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CONVERGENCE TO ZERO AND BOUNDEDNESS OF
OPERATOR-NORMED SUMS OF RANDOM VECTORS WITH

APPLICATION TO AUTOREGRESSION PROCESSES

V. V. BULDYGIN, V. A. KOVAL

Abstract. The problems of almost sure convergence to zero and almost sure
boundedness of operator-normed sums of different sequences of random vec-
tors are studied. The sequences of independent random vectors, orthogonal
random vectors and the sequences of vector-valued martingale-differences
are considered. General results are applied to the problem of asymptotic
behaviour of multidimensional autoregression processes.
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1. Introduction

The problems of almost sure convergence to zero and almost sure boundedness
of sequences of random variables, and the interpretation of these problems from
the viewpoint of probability in Banach spaces is comprised within the scope of
scientific interests of N. N. Vakhania [1, 2]. This paper deals with almost sure
convergence to zero and almost sure boundedness of operator-normed sums of
random vectors. In Section 2, a brief survey of the results related to almost sure
convergence to zero for these sums is given. In Section 3, integral type conditions
for almost sure convergence to zero and almost sure boundedness of operator-
normed sums of independent random vectors are obtained. In Section 4, these
results are applied to the study of asymptotic behaviour of multidimensional
autoregression processes.

We introduce the following notation: Rn is n-dimensional Euclidean space;
(An, n ≥ 1) ⊂ L(Rm,Rd), where L(Rm,Rd) is the class of all linear operators
(matrices) mapping Rm into Rd, (m, d ≥ 1); ‖x‖ and 〈x, y〉 are the norm of
the vector x and the inner product of the vectors x and y correspondingly;
‖A‖ = sup‖x‖=1 ‖Ax‖ is the norm of the operator (matrix) A; A∗(A>) is the
conjugate operator (matrix) of A; N∞ is the class of all strictly monotone infinite
sequences of positive integers; (Xk, k ≥ 1) is a sequence of random vectors in
Rm defined on a probability space {Ω,F ,P}; Sn =

∑n
k=1 Xk, n ≥ 1; 1{D} is
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the indicator of D ∈ F ;
∑n

i=n+1(·) = 0. Recall that a random vector X is called
symmetric if X and −X are identically distributed.

2. Almost Sure Convergence to Zero of Operator-Normed Sums
of Random Vectors

Prokhorov–Loève type conditions for almost sure convergence to
zero of operator-normed sums of independent random vectors. First
we consider the case where (Xk, k ≥ 1) is a sequence of independent random
vectors.

Theorem 1 ([3]). Let (Xk, k ≥ 1) be a sequence of independent symmetric
random vectors. Assume that ‖AnSn‖ −→

n→∞ 0 almost surely. Then:

(i) for any k ≥ 1

‖AnXk‖ −→
n→∞ 0 almost surely;

(ii) for any sequence (nj, j ≥ 1) ∈ N∞

‖Anj+1
(Snj+1

− Snj
)‖ −→

j→∞
0 almost surely.

Theorem 2 ([3]). Let (Xk, k ≥ 1) be a sequence of independent symmetric
random vectors. Assume that:

(i) for any k ≥ 1

‖AnXk‖ −→
n→∞ 0 in probability. (1)

Then there exists a finite class Nf ⊂ N∞ depending on the sequence (An, n ≥ 1)
only, such that, given that the condition

(ii)

‖Anj+1
(Snj+1

− Snj
)‖ −→

j→∞
0 almost surely

holds for all (nj, j ≥ 1) ∈ Nf , one has

‖AnSn‖ −→
n→∞ 0 almost surely. (2)

Remark. Let (Xk, k ≥ 1) be a sequence of independent random vectors which
need not be symmetric. If assumptions (i) and (ii) in Theorem 2 hold and if
‖AnSn‖ → 0 in probability as n →∞, then (2) holds.

Almost sure convergence to zero of operator-normed sums of or-
thogonal random vectors. Now consider the case where (Xk, k ≥ 1) is a se-
quence of orthogonal random vectors. By definition, this means that E‖Xk‖2 <
∞, k ≥ 1, and for any a ∈ Rm and j 6= k E(〈a,Xj〉〈a,Xk〉) = 0.

Theorem 3 ([4]). Let (Xk, k ≥ 1) be a sequence of orthogonal random
vectors. Assume that condition (1) holds. Then there exists a finite class Nf ⊂
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N∞ depending on the sequence (An, n ≥ 1) only, such that, given that the
condition

∞∑

j=1

nj+1∑

k=nj+1

E‖Anj+1
Xk‖2(log 4(nj+1 − nj))

2 < ∞

holds for all (nj, j ≥ 1) ∈ Nf , one has (2).

Corollary 1. Let (Xk, k ≥ 1) be a sequence of orthogonal random vectors.
Assume that ‖An‖ → 0 as n →∞ and suppose that

∞∑

k=1

sup
n≥k

(E‖AnXk‖2 log2 n) < ∞.

Then (2) holds.

Almost sure convergence to zero of operator-normed vector-valued
martingales. Let (Sn,Fn, n ≥ 0), S0 = 0, be a martingale in Rm, that is
Xk = Sk − Sk−1, k ≥ 1, is a martingale-difference in Rm.

Theorem 4 ([5]). Let (Xk, k ≥ 1) be a martingale-difference. Assume that
condition (1) holds. Then there exists a finite class Nf ⊂ N∞ depending on the
sequence (An, n ≥ 1) only, such that, given that the condition

∞∑

j=1

E(‖Anj+1
(Snj+1

− Snj
)‖1{‖Anj+1

(Snj+1
− Snj

)‖ > ε}) < ∞,

or equivalently, given the condition

∞∑

j=1

∞∫

ε

P{‖Anj+1
(Snj+1

− Snj
)‖ > t}dt < ∞,

holds for all (nj, j ≥ 1) ∈ Nf and any ε > 0, one has (2).

Theorem 5 ([5, 6]). Let (Xk, k ≥ 1) be a martingale-difference; p > 1, and
E‖Xk‖p < ∞, k ≥ 1. Assume that condition (1) holds. Then there exists a
finite class Nf ⊂ N∞ depending on the sequence (An, n ≥ 1) only, such that,
given that the condition

∞∑

j=1

E‖Anj+1
(Snj+1

− Snj
)‖p < ∞,

holds for all (nj, j ≥ 1) ∈ Nf , one has (2).

Corollary 2. Let (Xk, k ≥ 1) be a martingale-difference; p ∈ (1, 2], and
E‖Xk‖p < ∞, k ≥ 1. Assume that condition (1) holds. Then there exists a
finite class Nf ⊂ N∞ depending on the sequence (An, n ≥ 1) only, such that,
given that the condition

∞∑

j=1

nj+1∑

k=nj+1

E‖Anj+1
Xk‖p < ∞,

holds for all (nj, j ≥ 1) ∈ Nf , one has (2).
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Corollary 3. Let (Xk, k ≥ 1) be a martingale-difference; p ∈ (1, 2], and
E‖Xk‖p < ∞, k ≥ 1. Assume that condition (1) holds. If

∞∑

k=1

sup
n≥k

‖AnXk‖p < ∞,

then (2) holds.

Corollary 3 implies a result due to Kaufmann [7].

Corollary 4. Let (Xk, k ≥ 1) be a martingale-difference; p ∈ (1, 2], and
E‖Xk‖p < ∞, k ≥ 1. Assume that ‖An‖ → 0 as n →∞ and ‖Anx‖ ≥ ‖An+1x‖
for all x ∈ Rm, n ≥ 1. If

∞∑

k=1

‖AkXk‖p < ∞,

then (2) holds.

Example. Consider the assumption leading to strong consistency of the
least squares estimator θ̂n, n ≥ 1, of an unknown parameter θ ∈ Rm in the
multivariate linear regression model Yk = Bkθ + Zk, k ≥ 1. Here (Zk, k ≥ 1) is
a martingale-difference in Rd; (Bk, k ≥ 1) ⊂ L(Rm,Rd). Since

θ̂n = θ +
( n∑

k=1

B>
k Bk

)−1 n∑

k=1

B>
k Zk, n ≥ 1,

taking p = 2 in Theorem 5 implies a result due to Lai [8]:

If supk≥1 E‖Zk‖2 < ∞ and if
∥∥∥
( ∑n

k=1 B>
k Bk

)−1∥∥∥ → 0 as n → ∞, then

‖θ̂n − θ‖ → 0 almost surely as n →∞.

Almost sure convergence to zero of operator-normed sub-Gaussian
vector-valued martingales. A stochastic sequence (Zk, k ≥ 1)=(Zk,Fk, k ≥
1) is called a sub-Gaussian martingale-difference in Rm, if: 1) (Zk,Fk, k ≥ 1)
is a martingale-difference in Rm; 2) for any k ≥ 1 the random vector Zk =
(Zk1, . . . , Zkm)> is conditionally sub-Gaussian with respect to the σ-algebra
Fk−1. Assumption 2) means that τ(Zkj) < ∞ for any j = 1, . . . ,m and any
k ≥ 1. Here

τ(Zkj) = inf{a ≥ 0 : EFk−1
euZkj ≤ ea2u2/2 almost surely, u ∈ R}.

We write τ(Zk) = maxj=1,...,m τ(Zkj), k ≥ 1.

Theorem 6. Let Xk = BkZk, k ≥ 1, where (Zk, k ≥ 1) is a sub-Gaussian
martingale-difference in Rm, supk≥1 τ(Zk)<∞ and let (Bk, k≥1)⊂L(Rm,Rm).
Assume that condition (1) holds. Then there exists a finite class Nf ⊂ N∞
depending on the sequence (An, n ≥ 1) only, such that, given that the condition

∞∑

j=1

exp
(
− ε

( nj+1∑

k=nj+1

‖Anj+1
Bk‖2

)−1)
< ∞ (3)

holds for all (nj, j ≥ 1) ∈ Nf and any ε > 0, one has (2).
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Remark. If (Zk, k ≥ 1) is a sequence of independent Gaussian vectors, then
conditions (1) and (3) are necessary for (2), see [3].

3. Almost Sure Convergence to Zero and Almost Sure
Boundedness of Operator-Normed Sums of Independent

Random Vectors

Theorem 7. Let (Xk, k ≥ 1) be a sequence of independent zero-mean ran-
dom vectors. Assume that

‖An‖ −→
n→∞ 0 (4)

and for any sequence (nj, j ≥ 1) ∈ N∞ there exists δ ∈ (0, 1] such that

∞∑

j=1

nj+1∑

k=nj+1

E‖Anj+1
Xk‖2+δ < ∞. (5)

If for any sequence (nj, j ≥ 1) ∈ N∞ and all ε > 0

∞∑

j=1

exp
(
− ε

( nj+1∑

k=nj+1

E‖Anj+1
Xk‖2

)−1)
< ∞, (6)

then (2) holds.

If Xk, k ≥ 1, are symmetric random vectors, then this theorem follows from
Theorem 4.1.1 in [3]. Now we consider an independent proof in general case.
To prove the theorem, we need the following lemma [9].

Lemma 1. Let (ξ1, . . . , ξn) be independent random variables such that
E|ξi|2+δ < ∞, 1 ≤ i ≤ n, for some δ ∈ (0, 1]. Let η be a zero-mean Gaus-
sian random variable such that Eη2 =

∑n
i=1 Eξ2

i . Then for any t > 0
∣∣∣∣∣P

(∣∣∣∣
n∑

i=1

ξi

∣∣∣∣ > t
)
−P

(
|η| > t

)∣∣∣∣∣ ≤
c

t2+δ

n∑

i=1

E|ξi|2+δ

where c is an absolute constant.

Proof of Theorem 7. Let (e1, . . . , ed) be an orthonormal basis in Rd. Then

AnSn =
d∑

k=1

〈A∗
nek, Sn〉ek, n ≥ 1.

Therefore the theorem will be proved if we show that

〈A∗
ne, Sn〉 −→

n→∞ 0 almost surely

for an arbitrary fixed vector e ∈ Rd, ‖e‖ = 1. Since by (4)

‖A∗
ne‖ −→

n→∞ 0
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and since (Sn, n ≥ 1) is a martingale, it is sufficient to show, by Theorem 4,
that for all (nj, j ≥ 1) ∈ N∞ and any ε > 0

∞∑

j=1

∞∫

ε

P
(∣∣∣∣

nj+1∑

k=nj+1

〈A∗
nj+1

e,Xk〉
∣∣∣∣ > t

)
dt < ∞. (7)

By Lemma 1, for any j ≥ 1

P
(∣∣∣∣

nj+1∑

k=nj+1

〈A∗
nj+1

e,Xk〉
∣∣∣∣ > t

)

≤ P (|ηj| > t) +
c

t2+δ

nj+1∑

k=nj+1

E|〈A∗
nj+1

e,Xk〉|2+δ

≤ P (|ηj| > t) +
c

t2+δ

nj+1∑

k=nj+1

E‖Anj+1
Xk‖2+δ, (8)

where ηj is a normally distributed random variable with parameters

Eηj = 0, Eη2
j =

nj+1∑

k=nj+1

E〈A∗
nj+1

e,Xk〉2.

Since for all t > 0

P (|ηj| > t) ≤ 2 exp

(
− t2

2Eη2
j

)

and

Eη2
j ≤

nj+1∑

k=nj+1

E‖Anj+1
Xk‖2,

condition (6) implies

∞∑

j=1

∞∫

ε

P (|ηj| > t) dt ≤ 4
√

2
∞∑

j=1

(
Eη2

j

) 1
2 exp

(
− ε2

2Eη2
j

)

≤ 4
√

2 sup
j≥1

(
Eη2

j

) 1
2
∞∑

j=1

exp

(
− ε2

2Eη2
j

)
< ∞.

Taking into account the inequalities (8) and (5) we conclude that (7) holds.

Theorem 8. Let (Xk, k ≥ 1) be a sequence of independent zero-mean ran-
dom vectors. Assume that supn≥1 ‖An‖ < ∞ and that for any (nj, j ≥ 1) ∈ N∞
there exists δ ∈ (0, 1] such that (5) holds. If for any (nj, j ≥ 1) ∈ N∞ there
exists ε > 0 such that (6) holds, then

sup
n≥1

‖AnSn‖ < ∞ almost surely.

Proof. Theorem 8 follows from Theorem 7 and Lemma 3 in [10]. We refer the
reader to [3] for more details.
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Theorem 9. Let (Xk, k ≥ 1) be a sequence of independent zero-mean ran-
dom vectors. Assume that ‖An‖ −→

n→∞ 0 and for any (nj, j ≥ 1) ∈ N∞ there

exists δ ∈ (0, 1] such that (5) holds. If for any (nj, j ≥ 1) ∈ N∞ there exists
ε > 0 such that (6) holds, then there exists a nonrandom constant L ∈ [0,∞)
such that

lim sup
n→∞

‖AnSn‖ = L almost surely. (9)

Proof. Theorem 9 follows from Theorem 8 and Theorem 2.3.2 in [3]. We refer
the reader to [3] for more details.

The next corollary of Theorem 9 can be useful in applications.

Corollary 5. Let (Xi, i ≥ 1) be a sequence of independent zero-mean random
vectors. Assume that ‖An‖ −→

n→∞ 0 and suppose that there exists δ ∈ (0, 1] such

that the following condition holds

∞∑

i=1

sup
n≥i

E‖AnXi‖2+δ < ∞. (10)

Assume also that there are two sequences of positive numbers (ϕn, n ≥ 1),
(fn, n ≥ 1), such that (fn, n ≥ 1) is monotonically nondecreasing and the in-
equality

n∑

i=k+1

E‖AnXi‖2 ≤ ϕn

[
1−

(
fk

fn

)2
]

(11)

holds for all n > k ≥ 1. If for some M > 0

sup
n≥2

ϕn ln

(
2 +

n−1∑

k=1

min
{
M, ln

(
fk+1

fk

)})
< ∞, (12)

then there exists a nonrandom constant L ∈ [0,∞) such that (9) holds.

Proof. Let us show that (5) follows from (10):

∞∑

j=1

nj+1∑

i=nj+1

E‖Anj+1
Xi‖2+δ ≤

∞∑

j=1

nj+1∑

i=nj+1

sup
n≥i

E‖AnXi‖2+δ

≤
∞∑

i=1

sup
n≥i

E‖AnXi‖2+δ < ∞.

In addition, for all (nj, j ≥ 1) ∈ N∞ and some ε > 0 the condition (6) follows
from (11) and (12), see [5].
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4. Asymptotic Behaviour of Multidimensional Autoregression
Processes

Let us apply Corollary 5 for obtaining an analog of the bounded law of iterated
logarithm for autoregressive processes. Let Rm be a space of column vectors.
Consider an autoregression equation in Rm written as follows:

Yn = AYn−1 + Vn, n ≥ 1, Y0 ∈ Rm. (13)

Here A is an arbitrary m×m matrix and (Vn, n ≥ 1) is a sequence of independent
zero-mean random vectors in Rm. Denote by r the spectral radius of the matrix
A and by p the maximal multiplicity of the roots of the minimal polynomial of
the matrix A whose the absolute value is r. Introduce the following notation:

fn =
n∑

i=1

E‖Vi‖2r−2i
(
1− i− 1

n

)2(p−1)

, n ≥ 1;

Ln{f} = ln

(
2 +

n−1∑

k=1

min
{
M, ln

(
fk+1

fk

)})
, n ≥ 2,

where M is an arbitrary positive fixed constant and where

χn = rnnp−1
√

fnLn{f}, n ≥ 2.

Observe that the sequence {f} = (fn, n ≥ 1) is monotone nondecreasing. The
bounded law of the iterated logarithm for solutions of equation (13) in the case
E‖Vn‖2 ≡ const was studied in [11]. Let us consider a general case.

Theorem 10. Let limn→∞ fn = ∞. Assume that for some δ ∈ (0, 1] the
condition

∞∑

i=1

sup
n≥i

[
χ−1

n (n + 1− i)p−1rn−i
]2+δ

E‖Vi‖2+δ < ∞ (14)

holds. Then there exists a nonrandom constant L ∈ [0,∞) such that

lim sup
n→∞

‖Yn‖
χn

= L almost surely. (15)

Proof. Assume that det A 6= 0. Then (13) gives

Yn = AnY0 + An
n∑

i=1

A−iVi , n ≥ 1.

Hence

χ−1
n ‖Yn‖ ≤ χ−1

n ‖An‖ · ‖Y0‖+
∥∥∥∥χ−1

n An
n∑

i=1

A−iVi

∥∥∥∥, n ≥ 1. (16)

Observe that

‖An‖ ≤ c1(n + 1)p−1rn, n ≥ 0, (17)
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where c1 is a constant independent of n, see [3]. By (17) one has

χ−1
n ‖An‖ · ‖Y0‖ −→

n→∞ 0.

Therefore (15) will be proved if we show that there exists a nonrandom constant
L ∈ [0,∞) such that

lim sup
n→∞

∥∥∥∥χ−1
n An

n∑

i=1

A−iVi

∥∥∥∥ = L almost surely. (18)

To prove (18), we use Corollary 5 with

An = χ−1
n An, n ≥ 1; Xi = A−iVi, i ≥ 1.

Condition (10) follows from (14) by (16). Since (see [5] for more details)

n∑

i=k+1

‖χ−1
n AnA−iVi‖2 ≤ c2

1χ
−2
n

n∑

i=k+1

r2(n−i)(n + 1− i)2(p−1)E‖Vi‖2

≤ c2
1

(
χ−1

n rnnp−1
√

fn

)2 [
1−

(
fk

fn

)2]
,

condition (11) holds. Condition (12) also holds for

ϕn = c2
1

(
χ−1

n rnnp−1
√

fn

)2

, n ≥ 1.

Since
χ−1

n ‖An‖ −→
n→∞ 0,

Corollary 5 implies that there exists a nonrandom constant L ∈ [0,∞) such
that

lim sup
n→∞

∥∥∥∥∥χ
−1
n An

n∑

i=1

A−iVi

∥∥∥∥∥ = L almost surely.

The theorem is proved in the case of det A 6= 0. The proof of the theorem in
the case of det A = 0 follows similar lines [12].

Corollary 6. Let r = 1 and E‖Vn‖2 ≡ const. Assume that

sup
n≥1

E‖Vn‖2+δ < ∞

for some δ ∈ (0, 1]. Then there exists a nonrandom constant L ∈ [0,∞) such
that

lim sup
n→∞

‖Yn‖√
n2p−1 ln ln n

= L almost surely.

Proof. Since r = 1 and since E‖Vn‖2 ≡ const, one has

χn ∼ c2

√
n2p−1 ln ln n (n →∞),

where c2 is some positive constant, see [5]. Since for any i ≥ 3

sup
n≥i

[
(n2p−1 ln ln n)−

1
2 (n + 1− i)p−1

]2+δ ≤ 1

(ln ln 3)
2+δ
2

· 1

i1+ δ
2

,
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one has ∞∑

i=3

sup
n≥i

[
(n2p−1 ln ln n)−

1
2 (n + 1− i)p−1

]2+δ
< ∞.

Thus the condition (14) holds and Corollary 6 is proved.
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