norm |t| := max1≤i≤d |ti|,
t = (t1, . . . , td) ∈ Rd. Denote by B a Banach space with the norm || · ||B and by
Hρ(B) = Hρ(T ; B) the set of B-valued continuous functions x : T → B such
that ωρ(x, 1) < ∞, where

ωρ(x, δ) := sup
t,s∈T,0<|t−s|<δ

‖x(t)− x(s)‖B

ρ(|s− t|)
and ρ is a modulus of smoothness satisfying conditions (2.1) to (2.5) below.

The technical conditions required for ρ are the following, where c1, c2 and c3

are positive constants:

ρ(0) = 0, ρ(δ) > 0, 0 < δ ≤ 1; (2.1)

ρ is non-decreasing on [0, 1]; (2.2)

ρ(2δ) ≤ c1ρ(δ), 0 ≤ δ ≤ 1/2; (2.3)
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δ∫

0

ρ(u)

u
du ≤ c2ρ(δ), 0 < δ ≤ 1; (2.4)

δ

1∫

δ

ρ(u)

u2
du ≤ c3ρ(δ), 0 < δ ≤ 1. (2.5)

To show a concrete class of functions satisfying the conditions (2.1) – (2.5), let
us define inductively the sequence of functions `k on (uk,∞) by `1(u) = ln u,
u1 = 1 and, for k ≥ 2, `k(u) = ln(`k−1(u)), and uk such that `k−1(uk) = 1.

Elementary computations show that for any α ∈ (0, 1) and any finite sequence
β1, . . . , βm ∈ R there exists a set of positive constants b1, . . . , bm such that the
functions

ρ(h) = hα
m∏

k=1

`βk
k (bk/h), 0 < h ≤ 1,

satisfy conditions (2.1) to (2.5).
The set Hρ(B) is a Banach space when endowed with the norm

‖x‖ρ := ‖x(0)‖B + ωρ(x, 1).

Obviously, an equivalent norm is obtained by replacing ‖x(0)‖B in the above
formula by ‖x‖∞ := sup{‖x(t)‖B ; t ∈ T}. Define

Ho
ρ(B) = Ho

ρ(T ; B) := {x ∈ Hρ(B) : lim
δ→0

ωρ(x, δ) = 0}.
Then Ho

ρ(B) is a closed subspace of Hρ(B). Now let us remark that for any
function ρ satisfying (2.1) and (2.5) there is a positive constant c4 such that

ρ(δ) ≥ c4δ, 0 ≤ δ ≤ 1. (2.6)

Hence the spaces Ho
ρ(B) always contain all the Lipschitz B-valued functions

and in particular the (continuous) piecewise affine functions. When B is itself
separable, the separability of the spaces Ho

ρ(B) follows by interpolation argu-
ments.

Since we are interested in the analysis of these spaces in terms of second
differences of the functions x, our first task is to establish the equivalence of the
norm ‖x‖ρ with some sequential norm involving the dyadic second differences

of x. Our main reference for this part is Semadeni [14].
The so-called skew pyramidal basis was introduced by Bonic, Frampton and

Tromba [1] and, independently, by Ciesielski and Geba (see the historical notes
in [14, p. 72]). The reader is referred also to our previous contribution [11] for
a more detailed explanation.

If A is a convex subset of T , the function f : T → B is said to be affine on A if
it preserves the barycenter, i.e., for any finite sequence u1, . . . , um in A and non-
negative scalars r1, . . . , rm such that

∑m
i=1 ri = 1, f(

∑m
i=1 riui) =

∑m
i=1 rif(ui).

To explain the construction of the skew pyramidal basis, define first the stan-
dard triangulation of the unit cube T = [0, 1]d. Write Πd for the set of permu-
tations of the indexes 1, . . . , d. For any π = (i1, . . . , id) ∈ Πd, let ∆π(T ) be the
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convex hull of d+1 points 0, ei1 , (ei1 +ei2), . . . ,
d∑

k=1
eik , where ei’s are the vectors

of the canonical basis of Rd. So, each simplex ∆π(T ) corresponds to one path
from 0 to (1, . . . , 1) via the vertices of T and such that along each segment of the
path, only one coordinate increases while the others remain constant. Thus T
is divided into d! simplexes with disjoint interiors. The standard triangulation
of T is the family T0 of simplexes {∆π(T ), π ∈ Πd}.

Next, we divide T into 2jd dyadic cubes with edge 2−j. By dyadic translations
and change of scale, each of them is equipped with a triangulation similar to
T0. And Tj is the set of 2jdd! simplexes so constructed.

For j ≥ 1 the set Wj := vert(Tj) of vertices of the simplexes in Tj is

Wj = {k2−j; 0 ≤ k ≤ 2j}d.

In what follows we put V0 := W0 and Vj := Wj \Wj−1. So Vj is the set of new
vertices born with the triangulation Tj. More explicitly, Vj is the set of dyadic
points v = (k12

−j, . . . , kd2
−j) in Wj with at least one ki odd.

The Tj-pyramidal function Λj,v with peak vertex v ∈ Vj is the real valued
function defined on T by three conditions:

i) Λj,v(v) = 1;
ii) Λj,v(w) = 0 if w ∈ vert(Tj) and w 6= v;
iii) Λj,v is affine on each simplex ∆ in Tj.

Observe that the notation Λj,v is somewhat redundant and could be simplified
in Λv since Vj’s form a partition of the set of dyadic points of [0, 1]d.

It follows clearly from the above definition that the support of Λj,v is the
union of all simplexes in Tj containing the peak vertex v. By [14, Prop. 3.4.5],
the functions Λj,v are obtained by dyadic translations and changes of scale:

Λj,v(t) = Λ(2j(t− v)), t ∈ T, v ∈ Vj,

from the same function Λ with support included in [−1, 1]d :

Λ(t) := max
(
0, 1−max

ti<0
|ti| −max

ti>0
ti

)
, t = (t1, . . . , td) ∈ Rd.

The B-valued coefficients λj,v(x) are given by

λ0,v(x) = x(v), v ∈ V0;

λj,v(x) = x(v)− 1

2

(
x(v−) + x(v+)

)
, v ∈ Vj, j ≥ 1,

where v− and v+ are defined as follows. Each v ∈ Vj admits a unique representa-
tion v = (v1, . . . , vd) with vi = ki/2

j, (1 ≤ i ≤ d). The points v− = (v−1 , . . . , v−d )
and v+ = (v+

1 , . . . , v+
d ) are defined by

v−i =

{
vi − 2−j if ki is odd;
vi if ki is even;

v+
i =

{
vi + 2−j, if ki is odd;
vi if ki is even.
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Since v is in Vj, at least one of ki’s is odd, so v−, v and v+ are really three
distinct points of T . Moreover, we can write

v− = v − 2−je(v), v+ = v + 2−je(v) with e(v) :=
∑

ki odd

ei,

so λj,v(x) is a second difference directed by the vector e(v). Observe further
that if v is in Vj, then v− and v+ are in Wj−1.

Note here that the sequences (λj,v) and (Λj,v) are biorthogonal in the following
sense.

Lemma 1. For j, j′ ≥ 0 and v ∈ Vj, v′ ∈ Vj′,

λj,v(Λj′,v′) = δv,v′ ,

where δv,v′ = 0 if v 6= v′, δv,v′ = 1 if v = v′ (and then j = j′).

Proof. Suppose first j positive, so

λj,v(Λj′,v′) = Λj′,v′(v)− 1

2

(
Λj′,v′(v

−) + Λj′,v′(v
+)

)
,

with v ∈ Vj and v+, v− ∈ Wj−1.
Case 1 : j < j′. Then v, v+ and v− are the vertices of the triangulation Tj

and hence also of Tj′ , but none of them can be equal to v′, so Λj′,v′ vanishes at
v, v+, v−.

Case 2 : j > j′. Then the segment [v−, v+] ( with middle-point v) is contained
in some simplex ∆ of Tj′ and Λj′,v′ is affine on ∆, so λj,v(Λj′,v′) = 0.

Case 3 : j = j′. Then v− and v+ are in Wj′−1, so Λj′,v′ vanishes at v− and
v+ and λj,v(Λj′,v′) = Λj′,v′(v) = δv,v′ , by i) and ii) in the definition of pyramidal
functions.

To complete the proof, note that in the special case j = 0, λ0,v(Λj′,v′) =
Λj′,v′(v) = δv,v′ , since v is a vertex of T0 and hence of Tj′ .

As usual, the space C(T ; B) of continuous functions x : T → B is endowed
with the uniform norm ||x||∞ = supt∈T ||x(t)||B. Define the operators Ej (j ≥ 0)
on the space C(T ; B) by

Ejx :=
j∑

i=0

∑

v∈Vi

λi,v(x)Λi,v, x ∈ C(T ; B).

Lemma 2. The B-valued function Ejx is affine on each simplex of Tj and
such that Ejx(w) = x(w) for each w ∈ Wj.

Proof. Since each simplex ∆ of Tj is included in one simplex of Ti for i ≤ j, the
first claim follows clearly from the fact that Λi,v’s are affine on the simplexes of
Ti.

We check the second claim by induction on j. First, for w ∈ W0, we have by
the definition of λ0,v’s and i), ii) of the definition of the pyramidal functions,

E0x(w) =
∑

v∈V0

x(v)Λ0,v(w) = x(w).
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Next assuming the interpolation property true for j, consider, for w in Wj+1,
the decomposition

Ej+1x(w) = Ej(w) +
∑

v∈Vj+1

λj+1,v(x)Λj+1,v(w).

If w already belongs to Wj, then Ejx(w) = x(w) by the induction hypothesis and
the second term in the above decomposition vanishes by ii) since w belonging
to vert(Tj+1) \ Vj+1 cannot be a peak vertex for one of Λj+1,v. To complete the
proof, it remains to treat the case w ∈ Vj+1. Using again i) and ii) we have

∑

v∈Vj+1

λj+1,v(x)Λj+1,v(w) = λj+1,w(x) = x(w)− 1

2

(
x(w−) + x(w+)

)
.

Recall that w = 1
2
(w+ +w−). By [14, Lemma 3.4.8] there is at least one simplex

∆ in Tj having w+ and w− as vertices. Since Ejx is affine on ∆ and w− and
w+ are in Wj, we have

Ejx(w) =
1

2

(
Ejx(w−) + Ejx(w+)

)
=

1

2

(
x(w−) + x(w+)

)
,

and so Ej+1x(w) = x(w).

Since the pyramidal functions are not B-valued, they cannot form a Schauder
basis of C(T ; B) as in the real valued case. Nevertheless we keep the same type
of decomposition.

Proposition 1. Each x in C(T ; B) admits the series expansion

x(t) =
∞∑

j=0

∑

v∈Vj

λj,v(x)Λj,v(t), t ∈ T,

where the convergence holds in the strong topology of B and is uniform with
respect to t on T .

Proof. For fixed t there is a simplex ∆ in Tj containing t. Let v0, v1, . . . , vd be
the vertices of ∆. Writing ω1(δ) for the modulus of continuity and recalling
that the diameter of ∆ is 2−j, we have

‖x(t)− Ejx(t)‖B ≤ ω1(2
−j) + ‖x(v0)− Ejx(t)‖B .

Using the barycentric representation t =
∑d

i=0 rivi and Lemma 2, we get

‖x(v0)− Ejx(t)‖B =
∥∥∥∥

d∑

i=0

ri

(
x(v0)− x(vi)

)∥∥∥∥
B
≤

d∑

i=0

riω1(2
−j) = ω1(2

−j).

The conclusion follows.

Now we are in the position to state the equivalence of norms we were looking
for. For any function x : [0, 1]d → B the (possibly infinite) sequential seminorm
is defined by

‖x‖seq
ρ := sup

j≥0

1

ρ(2−j)
max
v∈Vj

‖λj,v(x)‖B .
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Observe moreover that when x is continuous, ‖x‖seq
ρ = 0 if and only if x = 0.

In this case, ‖x‖seq
ρ is a (possibly infinite) true norm.

Proposition 2. Under conditions (2.1) to (2.5), the norm ‖x‖ρ is equivalent

on C(T ; B) to the sequential norm, i.e., there are positive constants a, b such
that for every x ∈ C(T ; B),

a ‖x‖seq
ρ ≤ ‖x‖ρ ≤ b ‖x‖seq

ρ ,

with finite values of the norms if and only if x ∈ Hρ(B).

Proof. The proof is exactly the same as for [11, Prop. 1], replacing |x(t)| by
‖x(t)‖B. Note that in this proof the continuity of x was used through its expan-
sion in a series of pyramidal functions which is now replaced by Proposition 1.
Conditions (2.4) and (2.5) are not required for the inequality a ‖x‖seq

ρ ≤ ‖x‖ρ

which holds true with a = min
(
1, ρ(1)

)
for the most general moduli of smooth-

ness ρ.

Remark. It is worth noticing that

‖x− EJx‖seq
ρ := sup

j>J

1

ρ(2−j)
max
v∈Vj

‖λj,v(x)‖B

is non-increasing in J .
The next result is the key tool for the problem of existence of Hölderian

versions for a given B-valued random field.

Proposition 3. Let θ = (θj,v; j ≥ 0, v ∈ Vj) be a B-valued tree and consider
the following conditions.

(a)
∞∑

j=0

max
v∈Vj

‖θj,v‖B < ∞.

(b) sup
j≥0

1

ρ(2−j)
max
v∈Vj

‖θj,v‖B < ∞.

(c) lim
J→∞

sup
j>J

1

ρ(2−j)
max
v∈Vj

‖θj,v‖B = 0.

Define the sequence (SJ)J≥0 of continuous piecewise affine functions by

SJ :=
J∑

j=0

∑

v∈Vj

θj,vΛj,v.

Then under (a), SJ converges in C(T ; B) to some function S. Under (b), the
same convergence holds and S belongs to Hρ(T ; B). Under (c), SJ converges in
Ho

ρ(T ; B).

Proof. The pyramidal functions being non-negative, we have
∥∥∥∥

∑

v∈Vj

θj,vΛj,v(t)
∥∥∥∥

B
≤ max

v∈Vj

‖θj,v‖B

∑

v∈Vj

Λj,v(t)



HÖLDER VERSIONS OF BANACH SPACE VALUED RANDOM FIELDS 355

for every t ∈ T . Recalling that 0 ≤ ∑
v∈Vj

Λj,v(t) ≤ 1 (cf., e.g., Lemma 2 in
[11]), we see that (a) entails the uniform convergence on T of SJ .

Under (b), the same estimate gives the convergence in C(T ; B) of SJ to a
function S, provided that

∑
j≥0 ρ(2−j) < ∞. But this follows from our general

assumption (2.4), comparing series with integral. Observe now that by Lemma
1, λj,v(SJ) = θj,v if j ≤ J , so by the continuity on C(T ; B) of λj,v’s, λj,v(S) = θj,v

for every j, v. Applying now Proposition 2 to the continuous function S, we
obtain ‖S‖ρ < ∞.

Suppose finally that θ satisfies (c) which is obviously stronger than (b). Then
SJ converges (at least) in C(T ; B) sense to S ∈ Hρ(B) and λj,v(S) = θj,v. Thus
condition (c) means that ‖S − SJ‖seq

ρ goes to zero, which gives the convergence

of SJ to S in the Hρ(B) sense by Proposition 2. Moreover, SJ ’s are in Ho
ρ(B)

which is a closed subspace of Hρ(B), and so S ∈ Ho
ρ(B).

The usefulness of Proposition 3 for the existence of Hölderian versions comes
from its following obvious corollary.

Corollary 1. Let x be any function T → B and define θ = (λj,v(x); j ≥
0, v ∈ Vj). Then x coincides at the dyadic points of [0, 1]d with a function S
which is in C(T ; B) under (a), in Hρ(B) under (b) and in Ho

ρ(B) under (c).

3. Banach Valued Random Fields with Hölderian Versions

We now consider a given B-valued random field ξ = (ξ(t), t ∈ T ), continuous
in probability, and discuss the problem of existence of a version of ξ with almost
all paths in Ho

ρ(B). In our setting, a natural candidate for such a version is of the

form ξ̃ :=
∑

j

∑
v∈Vj

λj,v(ξ)Λj,v. Indeed, combining Corollary 1 with continuity in
probability reduces the problem to the control of maxima of random coefficients
‖λj,v(ξ)‖B which are norms of dyadic second differences of ξ. We define here the
second difference ∆2

hξ(t) in a symmetrical form by

∆2
hξ(t) := ξ(t + h) + ξ(t− h)− 2ξ(t), t ∈ T, h ∈ Ct,

where

Ct := {h = (h1, . . . , hd); 0 ≤ hi ≤ min(ti, 1− ti), 1 ≤ i ≤ d}.
Theorem 1. Let ξ = {ξ(t), t ∈ T} be a B-valued random field, continuous

in probability. Assume there exist a function σ : [0, 1] → R+, σ(0) = 0 and a
function Ψ : (0,∞] → R+, Ψ(∞) = 0 such that for all r > 0, t ∈ T, h ∈ Ct,

P
(∥∥∥∆2

hξ(t)
∥∥∥

B
> rσ(|h|)

)
≤ Ψ(r). (3.1)

Put for 0 < u < ∞,

R(u) = R(Ψ, σ, ρ, u) :=
∞∑

j=0

2jdΨ
(
u

ρ

σ
(2−j)

)
.

If R(u0) is finite for some 0 < u0 < ∞, then ξ has a version in Hρ(B).
If R(u) is finite for every 0 < u < ∞, then ξ has a version in Ho

ρ(B).
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When Ψ is non-increasing and σ non-decreasing, the same conclusions hold
if R(u) is replaced by

I(u) :=

1∫

0

Ψ
(
u

ρ

σ
(s)

)
ds

sd+1
.

Proof. By Corollary 1 and continuity in probability, ξ has a version in Hρ(B) if
(and only if) ‖ξ‖seq

ρ is finite almost surely, which is equivalent to

lim
M→∞

P (‖ξ‖seq
ρ > M) = 0.

Using the obvious bound

P (‖ξ‖seq
ρ > M) ≤

∞∑

j=0

∑

v∈Vj

P
(
‖λj,v(ξ)‖B > Mρ(2−j)

)
, (3.2)

this convergence follows easily from the dominated convergence theorem pro-
vided that the right hand side of (3.2) be finite for some M = M0 > 0. Recalling
that Card Vj ∼ (1− 2−d)2jd and using (3.1), this last requirement is satisfied as
soon as R(2M0) is finite.

Invoking again Corollary 1 and continuity in probability, we see that ξ has a
version in Ho

ρ(B) if and only if ‖ξ − EJξ‖seq
ρ goes to zero almost surely. But this

sequence being decreasing, this is equivalent to its convergence in probability.
Clearly, this convergence holds if for every ε > 0,

∞∑

j=0

∑

v∈Vj

P
(
‖λj,v(ξ)‖B > ερ(2−j)

)
< ∞,

which in turn follows from R(2ε) < ∞.
When Ψ is non-increasing and σ non-decreasing, a comparison between se-

ries and integral using (3) allows us to replace R(u) by I(u) in the above esti-
mates.

Remarks on the optimality. From the very elementary nature of the proof it
is easy to understand why the results are optimal in some sense. Indeed the
only gaps in the proof between sufficient and necessary conditions are in the
use of (3.2) and (3.1). But (3.2) is nothing else than the majorization of the
probability of a denumerable union by the sum of probabilities. So if we do
not know anything on the dependence structure of these events (which is the
case since assumptions on ξ involve only its three dimensional distributions)
this bound cannot be improved in general. Concerning (3.1), it is clear that for
reasonable Ψ we can always construct ξ such that (3.1) becomes an equality
when reduced to t ∈ ∪jVj, t± h = t±.

Example. Let {ξ(t), t ∈ R} = {ξk(t), t ∈ R}∞k=1 be a sequence of independent
Gaussian stationary processes. For each k ≥ 1, let rk denote the covariance

function of {ξk(t), t ∈ R}. Assume that
∞∑

k=1
exp{−ε/rk(0)} < ∞ for each ε > 0.

Then for each t ∈ R, the sequence ξ(t) = {ξk(t)}∞k=1 is a.s. in c0 (see Vakhania
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[15]). We consider the problem when for a fixed interval [a, b] the process
{ξ(t), t ∈ [a, b]} has a version satisfying certain Hölder condition. Set

σ2
k(h) = 2

(
rk(2h)− 4rk(h) + 3rk(0)

)
.

Assume that for each ε > 0

∞∑

k=1

∞∑

j=1

2jσk(2
−j) exp{−ερ2(2−j)/σ2

k(2
−j)} < ∞. (3.3)

Then by Theorem 1 the process {ξ(t), 0 ≤ t ≤ 1} admits a version in
Ho

ρ([0, 1]; c0).
To prove this claim, we shall check the conditions of Theorem 1. For all

r > 0, t ∈ [0, 1] and h, 0 ≤ h ≤ 1− t we have

P
(
||∆2

hξ(t)||c0 > rσ(h)
)
≤

∞∑

k=1

P
(
|∆2

hξk(t)| > rσ(h)
)
. (3.4)

Since ∆2
hξk(t) has a normal distribution with mean zero and variance σ2

k(h), we
have

P (|∆2
hξk(t)| > λ) ≤ 2√

2π

σk(h)

λ
exp{−λ2/2σ2

k}, λ > 0. (3.5)

Now the conditions of Theorem 1 are satisfied by (3.3), (3.4) and (3.5), so the
result follows.

As a special case, assume that for each k ≥ 1 the process {ξk(t), t ∈ R} is the
Ornstein–Uhlenbeck process defined as a stationary solution of the stochastic
differential equation

dξk(t) = −λkξk(t)dt + (2γk)
1/2dWk(t),

where {Wk(t), t ∈ R}∞k=1 are independent Wiener processes. In this case we
have rk(h) = (γk/λk) exp{−λk|h|}. Hence, if for each ε > 0

∑

k

exp{−ε/γk} < ∞,

then the process {ξ(t), t ∈ [a, b]} has a version in Ho
ρ([a, b]; c0), with ρ(h) =

(h| log h|)1/2). It is easy to consider some weaker conditions like for each ε > 0
∑

k

exp{−ελ1−α/γk} < ∞,

where 0 < α ≤ 1, which yields a weaker Hölder regularity of the Ornstein-
Uhlenbeck process {ξ(t), t ∈ R}.

The next theorem is a straightforward application of Theorem 1. When
B = R, it allows a comparison with classical Kolmogorov’s and Ibragimov’s
results.
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Theorem 2. Let ξ = {ξ(t), t ∈ T} be a B-valued random field, continuous
in probability. Assume there exist a function σ : [0, 1] → R+, σ(0) = 0 and a
constant p > 0 such that for all r > 0, t ∈ T, h ∈ Ct,

P
(∥∥∥∆2

hξ(t)
∥∥∥

B
> r

)
≤ σp(|h|)

rp
. (3.6)

Suppose that

R(1) :=
∞∑

j=0

2jdσp(2−j)

ρp(2−j)
< ∞.

Then ξ has a version ξ̃ in Ho
ρ(B). Moreover, there is a constant C such that

P (‖ξ̃‖ρ > u) ≤ Cu−p for each u > 0.

Proof. Applying Theorem 1 with Ψ(r) = r−p, the functional R(u) is written
here

R(u) :=
∞∑

j=0

2jdσp(2−j)

ρp(2−j)
u−p

whose finiteness does not depend on the value of u > 0. This explains why (3.6)

cannot provide a version ξ̃ in Hρ(B) for some ρ such that ξ̃ does not belong to
the corresponding Ho

ρ(B).

The tail behavior of ‖ξ̃‖ρ results clearly from the same behavior of ‖ξ‖seq
ρ

which, in turn, follows from

P (‖ξ‖seq
ρ > u) ≤ R(2u) = 2−pR(1)u−p.

Remark. If (3.6) is replaced by the stronger assumption

E
∥∥∥∆2

hξ(t)
∥∥∥

p

B
< σp(|h|), (3.7)

then a straightforward estimate of E
(
‖ξ‖seq

ρ

)p
gives E ‖ξ̃‖p

ρ < ∞.

Corollary 2. Suppose ξ satisfies (3.6) with σp(|h|) = C |h|d+δ for some pos-

itive constants C > 0, 0 < δ < p. Then ξ has a version ξ̃ in the Hölder space

Ho
ρ([0, 1]d; B), where ρ(|h|) = |h|δ/p lnβ(a/ |h|) and β > 1/p.

A comparison with Corollary 2 in the paper [6] by Ibragimov is natural here.
He obtained (in the case B = R) the existence of a version in Hρ(R) under (3.7)
with p > 1 and the integral condition

1∫

0

σ(u)

ρ(u)u1+d/p
du < ∞.

For the scale of moduli ρ(|h|) = |h|α lnβ(a/ |h|) and σp(|h|) = C |h|d+δ this
provides a version of ξ in Ho

ρ(R), where ρ(h) = hδ/p lnβ(a/h)) and β > 1.
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Example. Let {ξ(t), t ∈ R} = {ξk(t), t ∈ R}∞k=1 be a sequence of indepen-
dent symmetric p-stable stationary processes. Let, for each k ≥ 1, the process
{ξk(t), t ∈ R} has the stochastic representation

{ξk(t), t ∈ R} =
{ ∫

E

fk(t, u)Mk(du), t ∈ R
}
,

where (E, E) is a measurable space, Mk is a symmetric p-stable random measure
with σ-finite spectral measure mk. If

∞∑

k=1

∫

E

|fk(t, u)|pmk(du) < ∞,

then (ξk(t), k ≥ 1) is a.s. in `r for each r > p. Set

σp
k(t, h) =

∫

E

|fk(t + h, x) + fk(t− h, x)− 2fk(t, x)|pmk(dx)

and assume that there exists a function σ such that

sup
0≤t≤1

∞∑

k=1

σp
k(t, h) ≤ σ(h) and

∞∑

j=0

2j σ
p(2−j)

ρp(2−j)
< ∞.

Then the process {ξ(t), t ∈ [0, 1]} has a version in Ho
ρ([0, 1]; `r) for r > p.

Indeed, since {∆2
kξk(t)}∞k=1 is a stable random element in `r with exponent p

and spectral measure m =
∑∞

k=1 δekσk
, where (ek) is the coordinate basis in `r,

we have (see, e.g., Samorodnitsky and Taqqu [13])

P (||∆2
hξ(t)||`r > λ) ≤ cλp

∫

`r

||x||p`r
m(dx) = Cλp

∞∑

k=1

σp
k(h).

Hence the result follows by Theorem 1.
Recall that a Young function φ is a convex increasing function on R+ such

that φ(0) = 0 and limt→∞ φ(t) = ∞. If Z is a real valued random variable such
that Eφ(|Z| /c) < ∞ for some c > 0, then its φ-Orlicz norm is ‖Z‖φ := inf{c >

0 : Eφ(|Z| /c) ≤ 1}. When Z is B-valued, its φ-Orlicz norm is defined similarly,
replacing |Z| by ‖Z‖B. Using the definition of the Orlicz norm, the continuity
of φ and Beppo Levi’s theorem, it is easy to see that Eφ(‖Z‖B / ‖Z‖φ) ≤ 1,

from which we get P (‖Z‖B > r) ≤ {φ(r/ ‖Z‖φ)}−1.

Theorem 3. Let φ be a Young function. Assume that the B-valued random
field ξ = (ξt, t ∈ T ) is continuous in probability and satisfies the condition: for
each t ∈ T and h ∈ Ct,

||∆2
hξ(t)||φ ≤ σ(|h|). (3.8)

If for some u > 0,

∞∑

j=0

2jd

φ
(
u ρ

σ

(
2−j

)) < ∞, (3.9)
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then ξ admits a version with almost all paths in Hρ(B). If (3.9) holds for each
u > 0, then ξ has a version in Ho

ρ(B).

Proof. Under (3.8), Theorem 1 applies with Ψ(r) = 1/φ(r).
Of course, the scope of Theorem 3 covers the case of strong p-moments (p > 2)

with (3.8) replaced by (3.7). But its main practical interest is in the case of
exponential Orlicz norms as in Corollaries 3 and 4 below. Then the convergence
of series (3.9) can be checked through the following routine test.

Lemma 3. Let Ψ be of the form Ψ(r) = c exp(−brγ) for some positive con-
stants b, c, γ. Consider the series

R(u) =
∞∑

j=0

2jdΨ
(
u

ρ

σ
(2−j)

)

and put

L(j) :=
ρ(2−j)

j1/γσ(2−j)
.

(i) R(u) converges for some 0 < u0 < ∞ if and only if lim infj→∞ L(j) > 0;
(ii) R(u) converges for every 0 < u < ∞ if and only if limj→∞ L(j) = ∞.

The proof is elementary and shall be omitted. Observe that the qualitative
form of the result does not depend on d. This parameter is involved only in the
explicit determination of u0.

Corollary 3. If the B-valued random field ξ is continuous in probability
and satisfies ( 3.8) for the Young function φγ(r) = exp(rγ) − 1 (γ > 0) and
σ(|h|) = |h|α (0 < α < 1), then ξ has a version in Ho

ρ(T ; B), where ρ(h) =

|h|α ln1/γ(a/ |h|)
)
.

This improves our previous result [11, Th. 11].
The case of Gaussian random fields is of special interest.

Corollary 4. Assume that the Gaussian B-valued random field ξ = (ξt, t ∈
T ) is continuous in probability and satisfies the condition: for each t ∈ T and
h ∈ Ct,

E
∥∥∥∆2

hξ(t)
∥∥∥
2

B
≤ σ2(|h|). (3.10)

(i) If lim inf
j→∞

ρ(2−j)

j1/2σ(2−j)
> 0, then ξ admits a version in Hρ(B).

(ii) If lim
j→∞

ρ(2−j)

j1/2σ(2−j)
= ∞, then ξ has a version in Ho

ρ(B).

If for some u > 0,

∞∑

j=0

2jd exp
(
−u2 ρ2

σ2
(2−j)

)
< ∞, (3.11)
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then ξ admits a version in Hρ(B). If (3.11) holds for each u > 0, then ξ has a
version in Ho

ρ(B).

Proof. By (3.10) and the classical estimate of the tail of Gaussian random
element in the Banach space B (see, e.g., inequality (3.5) p. 59 in [8]),

P (
∥∥∥∆2

hξ(t)
∥∥∥

B
> r) ≤ 4 exp

(
− r2

8σ2(|h|)
)
,

from which the result follows.
Example. Let B be a separable Banach space and Y a centered Gaussian

random element in B with distribution µ. A B-valued Brownian motion with
parameter µ is a Gaussian process ξ indexed by [0, 1], with independent incre-

ments such that ξ(t) − ξ(s) has the same distribution as |t− s|1/2 Y . Hence
(3.10) holds with σ(h) = h1/2E 1/2 ‖Y ‖2

B (h ≥ 0). Choosing the modulus of

smoothness ρ(h) =
√

h ln(e/h), we see that

lim
j→∞

ρ(2−j)

j1/2σ(2−j)
=

1

E 1/2 ‖Y ‖2
B

> 0.

Hence by Corollary 4 (ii), the B valued Brownian motion ξ has a version in

Hρ([0, 1]; B), where ρ(h) =
√

h ln(e/h), h > 0. This result cannot be improved
because of Lévy’s theorem on the modulus of uniform continuity of the standard
Brownian motion.

Remark. One may ask what happens with Problem (I) when ρ is a general
modulus of smoothness, i.e., simply non-decreasing on [0, 1] and continuous
at 0. In this case we can always replace the inequality ‖x‖ρ ≤ b ‖x‖seq

ρ of
Proposition 2 by

‖x‖ρ ≤ 3
∞∑

j=0

1

ρ(2−j)
max
v∈Vj

‖λj,v(x)‖B =: ‖x‖`1
ρ .

This approach was adopted in the pioneering paper by Delporte [4] in the case

d = 1, B = R. Because the norm ‖x‖`1
ρ is clearly weaker than ‖x‖seq

ρ , the
price paid for this greater generality is the loss of precision in the topology. For
instance, in the situation of Corollary 2, this gives the same results as in [6].
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