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ON STOCHASTIC DIFFERENTIAL EQUATIONS IN A
CONFIGURATION SPACE


A. SKOROKHOD


Abstract. Infinite systems of stochastic differential equations for randomly
perturbed particle systems with pairwise interaction are considered. It is
proved that under some reasonable assumption on the potential function
there exists a local weak solution to the system and it is weakly locally
unique for a wide class of initial conditions.
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1. Introduction


We consider a sequence of Rd-valued stochastic processes


xk(t), k = 1, 2, . . . ,


satisfying the system of stochastic differential equations of the form


dxk(t) =
∑


i6=k


a(xk(t)− xi(t))dt + σdwk(t), k = 1, 2, . . . , (1)


where a(x) = −Ux(x), and U : Rd → R is a smooth function for |x| > 0, and
σ > 0 is a constant, wk(t), k = 1, 2, . . . , is a sequence of independent Wiener
processes in Rd. System (1) describes the evolution of systems of pairwise
interacting particles with the pairwise potential U(x) which is perturbed by
Wiener noises. The problem is to find conditions under which the system has
a solution and this solution is unique.


Unperturbed systems were considered by many authors. We notice the recent
articles of S. Albeverio, Yu. G. Kondratiev, and M. Röckner [1], [2] where a
new powerful method for the investigation of unperturbed systems is proposed.
Finite-dimensional perturbed systems were considered in my book [3] and my
article [4]. The first general theorem on the existence and uniqueness of the
solutions to infinite dimensional stochastic differential equations were obtained
by Yu. L. Daletskii in [5]; he considered equations with smooth coefficients in
a Hilbert space. The existence and uniqueness of the solution to system (1) for
locally bounded smooth potentials and d ≤ 2 was proved by J. Fritz in [6]. The
main result of this article was published in [7] without a complete proof.
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2. The Space Γ


It is convenient to consider system (1) in the configuration space Γ which is
the set of locally finite counting measures γ on the Borel σ-algebra B(Rd) of
the space Rd. So a measure γ ∈ Γ satisfies the condition: the support Sγ of the
measure γ is a sequence of different points {xk, k ∈ N} of Rd for which


|xk| → ∞, γ(A) =
∑


k


1A(xk).


The topology in Γ is generated by the weak convergence of measures: γn → γ0


if ∫
φ(x)γn(dx) →


∫
φ(x)γ0(dx)


for φ ∈ Cf where Cf is the set of continuous functions φ : Rd → R with bounded
supports.


We use the notation


〈φ, γ〉 =
∫


φ(x)γ(dx), φ ∈ Cf ,


and


〈Φ, γ × γ〉 =
∫


Φ(x, x′)γ(dx)γ(dx′)−
∫


Φ(x, x)γ(dx),


where Φ : (Rd)2 → R is a continuous function with a bounded support.
We rewrite system (1) for Γ-valued function γt for which


〈φ, γ〉 =
∑


k


φ(xk(t)), φ ∈ Cf .


Using the Itô’s formula, and considering the function a as a function of two
variables a(x− x′), we obtain the relation


d〈φ, γt〉 = 〈(φ′, a), γt × γt〉dt +
σ2


2
〈∆φ, γt〉


+
∑


k


σ(φ′(xk(t)), dwk(t)), φ ∈ C(2)
f , (2)


where ∆φ(x) = Trφ′′(x), and C(2)
f is the set of φ ∈ Cf for which φ′(x) and φ′′(x)


are continuous bounded functions.
A weak solution to equation (1). A Γ-valued stochastic process γt(ω) is


called a weak solution to system (2) if, for all φ ∈ C(2)
f , the stochastic process


µφ(ω, t) = 〈φ, γt〉 −
t∫


0


[〈(φ′, a), γs × γs〉+
σ2


2
〈∆φ, γs〉]ds (3)


is a martingale with respect to the filtration (Ft)t≥0, where Ft = σ(γs, s ≤ t),
and the square characteristic of the martingale is


〈µφ, µφ〉t = σ2


t∫


0


〈(φ′, φ′), γs〉ds. (4)







ON SDES IN A CONFIGURATION SPACE 391


If γt(ω) is a weak solution to system (2) and


〈φ, γt(ω)〉 =
∑


φ(xk(t))


for all φ ∈ Cf , then the sequence {xk(t), k ∈ N} is a weak solution to system
(1).


Weak uniqueness. Let γ0 ∈ Γ. System (2) has a unique weak solution with
the initial value γ0 if for any pair of weak solutions to system (2) γ1


t (ω) and
γ2


t (ω) satisfying the condition γ1
0 = γ2


0 = γ0, the following relations are fulfilled:


EΦ(ξ1
11, . . . , ξ


1
1m, . . . , ξ1


l1, . . . , ξ
1
lm) = EΦ(ξ2


11, . . . , ξ
2
1m, . . . , ξ2


l1, . . . , ξ
2
lm), (5)


where Φ(y11, . . . , ylm) is a continuous bounded function on Rlm and,


ξk
ij = 〈φi, γ


k
tj
(ω)〉, k = 1, 2, i = 1, . . . , l, j = 1, . . . , m,


φ ∈ Cf , t1, . . . , tm ∈ R+.


This means that the distribution of the stochastic process γk
t does not depend


on k, i.e., the distribution of the weak solution to system (2) is unique if it
exists.


Local weak solutions. Let γt(ω) be a continuous Γ-valued stochastic pro-
cess, and (Ft)t≥0 be the filtration generated by it. γt(ω). is called a local weak
solution to system (2) if there exists a stopping time τ with respect to the
filtration (Ft)t≥0 for which P{τ > 0} = 1 and the stochastic process µφ(ω, t)
which is determined by relation (3) is a martingale for t < τ with the square
characteristic given by equality (4).


Local weak uniqueness. Let γ0 ∈ Γ. System (2) has a locally unique
weak solution with the initial value γ0 if, for any pair of locally weak solutions
to system (2) γ1


t and γ2
t satisfying the condition γ1


0 = γ2
0 = γ0, relation (5) is


fulfilled for


ξk
ij = 〈φi, γ


k
tj
(ω)〉I{tj<τk} ,


where τ k, k = 1, 2, are stopping times with respect to the filtration (Fk
t )t≥0


generated by the stochastic process γk
t (ω).


Compacts in Γ. For any γ ∈ Γ and a continuous decreasing function λ(t) :
(0,∞) → R+ for which λ(0+) = +∞, λ(+∞) > 0 there exists a continuous
decreasing function Φ(t) : [0,∞) → R+ with Φ(+∞) = 0 such that


∫∫
Φ(|x|)Φ(|x′|)λ(|x− x′|)1{x 6=x′}γ(dx)γ(dx′) < ∞. (6)


Denote


Φλ(x, x′) = Φ(|x|)Φ(|x′|)λ(|x− x′|). (7)


For any compact set K from Γ and any fanction λ satisfying the conditions
mentioned before there exists a function of the form given by relation (7) for
which


sup
γ∈K


〈Φλ, γ × γ〉 < ∞.
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Note that the set
{γ : 〈Φλ, γ × γ〉 ≤ c}


is a compact in Γ for any Φλ of form (7) and c > 0. Denote by ΓΦ,λ the set of
those γ ∈ Γ for which relation (6) is fulfilled. Set


dΦ,λ(γ1, γ2) = sup{|〈φΦ, γ1〉−〈φΦ, γ2〉 : φ ∈ Lip1|}+|〈Φλ, γ1×γ1〉−〈Φλ, γ2×γ2〉|,
where


Lip1 =


{
φ ∈ Cf : sup


x
|φ(x)| ≤ 1, sup


x,x′


|φ(x)− φ(x′)|
|x− x′| ≤ 1


}
.


ΓΦ,λ with the distance dΦ,λ is a separable locally compact space.


3. An Extension of Girsanov’s Formula


Assume that the potential function U(x) satisfies the condition
(PC) U(x) = u(|x|) where the function u : (0,∞) → R is continuous, it has


continuous derivatives u′, u′′, there exists a constant r > 0 for which u(t) = 0
for t > r, and ∫


td−1|u(t)|dt < ∞.


Free particle processes. Let a measure γ0 satisfy the condition (IC)


〈φδ, γ0〉 < ∞, φδ(x) = exp {−δ|x|2}.
Introduce Γ-valued stochastic processes by the relation


〈φ, γ∗t (γ0, ω)〉 =
∑


k


φ(x0
k + σwk(t)),


where ∑


k


φ(x0
k) = 〈φ, γ0〉.


It is easy to check that γ∗t (γ0, ω) is a continuous Γ-valued stochastic process if
γ0 ∈ Γ0, where Γ0 is the set of finite measures from Γ. There exist functions
Φ, λ for which P{γ∗t (γ0, ω) ∈ ΓΦ,λ} = 1 for all t > 0. The stochastic process
γ∗t (γ0, ω) is continuous in the space ΓΦ,λ, and for any t0 > 0 the function


EF (γ∗(γ0, ω))


is a continuous function in γ0 ∈ ΓΦ,λ if F is a bounded continuous function
on C[0,t0](ΓΦ,λ) which is the space of continuous ΓΦ,λ-valued functions on the
interval [0, t0].


Girsanov’s formula for finite systems. Let γn
0 be a sequence of finite


measures from Γ satisfying the condition:


γn
0 → γ0, γ


n
0 ≤ γn+1


0 .


It was proved in [4] that under the condition (PC), for any n, there exists a
unique strong solution to system (2) with the initial value γn


0 . Denote it by
γt(γ


n
0 , ω).
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Lemma 1. Set a(x, x′) = a(x− x′),


Gn
1 (t) = σ−1


∑


xi∈Sγn
0


t∫


0


(〈a(xi + σwi(s), .), γ
∗
s (γ


n
0 , ω)〉, dwi(s)),


Gn
2 (t) = σ−2


t∫


0


∫
|〈a(x, .), γ∗s (γ


n
0 , ω)〉|2γ∗s (γn


0 , ω, dx)ds,


ρn(t) = exp
{
Gn


1 (t)− 1
2
Gn


2 (t)
}
.


Then


EΦ(〈φ1, γt1(γ
n
0 , ω)〉, . . . , 〈φk, γtk(γ


n
0 , ω〉)


= Eρn(t)Φ(〈φ1, γ
∗
t1
(γn


0 , ω)〉, . . . , 〈φk, γ
∗
tk


(γn
0 , ω)〉)


for all k = 1, 2, . . . , bounded continuous functions Φ : Rk → R and φ1, . . . , φk ∈
Cf , t1, . . . , tk ∈ [0, t].


The proof of the lemma can be obtained using the approximation of the
function a(x, x′) by smooth functions since for smooth a(x, x′) the proof is a
consequence of Girsanov’s formula [8].


Introduce the stochastic processes


wc
k(t) =


t∫


0


1{|xk+wk(s)|≤c}dwk(s), xk ∈ Sγn
0
,


where c > 0 is a constant. Let Fn,c
t be the σ -algebra generated by


{wc
k(s), s ≤ t, xk ∈ Sγn


0
}.


Lemma 2.
E(ρn/Fn,c


t ) = ρn(c, t),


where
ρn(c, t) = exp


{
Gn


1 (c, t)− 1
2
Gn


2 (c, t)
}
,


and


Gn
1 (c, t) = σ−1


∑


xi∈Sγn
0


t∫


0


(E(〈a(xi + σwi(s), .), γ
∗
s (γ


n
0 , ω)〉/Fn,c


s ), dwc
i (s)),


Gn
2 (c, t) = σ−2


t∫


0


∫
|E(〈a(x, .), γ∗s (γ


n
0 , ω)〉/Fn,c


s )|21{|x|≤c}γ
∗
s (γ


n
0 , ω, dx)ds.


The proof rests on the statement below.
Statement. Let Ft, t ∈ R+ be a continuous filtration, and its subfiltration


F∗
t , t ∈ R+, satisfy the condition
(RE)E(ξ/Ft) is a F∗


t -measurable random variable if ξ is a bounded F∗
∞-


measurable random variable.
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Let µt be an Ft -martingale with the square characteristic 〈µ〉t for which the
stochastic process


ρ(t) = exp
{
µt − 1


2
〈µ〉t


}


is a martingale. Then


E(ρ(t)/F∗
t ) = exp


{
µ∗t − 1


2
〈µ∗〉t


}
,


where µ∗t = E(µt/F∗
t ) is a martingale, and 〈µ∗〉t is its square characteristic.


Proof. Set µ̃t = µt − µ∗t . Condition (RE) implies the relation


E


( t∫


0


g(s)dµ̃s/F∗
∞


)
= 0


for all Ft-adapted functions g(t) for which


E


∣∣∣∣∣


t∫


0


g(s)dµ̃s


∣∣∣∣∣ < ∞.


Set
ρ∗(t) = exp


{
µ∗t − 1


2
〈µ∗〉t


}
, ρ̃(t) = exp


{
µ̃t − 1


2
〈µ̃〉t


}
,


where 〈µ̃〉t is the square characteristic of the martingale µ̃t. The proof follows
from the relations ρ(t) = ρ∗(t)ρ̃(t) and


E(ρ̃(t)− 1/F∗
∞) = E


( t∫


0


ρ̃(s)dµ̃(s)/F∗
∞


)
= 0.


Remark 1. Assume that φi(x) = 0 for |x| ≥ c, i = 1, 2, . . . , k, φ1, . . . , φk ∈
Cf , t1, . . . , tk ∈ [0, t]. Then for Φ satisfying the conditions of Lemma 1 we have
the relation


EΦ(〈φ1, γt1(γ
n
0 , ω)〉, . . . , 〈φk, γtk(γ


n
0 , ω)〉)


= Eρn(c, t)Φ(〈φ1, γ
∗
t1
(γn


0 , ω)〉, . . . , 〈φk, γ
∗
tk


(γn
0 , ω)〉).


Remark 2. Denote by F c
t the σ-algebra generated by {wc


k(s), s ≤ t, xk ∈ Sγ0}.
Then there exist the limits in probability


lim
n→∞Gn


1 (c, t) = G1(c, t), lim
n→∞Gn


2 (c, t) = G2(c, t),


lim
n→∞ ρn(t) = ρ(c, t) = exp


{
G1(c, t)− 1


2
G2(c, t)


}
,


where


G1(c, t) = σ−1
∑


xi∈Sγ0


t∫


0


(E(〈a(xi + σwi(s), .), γ
∗
s (γ0, ω)〉/F c


s ), dwc
i (s))),


G2(c, t) = σ−2


t∫


0


∫
|E(〈a(x, .), γ∗s (γ0, ω)〉/F c


s )|21{|x|≤c}γ
∗
s (γ0, ω, dx)ds.
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Let w(t) be a standard Wiener process . Introduce the functions


Qc(s, x, B) = P{x + σw(s) ∈ B, inf
u≤s


|x + σw(u)| > c},
x ∈ Vc, B ∈ B(Vc), Vc = {x ∈ Rd : |x| > c},


Q∗
c(s, x, B) = lim


λ↓1
Qc(s, x, B)


Qc(s, λx, Vc)
, |x| = c, B ∈ B(Vc).


Set


θi(c, s) = inf ∆i(c, s), ζi(c, s) = sup ∆i(c, s),


where


∆i(c, s) = {u ≤ s : |x∗i (u)| ≤ c}, x∗i (u) = xi + wi(u).


Then the following statement holds.


Lemma 3.


E(a(x, x∗i (s))1{|x∗i (s)|≤c}/F c
s ) = a(x, x∗i (s))1{|x∗i (s)|≤c}


+1{θi(c,s)<∞}
∫


a(x, z)Q∗
c(s− ζi(c, s), x


∗
i (ζi(c, s)), dz)


+1{θi(c,s)=+∞}
∫


a(x, z)Qc(s, xi, dz).


Corollary 1. Introduce the measures


νs(A) =
∑


k


1{xk∈A}1{θk(c,s)=+∞}, A ∈ B(Vc),


ν∗s (Λ, A) =
∑


k


1{ζk(c,s)∈Λ}1{xk(ζk(c,s))∈A},


Λ ∈ B([0, s]), A ∈ B(V ′
c ), V ′


c = {x ∈ Rd : |x| = c}.
Then


E(〈a(x, ·), γ∗s (γ0, ω)〉/F c
s ) = ac(s, x, ω) +


∫
a(x, x′)1{|x′|≤c}γ


∗
s (γ0, ω, dx′),


where


ac(s, x, ω) =
∫∫


a(x, z)Qc(s, x
′, dz)νs(dx′)


+
∫ ∫ ∫


a(x, z)Q∗
c(s− u, x′, dz)ν∗s (du, dx′).


Corollary 2. The functions Gk(c, t), k = 1, 2, can be represented in the
form


G1(c, t) = σ−1


t∫


0


∑


i


(ac(s, x
∗
i (s), ω), dwc


i (s)),


and


G2(c, t) = σ−2


t∫


0


H(c, s)ds,
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where


Hc(s) =
∑


i


∣∣∣∣
∑


j 6=i


a(x∗i (s), x
∗
j(s))1{|x∗j (s)|≤c} + ac(s, x


∗
i (s), ω)


∣∣∣∣
2


1{|x∗i (s)|≤c}.


Remark 3. Denote by (F c
t (i)) the filtration generated by the stochastic pro-


cess wc
i (t), and by (F c


t (i, j)) the filtration generated by the pair of stochastic
processes (wc


i (t); w
c
j(t)), i 6= j. Set


ρi(c, t) = E(ρ(c, t)/F c
t (i)), ρi,j(c, t) = E(ρ(c, t)/F c


t (i, j).


Then


ρi(c, t) = exp


{ t∫


0


(gi(c, s), dwc
i (s))−


1


2


t∫


0


|gi(c, s)|2ds


}
,


where


σgi(c, s) =
[
E(ac(s, x) +


∑


k 6=i


a(x, x∗k(s))1{|x∗k(s)|≤c})
]


{x=x∗i (s)}
,


and


ρi,j(c, t) = exp


{ t∫


0


[(gi
ij(c, s), dwc


i (s)) + (gj
ij(c, s), dwc


j(s))]


}


= exp


{
− 1


2


t∫


0


[|gi
ij(c, s)|2 + |gj


ij(c, s)|2]ds


}
,


where


σgi
ij(c, s) = a(x∗i (s), x


∗
j(s))1{|x∗i (s)|∧|x∗j (s)|≤c}


+
[
E(ac(s, x) +


∑
1{k 6=i}1{k 6=j}a(x, x∗k(s))1{|x∗k(s)|≤c})


]


{x=x∗i (s)}
.


Remark 4. Assume that τc is a stopping time with respect to the filtration
(F c


t )t≥0 satisfying the condition G2(c, τc) ≤ c1, where c1 is a constant. Then
Eρ(c, τc) = 1 and E(ρ(c, τc))


2 ≤ exp {c1}.
Introduce the stochastic processes


w∗
i (c, t) = wi(t)− σ−1


t∧τc∫


0


ac(s, x
∗
i (s), ω)1{|x∗i (s)|≤c}ds


−σ−1


t∧τc∫


0


∑


i6=j


a(x∗i (s), x
∗
j(s))1{|x∗i (s)|∨|x∗j (s)|≤c}ds. (8)


Lemma 4. Denote by {Ω,F , P}, the probability space generated by the se-
quence {wk(t), k = 1, 2, . . . } and let Pc be the measure on {Ω,F} for which


dPc


dP
(ω) = ρ(c, τc).
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Then {wk(c, t), k = 1, 2, . . . } is the sequence of independent Wiener processes
on the probability space {Ω,F .Pc}.


The proof is a consequence of Girsanov’s results [8].


Remark 5. Let c1 < c2 and τck
be stopping time with respect to the filtration


(F ck
t )t≥0, k = 1, 2, τc1 < τc2 and G2(c1, τc1) + G2(c2, τc2) ≤ c3, where c3 is a


constant. Then


E(ρ(c2, τc2)/F c1
τc1


) = ρ(c1, τc1).


This formula is a consequence of the relation


E(G1(c2, τc2)/F c1
τc1


) = G1(c1, τc1).


Lemma 5. Let {ck, k = 1, 2, . . . } be a sequence of positive numbers, for
which limk→+∞ ck = +∞.Then there exists a sequence of positive numbers {ak}
for which


P
{ ∑


k


akG2(ck, t) < ∞
}


= 1


for all t > 0.


Proof. Choose ak satisfying the inequality


P (G2(ck, k) > (k2ak)
−1) < k−2.


Then for any t > 0 we have the relation


∑


k


P (akG2(ck, t) > k−2) < t +
∑


k≥t


k−2 < ∞.


This completes the proof.


Corollary 3. Let a sequence {ak} satisfy the statement of Lemma 5. Set


G(t) =
∑


k


akG2(ck, t).


With probability 1 G(t) is an increasing continuous function satisfying the rela-
tions G(0) = 0, limt→∞ G(t) = ∞. Set


τ ∗ = inf{t : G(t) > b}, (9)


where b is a positive number. Then


Eρ(ck, τ
∗) = 1, E(ρ(ck, τ


∗))2 ≤ exp {ba−1
k }.
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4. A Theorem on Existence of a Local Weak Solution


Theorem 1. Let conditions (PC) and (IC) be fulfillrd,and let τ ∗ be a stop-
ping time introduced by relation (9). Then the following statements hold:


(i) there exists a probability measure P ∗ on (Ω,F) for which


P ∗(A) = lim
c→∞E1Aρ(c, τ∗), A ∈ ∨


k


F ck
τ∗ , P ∗(A) = P (A), A ∈ F∗,


where the σ-algebra F∗ is generated by the processes


{x∗k(t ∨ τ ∗)− x∗k(t), t ≥ 0, k = 1, 2, . . . }.
(ii) the stochastic processes given by the formula


σw∗
k(t) = x∗k(t)−


t∧τ∗∫


0


∑


i6=k


a(x∗k(s), x
∗
i (s))ds, k = 1, 2, . . . ,


are independent Wiener processes with respect to the filtration (Ft)(t≥0) on the
probability space (Ω,F , P ∗).


Proof. Since τ ∗ is a stopping time, for A ∈ F ck
τ∗ we can write, using Remark 5,


the relations


E1Aρ(c, τ ∗) = E1Aρ(ck, τ
∗)


if c > ck. This implies the existence of limits


lim
c→∞ 1A×Bρ(c, τ ∗), A ∈ ∨


k


F ck
τ∗ , B ∈ F∗.


It follows from the last formula that there exists a limit


lim
c→∞Φ(ξ1, . . . , ξm)ρ(c, τ ∗), (10)


where Φ ∈ C(Rm) and


ξi = 〈fi, γ
∗
ti
(γ0, ω)〉, i = 1, . . . , m,


where fi ∈ C(Rd), fi(x) = 0 for |x| large enough.
Now we prove that there exists a probability measure P ∗ on (Ω,F) for which


a limit in the formula (10) is represented in the form E∗Φ(ξ1, . . . , ξm), where
E∗ is the expectation with respect to the probability P ∗. Set


fn(x, x′) =
(
1− |x|


cn


)(
1− |x′|


cn


)(
1 +


1


|x− x′|
)
∨ 0.


Using Corollary 3 we can write the inequality


E〈fn, γ∗t (γ0, ω)× γ∗t (γ0, ω)〉ρ(c, τ ∗)


≤ (E〈fn, γ
∗
t (γ0, ω)× γ∗t (γ0, ω)〉2) 1


2 exp {1
2
ba−1


n }. (11)


Denote


An(t) = E〈fn, γ∗t (γ0, ω)× γ∗t (γ0, ω)〉2.
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The functions An(t) are non-negative and continuous. There exists a sequence
of positive numbers {bn} for which


∑
n


bn(1 + An(t)) exp {1
2
ba−1


n } < ∞, t > 0. (12)


Formulas (11) and (12) imply the relation


lim sup
c→∞


E
∑
n


bn〈fn, γ
∗
t (γ0, ω)× γ∗t (γ0, ω)〉ρ(c, τ ∗) < ∞.


This formula implies that the set of measures {P ∗
c , c > 0} for which


dP ∗
c


dP
(ω) = ρ(c, τ ∗)


is weakly compact, so there exists a sequence c′k, c
′
k →∞ for which P ∗


c′
k


converges


weakly to a measure P ∗. The statement (i) is proved.
Introduce the stopping times


τ ∗n = inf
{
t :


∑


k≤n


akG2(ck, t) ≥ b
}
,


and set


P ∗
n(A) = E1Aρ(cn, τ ∗n), A ∈ F .


Let Φ(ξ1, . . . , ξm) be the same as before. Then


lim
n→∞E∗


nΦ(ξ1, . . . , ξm) = E∗Φ(ξ1, . . . , ξm);


here E∗
n is the expectation with respect to probability P ∗


n .This formula is a
consequence of the relations


τ ∗n > τ ∗, τ ∗n → τ ∗


in probability and


E(ρ(cn, τ
∗
n)/F cn


τ∗ ) = ρ(cn, τ∗).
Let w∗


i (c, t) be given by formula (8). Then for fixed n the sequence


{w∗
i (cn, t), i = 1, 2, . . . }


represents independent Wiener processes on the probability space {Ω,F , P ∗
n}.


Introduce stopping times


ζn
i = inf{t : |xi(t)| > cn − r}.


Since ac(x, ω) = 0 for |x| < cn − r,we have


w∗
i (cn, t ∨ ζn


i ) = w∗
i (t ∨ ζn


i ).


Using Remark 3 we can prove that the relation


lim
c→∞ lim sup


n→∞
P ∗


n{sup
s≤t


|x∗i (s)| > c} = 0 (13)
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is fulfilled for any i and t > 0. Let Φ, h1, . . . , hm be the same as before . Set


ξ∗i =


t∫


0


hi(s)dw∗
i (s), ξn


i =


t∫


0


hi(s)dw∗
i (cn, s), i = 1, . . . .


Note that


E∗
nΦ(ξn


1 , . . . , ξn
m) = EΦ


( t∫


0


h1(s)dw1(s), . . . ,


t∫


0


hm(s)dwm(s)


)
(14)


for all n. Denote the expression in the right hand side of formula (14) by Φ̄.
Then


E∗
nΦ(ξ∗1 , . . . , ξ


∗
m) = Φ̄ + E∗


nO
( ∑


i≤m


1{sups≤t |x∗i (s)|>cn−r}
)
. (15)


Formulas (13) and (15) imply the relation


E∗Φ(ξ∗1 , . . . , ξ
∗
m) = lim


n→∞E∗
nΦ(ξ∗1 , . . . , ξ


∗
m) = Φ̄.


The statement (ii) is proved.
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