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ON A CHARACTERISATION OF INNER PRODUCT SPACES

G. CHELIDZE

Abstract. It is well known that for the Hilbert space H the minimum value
of the functional Fµ(f) =

∫
H
‖f−g‖2dµ(g), f ∈ H, is achived at the mean of

µ for any probability measure µ with strong second moment on H. We show
that the validity of this property for measures on a normed space having
support at three points with norm 1 and arbitrarily fixed positive weights
implies the existence of an inner product that generates the norm.
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Let X be a real normed space, dim X ≥ 2, and µ be a Borel probability mea-
sure on X with strong second moment. Denote by Fµ the following functional
on X:

Fµ(f) =
∫

X

‖f − g‖2dµ(g), f ∈ X.

It is easy to show that if X is an inner product space and there exists the mean
m of µ (in the usual weak sense as the Pettis integral), then Fµ(f) ≥ Fµ(m) for
all f ∈ X.

The problem which was brought to my attention by N. Vakhania was to find
a class of probability measures as small as possible, for which this property of
Fµ characterizes the inner product spaces. It is easy to see that the class of
measures with supports containing two points is not a sufficient class since the
minimum of Fµ is attained at the mean of µ for any such µ whatever the normed
space X is. Indeed, for any normed space X let µ be a probability measure
concentrated at two points f, g ∈ X and let µ(f) = α, µ(g) = β, α > 0, β > 0,
α+β = 1. It is clear that m = αf +βg and Fµ(m) = αβ‖f−g‖2. The condition
Fµ(h) ≥ Fµ(m), h ∈ X, gives the inequality

α‖f − h‖2 + β‖g − h‖2 ≥ αβ‖f − g‖2.

Denoting f − h and g − h by p and q respectively we obtain

α‖p‖2 + β‖q‖2 ≥ αβ‖p− q‖2. (1)

However, this inequality is true for any normed space since by the triangle
inequality we have

αβ‖p− q‖2 ≤ αβ‖p‖2 + 2αβ‖p‖ · ‖q‖+ αβ‖q‖2
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and, using the obvious relation 2αβ‖p‖ · ‖q‖ ≤ α2‖p‖2 + β2‖q‖2, we get (1).
As the referee of the present paper noticed1, a sufficient class can be con-

structed using measures concentrated at three points. There are two types of
results in this direction:

a) the sufficient class consists of measures µ = 1
3
δf1 + 1

3
δf2 + 1

3
δf3 for all triplets

{f1, f2, f3} from X (δp being the Dirac measure at p ∈ X) (see [1], Proposition
(1.12), p. 10)

b) the sufficient class consists of measures µ = αδf1 +βδf2 +γδf3 for all triplets
{f1, f2, f3} with unit norms and all weights α, β, γ such that αf1+βf2+γf3 = 0
(Theorem 5.3 in [2], p. 236).

The aim of this paper is to show that in fact yet a smaller class of measures
can be taken.

Theorem. Let X be a real normed space, dim X ≥ 2, S(X) be the set of
points of norm one, α, β, γ be arbitrarily fixed positive numbers and δp be the
Dirac measure at p ∈ X. The following propositions are equivalent:

(i) X is an inner-product space.
(ii) For any two points f, g from S(X) and the point h = 0, the mean of

the measure µ = 1
α+β+γ

(αδf + βδg + γδ0) is a point of a local minimum for the

functional
Fµ(t) = α‖t− f‖2 + β‖t− g‖2 + γ‖t‖2, t ∈ X.

(iii) For any three points f, g, h from S(X) the mean of µ = 1
α+β+γ

(αδf +βδg+

γδh) is a point of a local minimum for the functional

Fµ(t) = α‖t− f‖2 + β‖t− g‖2 + γ‖t− h‖2, t ∈ X.

According to the well-known von Neumann–Jordan criterion it is enough to
prove the Theorem for the case dim X = 2. Thus we should prove that the
surface S(X) of the unit ball in (R2, ‖ · ‖) is an ellipse. It is clear that we may
assume α + β + γ = 1.

The proof of the Theorem is based on the following auxiliary results.

Lemma 1. Let α, β, γ be given positive reals with α + β + γ = 1. For any
two noncollinear A and B from S(X) there exist:

(i) A1 and B1 on S(X) such that

A1 −M

‖A1 −M‖ = A,
B1 −M

‖B1 −M‖ = B,

where M = αA1 + βB1.
(ii) A1, B1, C1 on S(X) such that

A1 −M

‖A1 −M‖ = A,
B1 −M

‖B1 −M‖ = B,

where M = αA1 + βB1 + γC1.

1The author takes this opportunity to express his deep gratitude to the referee for his
comments including this information.
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Proof. (i). Denote by S ′(X) the part of S(X) which is inside the smaller angle
generated by the vectors A and B. Let C be any point of S ′(X). It is clear that
for all u, 0 < u < 1, there exist Au and Bu on S ′(X) such that for some u1 > 0,
u2 > 0 we have Au − uC = u1A and Bu − uC = u2B. Since Mu = uC is inside
the triangle AuOBu, where O denotes the zero vector, we have

Mu = αuAu + βuBu

for some αu > 0, βu > 0, γu > 0, αu + βu + γu = 1. Therefore we have to prove
that for some C ∈ S ′(X) and u > 0 there exist αu, βu and γu such that αu =

α, βu = β, γu = γ. It is clear that ‖Mu‖
‖Ou−Mu‖ = 1−γu

γu
where Ou is the intersection

of the lines (AuBu) and (OC). Consider the function ϕ(u) = ‖Mu‖
‖Ou−Mu‖ = 1−γu

γu
.

Since S(X) is a continuous curve, the function ϕ defined on the interval (0, 1)
is continuous and lim

u→1
ϕ(u) = +∞, lim

u→0
ϕ(u) = 0. Therefore there exists uC such

that ϕ(uC) =
‖MuC

‖
‖MuC

−OuC
‖ = 1−γ

γ
. Now we consider the following two continuous

functions on S ′(X) :

ψ1(C) =
‖AuC

−MuC
‖

‖A′
uC
−MuC

‖ =
1− αuC

αuC

, ψ2(c) =
‖BuC

−MuC
‖

‖B′
uC
−MuC

‖ =
1− βuC

βuC

,

where A′
uC

(B′
uC

) denotes the intersection of the lines (AuC
MuC

) and (OBuC
)

((BuC
MuC

) and (OAuC
)). Obviously, lim

C→B
ψ1(C) = +∞, lim

C→A
ψ2(C) = +∞.

Since γuC
= γ and αuC

+ βuC
+ γ = 1, we get 1

1+ψ1(C)
+ 1

1+ψ2(C)
+ γ = 1. This

equality gives lim
C→A

ψ1(C) = γ
1−γ

. As ψ1 receives all values from the interval

( γ
1−γ

, +∞), the inequality 1−α
α

> γ
1−γ

shows the existence of a point C1 ∈ S ′(X)

such that ψ1(C1) = 1−α
α

, ψ2(C1) = 1−β
β

. For such C1 we have αuC1
= α, βuC1

=

β, γuC1
= γ which proves the statement (i).

(ii). Now we consider the same points A1, B1 as in (i) and the other point A2

of the intersection S(X) ∩ (A1M).
Let M1 be a point on the line (A1A2) which is inside the unit ball B(X). Let

now B2 be the point on S(X) for which B2−M1 = uB, u > 0. Denote by C2 the
point 1

γ
(M1 − αA1 − βB2). Since A1−M1

‖A′1−M1‖ = 1−α
α

, where A′
1 = (B2C2)∩ (A1A2),

A′
1 is outside of B(X) if ‖M1 − A2‖ is small enough and hence C2 is outside

of B(X) as well. Therefore there exists a point M1 on (A1A2) such that the
points B2 = M1 + uB, u > 0, and C2 = 1

γ
(M1 − αA1 − βB2) are on S(X) and

the proof is complete.

Lemma 2. There exists an ellipse which is inside the unit ball B(X) and
touches S(X) at four points at least.

Proof. It is easy to show that an ellipse of maximum area inside B(X) touches
S(X) at four points at least (this argument seems to be used frequently, see,
e.g., [3], p. 322).
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Lemma 3. Let ϕ and ψ be two functions defined on the interval I = (a −
ε, a+ ε), ε > 0, such that ψ(x) ≥ ϕ(x), ∀x ∈ I, ψ(a) = ϕ(a) and the derivatives
ϕ′(a), ψ′−(a), ψ′+(a) exist. If ψ′−(a) ≥ ψ′+(a), then ψ′−(a) = ψ′+(a) = ϕ′(a).

Proof.

ϕ′(a) = lim
u→0, u>0

ϕ(a)− ϕ(a− u)

u
≥ lim

u→0, u>0

ψ(a)− ψ(a− u)

u
= ψ′−(a)

≥ ψ′+(a) = lim
u→0, u>0

ψ(a + u)− ψ(a)

u
≥ lim

u→0, u>0

ϕ(a + u)− ϕ(a)

u
= ϕ′(a)

which proves the lemma.

Proof of the Theorem. Let E be the ellipse from Lemma 2 and A′, B′ be
the points of the intersection S(X) ∩ E, A′ 6= B′, A′ 6= −B′. Apply an affine
transformation T that carries E into the unit circle of (R2, ‖·‖2), ‖·‖2 being the
usual l2 norm. Let XOY be an orthogonal Cartesian system on R2 such that
T (A′) = (−1, 0). Denote (−1, 0) by A, and T (B′) by B = (b1, b2). Obviously,
b2
1 + b2

2 = 1 and b2 6= 0. By Lemma 1 there exist the points A1, B1, C1 from
T (S(X)) for which the following equalities hold:

A1 −M

‖A1 −M‖ = A,
B1 −M

‖B1 −M‖ = B, (2)

where

M = αA1 + βB1 + γC1 . (3)

Denote now

(x′, y′) =
C1 −M

‖C1 −M‖ . (4)

Since β > 0 relation (2) and (3) show that y′ 6= 0.
Let Mε be the point Mε = (aε, ε), a = x′

y′ . Introduce the notation:

A1 −M −Mε = (x1 − x0 − aε, y1 − y0 − ε) := (m1 − aε, n1 − ε),

B1 −M −Mε = (x2 − x0 − aε, y2 − y0 − ε) := (m2 − aε, n2 − ε),

C1 −M −Mε = (x3 − x0 − aε, y3 − y0 − ε) := (m3 − aε, n3 − ε).

It is clear that n1 = 0, m1 6= 0, n2 6= 0, n3 6= 0 and ‖A1 − M‖ = −m1,
‖B1 −M‖ = n2

b2
, ‖C1 −M‖ = n3

y′ . Since a = x′
y′ = x3−x0

y3−y0
= m3

n3
we get C1 −M −

Mε = (m3 − aε, n3 − ε) = (m3 − m3

n3
ε, n3 − ε) = n3−ε

y′ (x′, y′) and hence

‖C1 −M −Mε‖ =
n3 − ε

y′
. (5)

We are going to estimate the norms of the two other vectors. First we consider
the case ε > 0. Without loss of generality we may assume that b2 < 0. Consider
the two lines (L1) : y = −ux−u and (L2) : y = (−b−ω(u))(x−b1)+b2 where u >
0, b = b1/b2 and ω is a positive continuous function defined on [0,∞) such that
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lim
u→∞ω(u) = 0. By Lemma 3 there exist the tangents to T (S(X)) at the points

A and B and they are expressed by the equations x = −1, y = −b(x− b1) + b2,
respectively. The line (L1) passes the point A and is different from the tangent
at A. Therefore (L1) intersects T (S(X)) at some other point Au 6= A. By
the convexity of the unit ball the segment AuA = {vA + (1 − v)Au, 0 ≤
v ≤ 1} is inside T (B(X)). Let (x, y) be the point of intersection of the lines

{v(A1 −M −Mε), v ∈ R} and (L1), i.e., x = −u(m1−aε)
(m1−aε)u−ε

. If ε is small enough,

then the point (x, y) is on the segment AuA and therefore we get the inequality

‖A1 −M −Mε‖ ≤ ‖A1 −M −Mε‖2

‖(x, y)‖2

=
m1 − aε

x
= −m1 + aε + ε/u (6)

for all ε, 0 < ε < ε′u, ε′u > 0.
Now we consider the intersection (x, y) of the lines {v(B1−M−Mε), v ∈ R}

and (L2). We get x = (m2−aε)(b1b+b2+b1ω(u))
n2−ε+(m2−aε)(b+ω(u))

. The same arguments show that there

exists ε′′u > 0 such that

‖B1 −M −Mε‖ ≤ m2 − aε

x
=

n2 − ε + (m2 − aε)(b + ω(u))

b1b + b2 + b1ω(u)

for all ε, 0 < ε < ε′′u.
Since m2

n2
= b1

b2
= b, we get

‖B1 −M −Mε‖ ≤ n2

b2

− 1 + ab + aω(u)

(1 + b2 + bω(u))b2

· ε. (7)

By the property of the functional Fµ, there exists ε′ > 0 such that F (M) ≤
F (M + Mε) for all ε, 0 < ε < ε′. If ε < min(ε′, ε′u, ε

′′
u) = εu, we obtain, using

relations (5), (6) and (7),

F (M) = αm2
1 + β

n2
2

b2
2

+ γ
n2

3

y′2

≤ α
(
m1 −

(
a +

1

u

)
ε
)2

+ β

(
n2

b2

− 1 + ab + aω(u)

(1 + b2 + bω(u))b2

ε

)2

+ γ

(
n3 − ε

y′

)2

,

i.e., 0 ≤ 2huε + h′uε
2, where

hu = −αm1

(
a +

1

u

)
− β

n2(1 + ab + aω(u))

b2
2(1 + b2 + bω(u))

− γ
n3

y′2
.

Since ε > 0, we have

hu ≥ −εh′u
2

for all ε, 0 < ε < εu, i.e. hu ≥ 0 for all u > 0. Let h = −αm1a− βn2(1+ab)
b22(1+b2)

− γ n3

y′2 .

We have h = lim
u→∞hu ≥ 0. Passing now to the case ε < 0, we consider the two

lines y = ux+u and y = (−b+ω(u))(x− b1)+ b2. Using the same arguments as
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for the case ε > 0, we can derive the inequality h ≤ 0. Therefore h = 0, which
gives

y′2 = − γn3

αam1 + β(1 + ab)n2

.

Using the relations x0 = x2+b(y1−y2), y0 = y1, x3 =−α
γ
x1 + 1−β

γ
x2 + b

γ
(y1 − y2),

y3 = 1−α
γ

y1 − β
γ
y2 which follow from (2), (3), (4), we get αm1 = βan2−βbn2 and

n3 = −β
γ
n2, i.e.,

x′2 + y′2 = (1 + a2)y′2 =
βn2(1 + a2)

βa2n2 − βabn2 + βn2 + βabn2

= 1.

Denote by arc(A,B) the part of the circle T (E) which is inside the smaller
angle generated by the vectors A and B. As we have just proved, if T (S(X))
and T (E) coincide at two points A and B they coincide at one more point C ∈
arc(A,B). Continuing this process, we see that T (S(X)) and arc(A,B) coincide
on a dense set of points. Hence arc(A,B) ⊂ T (S(X)) and by the symmetry
argument arc(−A,−B) ⊂ T (S(X)). The same reasoning for the points A and
−B shows that arc(A,−B) ⊂ T (S(X)) and therefore arc(−A,B) ⊂ T (S(X))
as well. The proof of statement (ii) is complete. Statement (i) can be proved
similarily.

Remarks: 1. In the Theorem we can replace the unit sphere S(X) by any
sphere with center at x and radius R. Moreover, in the case dim X = 2, S(X)
and its center can be replaced by any continuous convex closed curve S on R2

and any point from the area which is bounded by S.
2. The Theorem holds true for measures concentrated at n points of S(X),

n ≥ 3, with any fixed positive weights α1, α2, . . . , αn.
3. The complex and quaternion versions of the Theorem are easily derived

from the real one.
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