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Abstract. The rate of convergence for an almost surely convergent series
of Banach space valued random elements is studied in this paper. As spe-
cial cases of the main result, known results are obtained for a sequence of
independent random elements in a Rademacher type p Banach space, and
new results are obtained for a martingale difference sequence of random ele-
ments in a martingale type p Banach space and for a p-orthogonal sequence
of random elements in a Rademacher type p Banach space. The current
work generalizes, simplifies, and unifies some of the recent results of Nam
and Rosalsky [16] and Rosalsky and Rosenblatt [23, 24].
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1. Introduction

It is a great pleasure for us to contribute to this issue of Georgian Mathe-
matical Journal in honor of Professor N. N. Vakhania on the occasion of his
70th birthday. Let {Vn, n ≥ 1} be a sequence of random elements defined on a
probability space (Ω,F , P ) and taking values in a real separable Banach space.
As usual, their partial sums are denoted by Sn =

∑n
j=1 Vj, n ≥ 1. We refer

the reader to the very detailed and careful discussion in Chapter V of Vakha-
nia, Tarieladze, and Chobanyan [27] concerning the conditions under which Sn

converges almost surely (a.s.) to a random element. If Sn converges a.s. to a
random element S, then (set S0 = 0)

Tn ≡ S − Sn−1 =
∞∑

j=n

Vj, n ≥ 1,
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is a well-defined sequence of random elements (referred to as the tail series)
with

Tn → 0 a.s. (1.1)

In this paper, we shall be concerned with the rate of convergence of Sn to S
or, equivalently, that of the tail series Tn to 0. More specifically, recalling that
(1.1) is equivalent to

sup
k≥n

‖Tk‖ P→ 0,

we will provide the conditions in Theorem 1 and in its four corollaries for each
of

sup
k≥n

‖Tk‖ = OP (bn)

and

supk≥n ‖Tk‖
bn

P→ 0 (1.2)

to hold, where {bn, n ≥ 1} is a sequence of positive constants. These results are,
of course, of greatest interest when bn = o(1). Nam and Rosalsky [16] provided
an example showing inter alia that a.s. convergence to 0 does not necessarily
hold for the expression in (1.2). Moreover, Nam, Rosalsky, and Volodin [19]
showed that the limit law (1.2) and the tail series weak law of large numbers

Tn

bn

P→ 0 (1.3)

are equivalent when the summands {Vn, n ≥ 1} are independent and bn ↓ 0. An
example of Nam and Rosalsky [18] reveals that (1.3) does not necessarily imply
(1.2) if the monotonicity proviso on {bn, n ≥ 1} is dispensed with.

Theorem 1 is a very general result and we will see that some previously ob-
tained results as well as some new results are its immediate corollaries. In
Theorem 1, a condition is imposed in general on the joint distributions of ran-
dom elements {Vn, n ≥ 1}, but no conditions are imposed on the geometry of
the underlying Banach space. However, in Corollary 1, {Vn, n ≥ 1} is a se-
quence of independent random elements with mean (or Pettis integral) 0 in a
Rademacher type p Banach space, in Corollary 2, {Vn, n ≥ 1} is a martingale
difference sequence in a martingale type p Banach space, and in Corollary 3,
{Vn, n ≥ 1} is a p-orthogonal sequence of random elements in a Rademacher
type p Banach space. In Corollaries 1, 2, and 3, the moment condition on ‖Vn‖
and the limiting behavior of bn are directly connected to the geometric condi-
tion imposed on the Banach space. Nevertheless, in Corollary 4, no conditions
are imposed on the joint distributions of random elements or on the geometry
of the underlying Banach space.

The limit law (1.2) for the tail series was apparently first investigated by
Nam and Rosalsky [16] wherein a special case of Corollary 1(ii) was obtained
for the (real-valued) random variable case. The Nam and Rosalsky [16] result
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was generalized by Rosalsky and Rosenblatt [23] to a Banach space setting
and the argument was substantially simplified. More specifically, Rosalsky and
Rosenblatt [23] established Corollary 1. Furthermore, one of the main results
of Rosalsky and Rosenblatt [24] is a special case of Corollary 2; Rosalsky and
Rosenblatt [24] in their Corollary 1 established our Corollary 2 when {Vn, n ≥ 1}
is a martingale difference sequence of random variables. Corollary 3 appears to
be an entirely new result and it concerns a p-orthogonal sequence of random
elements in a Rademacher type p Banach space. Corollary 4 contains both
known and new results and these will be discussed in more detail below. The
current work generalizes, simplifies, and unifies some of these recent results of
Nam and Rosalsky [16] and Rosalsky and Rosenblatt [23,24].

There has been substantial literature on the limiting behavior of tail series
following the ground breaking work of Chow and Teicher [3] wherein a tail series
law of the iterated logarithm (LIL) was obtained. Barbour [1] then established a
tail series analogue of the Lindeberg-Feller version of the central limit theorem.
Numerous other investigations on the tail series LIL problem have followed; see
Heyde [8], Wellner [28], Kesten [10], Budianu [2], Chow, Teicher, Wei, and Yu
[5], Klesov [11], Rosalsky [22], and Mikosch [14] for such work. Klesov [11,12],
Mikosch [14], and Nam and Rosalsky [17] studied the tail series strong law of
large numbers problem. The only work that the authors are aware of on the
limiting behavior of tail series with Banach space valued summands is that of
Dianliang [6,7] on the tail series LIL and that of Rosalsky and Rosenblatt [23]
and Nam, Rosalsky, and Volodin [19] on the limit law (1.2).

Throughout this paper, {Vn, n ≥ 1} is a sequence of random elements taking
values in a real separable Banach space (X , ‖ · ‖) and b = {bn, n ≥ 1} is a
sequence of positive constants.

Let us introduce the following class of functions. We will say that a function
f : R+ → R+ belongs to the class I(b) if:

(i) f is continuous and nondecreasing,
(ii) f is semiadditive, that is, there exists a constant C < ∞ such that

f(s + t) ≤ C(f(s) + f(t)) for all s, t ∈ R+,
(iii) there exists a sequence of positive constants {bf

n, n ≥ 1} (depending only
on f and b ) such that

Bf (ε) ≡ sup
n≥1

bf
n

f(εbn)
< ∞ for all ε > 0.

For example, for any sequence b = {bn, n ≥ 1} of positive constants, the
function f(t) = tp, t ≥ 0 where p ≥ 0 is in I(b) with C = 2p, bf

n = bp
n, n ≥ 1, and

Bf (ε) = ε−p, ε > 0.
Let us recall a few well-known definitions. The Banach space (X , ‖ · ‖) is said

to be of Rademacher type p (1 ≤ p ≤ 2) if there exists a constant C < ∞ such
that

E

∥∥∥∥
n∑

j=1

Vj

∥∥∥∥
p

≤ C
n∑

j=1

E‖Vj‖p
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for all independent X -valued random elements V1, · · · , Vn with mean 0. We
refer the reader to Pisier [21] and Woyczyński [31] for a detailed discussion of
this notion.

The Banach space (X , ‖ · ‖) is said to be of martingale type p (1 ≤ p ≤ 2) if
there exists a constant C < ∞ such that for all martingales {Sn, n ≥ 1} with
values in X

sup
n≥1

E‖Sn‖p ≤ C
∞∑

n=1

E‖Sn − Sn−1‖p

where S0 ≡ 0. It can be shown using the classical methods from martingale
theory that if X is of martingale type p, then there exists a constant C < ∞
such that

E
{

max
n≤k≤m

‖Sk − Sn−1‖p
}
≤ C

m∑

j=n

E‖Vj‖p (1.4)

for all X -valued martingales {Sn =
∑n

j=1 Vj, n ≥ 1} and all m ≥ n ≥ 1. A
detailed discussion concerning martingale type p Banach spaces can be found
in Pisier [20,21], Woyczyński [29,30], and Schwartz [25].

Of course, every real separable Banach space is of both Rademacher and
martingale type 1.

A sequence of random elements {Vn, n ≥ 1} is said to be p-orthogonal (1 ≤
p < ∞) if E‖Vn‖p < ∞ for all n ≥ 1 and

E

∥∥∥∥
n∑

j=1

aπ(j)Vπ(j)

∥∥∥∥
p

≤ E

∥∥∥∥
m∑

j=1

aπ(j)Vπ(j)

∥∥∥∥
p

for all sequences of constants {an, n ≥ 1}, for all choices of m > n ≥ 1, and for
all permutations π of the integers {1, · · · ,m}. We refer to Howell and Taylor
[9] and Móricz, Su, and Taylor [15] for details.

Theorem 1 will be established in Section 2 and its Corollaries in Section 3.
Throughout, the symbol C denotes a generic constant (0 < C < ∞) which is
not necessarily the same one in each appearance.

2. The Main Result

The main result, Theorem 1, may now be established.

Theorem 1. Let {Vn, n ≥ 1} be a sequence of random elements in a real
separable Banach space and suppose that there exists a continuous nondecreasing
function f : R+ → R+ with

lim
m→∞E

{
max

n≤k≤m
f

(∥∥∥∥
k∑

j=n

Vj

∥∥∥∥
)}

= o(1) as n →∞. (2.1)

Then the series
∑∞

n=1 Vn converges a.s. and the tail series {Tn =
∑∞

j=n Vj, n ≥
1} is a well-defined sequence of random elements. Moreover:
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(i) If there exists a function f ∈ I(b) such that

lim
m→∞E

{
max

n≤k≤m
f

(∥∥∥∥
k∑

j=n

Vj

∥∥∥∥
)}

= O(bf
n) as n →∞ and lim

ε→∞Bf (ε) = 0,

then the tail series satisfies the relation

sup
k≥n

‖Tk‖ = OP (bn).

(ii) If there exists a function f ∈ I(b) such that

lim
m→∞E

{
max

n≤k≤m
f

(∥∥∥∥
k∑

j=n

Vj

∥∥∥∥
)}

= o(bf
n) as n →∞, (2.2)

then the tail series obeys the limit law

supk≥n ‖Tk‖
bn

P→ 0.

Proof. For arbitrary ε > 0 and n ≥ 1

P

{
sup
m>n

∥∥∥∥
m∑

j=1

Vj −
n∑

j=1

Vj

∥∥∥∥ > ε

}

≤ 1

f(ε)
E

{
f

(
sup
m>n

∥∥∥∥
m∑

j=1

Vj −
n∑

j=1

Vj

∥∥∥∥
)}

(by monotonicity of f and the Markov inequality)

=
1

f(ε)
E

{
sup
m>n

f
(∥∥∥∥

m∑

j=n+1

Vj

∥∥∥∥
)}

(since f is continuous and nondecreasing)

=
1

f(ε)
lim

m→∞E

{
max

n+1≤k≤m
f

(∥∥∥∥
k∑

j=n+1

Vj

∥∥∥∥
)}

(by the Lebesgue monotone convergence theorem)

= o(1) (by (2.1)).

Then by Corollary 3.3.4 of Chow and Teicher [4, p. 68] (modified to a Banach
space setting),

∑∞
n=1 Vn converges a.s. Thus, the tail series {Tn =

∑∞
j=n Vj, n ≥

1} is a well-defined sequence of random elements.
Next, for arbitrary ε > 0

P

{
supk≥n ‖Tk‖

bn

> ε

}
≤ 1

f(εbn)
E

{
f

(
sup
k≥n

‖Tk‖
)}

(by monotonicity of f and the Markov inequality)

=
1

f(εbn)
E

{
sup
k≥n

f(‖Tk‖)
}

(since f is continuous and nondecreasing)
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=
1

f(εbn)
lim

N→∞
E

{
max

n≤k≤N
f

(∥∥∥∥ lim
m→∞

m∑

j=k

Vj

∥∥∥∥
)}

(by the Lebesgue monotone convergence theorem)

=
1

f(εbn)
lim

N→∞
E

{
max

n≤k≤N
lim

m→∞ f
(∥∥∥∥

m∑

j=k

Vj

∥∥∥∥
)}

(since f is continuous)

=
1

f(εbn)
lim

N→∞
E

{
lim

m→∞ max
n≤k≤N

f
(∥∥∥∥

m∑

j=k

Vj

∥∥∥∥
)}

≤ 1

f(εbn)
lim

N→∞
lim inf
m→∞ E

{
max

n≤k≤N
f

(∥∥∥∥
m∑

j=k

Vj

∥∥∥∥
)}

(by Fatou’s lemma)

≤ 1

f(εbn)
lim inf
m→∞ E

{
max

n≤k≤m
f

(∥∥∥∥
m∑

j=k

Vj

∥∥∥∥
)}

≤ 1

f(εbn)
lim inf
m→∞ E

{
max

n+1≤k≤m
f

(∥∥∥∥
m∑

j=n

Vj

∣∣∣∣
∣∣∣∣ +

∣∣∣∣
∣∣∣∣

k−1∑

j=n

Vj

∥∥∥∥
)}

(since f is nondecreasing)

≤ C

f(εbn)
lim inf
m→∞ E

{
max

n≤k≤m−1
f

(∥∥∥∥
k∑

j=n

Vj

∥∥∥∥
)

+ f
(∥∥∥∥

m∑

j=n

Vj

∥∥∥∥
)}

(since f is semiadditive)

≤ C

f(εbn)
lim

m→∞E

{
2 max

n≤k≤m
f

(∥∥∥∥
k∑

j=n

Vj

∥∥∥∥
)}

=
2C

f(εbn)
lim

m→∞E

{
max

n≤k≤m
f

(∥∥∥∥
k∑

j=n

Vj

∥∥∥∥
)}

≤ 2CBf (ε)
limm→∞ E

{
maxn≤k≤m f

(∥∥∥ ∑k
j=n Vj

∥∥∥
)}

bf
n

.

Parts (i) and (ii) now follow easily.

3. Applications

We now examine four special cases of Theorem 1 and these will be presented
as Corollaries. To prove Corollary 1, the following lemma is used and it follows
immediately from Proposition 1.1 of Kwapień and Woyczyński [13, p. 15] and
the relation EX =

∫∞
0 P{X > t}dt where X is a nonnegative random variable.
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Lemma 1. Let {Vn, n ≥ 1} be a sequence of independent random elements.
Then for every continuous strictly increasing function f : R+→R with f(0)=0,

E

{
max

n≤k≤m
f

(∥∥∥∥
k∑

j=n

Vj

∥∥∥∥
)}

≤ 3 max
n≤k≤m

E

{
f

(
3
∥∥∥∥

k∑

j=n

Vj

∥∥∥∥
)}

, m ≥ n ≥ 1.

Corollary 1(ii) is Theorem 4.2 of Rosalsky and Rosenblatt [23] and Corollary
1(i) is stated in Remark (ii) after the proof of Theorem 4.2 of Rosalsky and
Rosenblatt [23].

Corollary 1 (Rosalsky and Rosenblatt [23]). Let {Vn, n ≥ 1} be a se-
quence of independent mean 0 random elements taking values in a real separable,
Rademacher type p (1 ≤ p ≤ 2) Banach space X .

(i) If

∞∑

j=n

E‖Vj‖p = O(bp
n), (3.1)

then the series
∑∞

n=1 Vn converges a.s. and the tail series satisfies the relation

sup
k≥n

‖Tk‖ = OP (bn).

(ii) If

∞∑

j=n

E‖Vj‖p = o(bp
n), (3.2)

then the tail series obeys the limit law

supk≥n ‖Tk‖
bn

P→ 0. (3.3)

Proof. In Theorem 1 take f(t) = tp, t ≥ 0. Then f ∈ I(b) with bf
n = bp

n, n ≥ 1
and Bf (ε) = ε−p, ε > 0. Now by Lemma 1 and since X is of Rademacher type
p, we have that

lim
m→∞E

{
max

n≤k≤m

∥∥∥∥
k∑

j=n

Vj

∥∥∥∥
p
}
≤ C

∞∑

j=n

E‖Vj‖p = o(1) as n →∞

under either (3.1) or (3.2). The Corollary follows immediately from Theorem
1.

Remark. Example 5.3 of Rosalsky and Rosenblatt [23] reveals that both
parts of Corollary 1 can fail if the Rademacher type p hypothesis is weakened
to Rademacher type q where 1 ≤ q < p ≤ 2.

The next Corollary was obtained by Rosalsky and Rosenblatt [24] in the
random variable case.
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Corollary 2. Let {Sn =
∑n

j=1 Vj, n ≥ 1} be a martingale taking values in a
real separable, martingale type p (1 ≤ p ≤ 2) Banach space X .

(i) If

∞∑

j=n

E‖Vj‖p = O(bp
n),

then the series
∑∞

n=1 Vn converges a.s. and the tail series satisfies the relation

sup
k≥n

‖Tk‖ = OP (bn).

(ii) If

∞∑

j=n

E‖Vj‖p = o(bp
n), (3.4)

then the tail series obeys the limit law

supk≥n ‖Tk‖
bn

P→ 0.

Proof. By the hypothesis that X is of martingale type p, we have in view of
(1.4) that for all m ≥ n ≥ 1

E

{
max

n≤k≤m

∥∥∥∥
k∑

j=n

Vj

∥∥∥∥
p
}

≤ C
m∑

j=n

E‖Vj‖p.

The rest of the argument follows as in Corollary 1.
Remark. Rosalsky and Rosenblatt [23] provided an example of a sequence

{Vn, n ≥ 1} of independent mean 0 square integrable random variables such
that setting bn = Mn/2

n, n ≥ 1, where {Mn, n ≥ 1} is a sequence of positive
constants:

(a) If Mn → ∞ (no matter how slowly), then (3.2) (with p = 2) and (3.3)
hold.

(b) If lim infn→∞ Mn < ∞, then (3.2) (with p = 2) and (3.3) fail.
This example thus illustrates the sharpness of Theorem 1(ii) and Corollaries

1(ii) and 2(ii) and it also shows that these results can fail if o is replaced by O
in (2.2), (3.2), and (3.4), respectively.

The following two results, which are used in the proof of Corollary 3, appear
in the literature and are stated for the convenience of the reader.

Lemma 2 (Howell and Taylor [9]). If the Banach space (X , ‖ · ‖) is of
Rademacher type p (1 ≤ p ≤ 2), then there exists a constant C < ∞ such that

E

∥∥∥∥
n∑

j=1

Vj

∥∥∥∥
p

≤ C
n∑

j=1

E‖Vj‖p, n ≥ 1,

for all p-orthogonal sequences {Vn, n ≥ 1} of X -valued random elements.



ON CONVERGENCE OF SERIES OF RANDOM ELEMENTS 385

Lemma 3 (Móricz, Su, and Taylor [15]). Let {Vn, n ≥ 1} be a p-ortho-
gonal (1 ≤ p < ∞) sequence of random elements and suppose that there exists
a sequence of nonnegative numbers {un, n ≥ 1} such that

E

∥∥∥∥
m∑

j=n

Vj

∥∥∥∥
p

≤
m∑

j=n

uj

for all m ≥ n ≥ 1. Then

E

{
max

n≤k≤m

∥∥∥∥
k∑

j=n

Vj

∥∥∥∥
p
}
≤ (Log(2n))p

m∑

j=n

uj, m ≥ n ≥ 1,

where Log denotes the logarithm to the base 2.

The next Corollary appears to be entirely new.

Corollary 3. Let {Vn, n ≥ 1} be a p-orthogonal sequence of random elements
taking values in a real separable, Rademacher type p (1 ≤ p ≤ 2) Banach space.

(i) If bn = o(1) and

∞∑

j=n

E‖Vj‖p = O((bn/ log n)p),

then the series
∑∞

n=1 Vn converges a.s. and the tail series satisfies the relation

sup
k≥n

‖Tk‖ = OP (bn).

(ii) If bn = O(1) and

∞∑

j=n

E‖Vj‖p = o((bn/ log n)p),

then the series
∑∞

n=1 Vn converges a.s. and the tail series obeys the limit law

supk≥n ‖Tk‖
bn

P→ 0.

Proof. By Lemmas 2 and 3, we have

E

{
max

n≤k≤m

∥∥∥∥
k∑

j=n

Vj

∥∥∥∥
p
}
≤ C (Log (2n))p

m∑

j=n

E‖Vj‖p (3.5)

for all m ≥ n ≥ 1 and the argument proceeds as in Corollary 1, mutatis mutan-
dis.

Remark. Inequality (3.5) is a generalization of the famous Menchoff maximal
inequality for sums of orthogonal random variables (see, e.g., Stout [26, p. 18]).

The last Corollary has no assumptions concerning the joint distributions of
random elements and imposes no geometric condition on the Banach space
as in Corollaries 1, 2, and 3. Corollary 4(ii) was obtained by Rosalsky and
Rosenblatt [23] but Corollary 4(i) is new (although it was obtained by Rosalsky
and Rosenblatt [24] in the random variable case). It appears to us that Corollary
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4(i) cannot be obtained by using the approach taken by Rosalsky and Rosenblatt
[23].

Corollary 4. Let {Vn, n ≥ 1} be a sequence of random elements in a real
separable Banach space and let 0 < p ≤ 1.

(i) If
∞∑

j=n

E‖Vj‖p = O(bp
n),

then the series
∑∞

n=1 Vn converges a.s. and the tail series satisfies the relation

sup
k≥n

‖Tk‖ = OP (bn).

(ii) If
∞∑

j=n

E‖Vj‖p = o(bp
n),

then the tail series obeys the limit law

supk≥n ‖Tk‖
bn

P→ 0.

Proof. Since 0 < p ≤ 1, we have

E

{
max

n≤k≤m

∥∥∥∥
k∑

j=n

Vj

∥∥∥∥
p
}
≤ E

{ m∑

j=n

‖Vj‖p
}

=
m∑

j=n

E‖Vj‖p

for all m ≥ n ≥ 1. The rest of the argument follows as in Corollary 1.
Remark. The proofs of Theorem 1(ii) and part (ii) of all the Corollaries show

that the hypotheses indeed entail the limit law

supk≥n ‖Tk‖
bn

Lp→ 0.
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472, 229–275, Springer-Verlag, Berlin, 1975.
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