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ON THE TAIL ESTIMATION OF THE NORM OF
RADEMACHER SUMS*

S. CHOBANYAN AND H. SALEHI

Abstract. The main aim of this paper is to prove a bilateral inequality
for P zn:akrkﬂ > t|, where t > 0, (ai) are elements of a normed space,
while (rkl) are Rademacher functions. Then this inequality is applied for
estimation of E|| zn: axrg||- As another corollary we give a maximal inequality
for exchangeable ;andom variables that recently has been published in [4].
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1. THE MAIN ASSERTION

Theorem. Let (aq,...,as,) be a collection of elements of a normed space
X (real or complex), r1,...,79, be Rademacher functions (i.i.d. random vari-
ables taking only two values —1 and +1 with equal probabilities) defined on a
probability space (2, A, P).

2n
(a) If Y ar =0, then for any t > 0 the following bilateral inequality holds
1

t 2n
cm ||ak1+...+akn||>c} < P[ Zakrk >t]
1
t
<Comlllag +-+an > = |, @

where ¢, C' are absolute constants, while m s the uniform distribution on the
set of all collections of integers 1 < ky < ko < --- < k, < 2n.
(b) The right-hand side inequality takes place in general, without the assump-

2n
tion > a =0 (may be with a different absolute constant C').
1

* A general source for this article is the reference [4]; its first author is Professor N. Vakha-
nia to whom this work is dedicated.
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Proof. First let us prove the left-hand side inequality of (a). Denote by pu the
uniform distribution on the set II of all permutations of {1,...,2n}. Then we
have for any collection of signs 6 = (64, ...,6,)

(Sl > -]

(since > a; = 0). This gives
1

a

<Pxpu

Z Qr(k) — Qr( n+k))9k > 2t:|
1

>t]+P><,u

Zaﬁ(’@) >t]:P><pL >2t]
1

’ Z@w(k)rk
1

(due to the Lévy inequality and Fubini theorem)

D An(k)Th
1

Z Qr(k) — Qn( n—i—k))'rk
1

H Z Ar(n4+k)Tk
1

]

P xpu

>t}+qu

]

> 1]

n

> Qn(i)Tr
1

2n

Z Ar(k)Tk

§4P><,u{
1

Now the use of the obvious equality
o] =1 =]
1

proves the left-hand side inequality of (1) with ¢ = l
To prove the right-hand side inequality of (a), denote

n
Z Qg
1

>t}, t>0,

n

w) = iakrk(w) ;o n(mw) =D (Ar(ar-1) = Gn(2k))Tr(2k-1) (W) | (2)

1

where 7 : {1,...,2n} — {1,...,2n} is a permutation. One can easily verify
that

o D) = ). 3)

As above, p denotes the uniform distribution on the set II of all permu-
tations. Then (3) means that E, n(7,w) = 55 {(w), where Eg denotes the
expectation w.r.t. the probability measure @); we omit the index when (@ is
assumed.

Let us exploit the following Kahane inequality for a positive random variable
Y:

(EY)?

> o 2
PIY > ABY] 2 (1= N 0,
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where 0 < A < 1 is any real (see [3, Ch. I]). Then for any A we can write

eI} 2 n{r: It > A lntr, )1}
(1 - 22 )2

pm s ntr )l > A"

(1= M*(E lIn(m,w)])

> . (4)
By [In(m,w)|? AE, |[n(m, w2
On the other hand, for any s > 0, by the Markov inequality,
P{w: (Bulln(m,w) 1) Ijeyi> > 5}
2\1/2 p1/2
< BBy |l P IS > 1] (5)

S

According to the definition of n(m,w) (see (2)), and the triangle inequality,
2) 1/2
2> 1/2

@MW%@WW2§@%

Z Q7 (2k—1)T7(2k—1)
1

- (=]

Z Qr(2k) "7 (2k)
1

(by the Levy inequality)

2n

> agry,
1

2> 1/2

2n
D T
1

< 2<2Ep

which results in
2

Ep |In(r w)[I* < 8Ep

Now we can go on in (5):
< “8(BIE) Pl > ] (6)
Assume that E||¢]|2 =1 and put s = ¢oP~Y/2[||¢|| > t]. Then (6) gives
PU@MWMWW”>smamH>4sjfmm>ﬂ.
P [(Bylln(m,w) )Y < s [6@)] > 1] > PlllEw)l| > ¢]

8 8
- S Pl >4 = (1= 2 )Pllg@)l > . Y
Co Co
Let us now introduce the event
A={w: Bylln(m,w)|* < s [lEw)]| >t}
According to (7),
-8
Co

P(A) = (1= )Pl > 1,
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and according to (4) we have, for any w € A,

Y (1—X)2*  (1-— A)2t2
> = t
p{m s Inr o)l > S} > =25 52— Pllel > 1,
Integrating both sides with respect to w we get
At (1—N)%2
P pf(mw): In(mw)l > ) = S5 PPl > 4
2 2c§

(using another Kahane inequality P[|| > apre|l > 2t] < 4P%[|| S apre|| > ¢
from [2, Ch. 2])
> Ci(1= A P(le]l > 2t],

1
where Cy = £(1 — ?)% < 35

The last 1nequahty gives us that for each ¢t > 0,0 < A < 1,
)\t]

PllEl> 1] < Pxp

Il > -

_ &
(1— N2

C At
= e [l Tl > 5 )

where Cy is an absolute constant (e.g., Co = 3756 x 4 = 15024 fits). The
inequality is fine for large ¢’ s. We have to get rid of ¢~2 for small ¢’ s. Fix any
0 <ty < 1. Then (8) implies that for any t > tg

ol > %] 2 S P > ©

Now let t <ty and use the Kahane inequality to show that

quMmeHWMMW}ZU—”ﬂgmgiwz

o\ EIED?
= {1-1) (2n—1> EE (10)

P xpu

(the Khinchine-Kahane inequality % > 2712 see [3])

> (1~ 1) Plle] > 1.

Further, for left-hand side in (10) we have
Px plllnll > tE|n(x,w)|] < Pxu

;@@@UJ P><u{||77||> \/’}

Il >t

n
Bl

< Pl >

So, for any t <ty <1

Pllel > 1) < 22

% p
-tz M

Inll > 5551 (1)
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Now (9) and (11) imply the existence of an absolute constant C' such that
the inequality

Pllel > o) <P x ullall > 2 | = Cm [l +- il >
holds true for any ¢ > 0.

So, inequality (1) is proved under the condition that E||£||* = 1. For a general
collection (ay, -, az) C X we apply (1) to (ar/(EI€[)V2, ... aza/ (E]€]?)?)
and use the fact that (1) is true for any ¢ > 0. The part (a) of the Theorem is
proved.

Proof of part (b). Let (ai,...,as,) C X be an arbitrary collection. In order

to reduce the issue to a), consider the collection (by,...,bs,) , where by =
2n
akr—a,a=5-(a+--+as). Since b, =0 , we can write according to (a):
i
2n 2n
P|: Zaka’— Zak >t:|
1 1

[ 1 t
< Cm|llag, + -+ ap |+ Sl + -+ ool >

[ 1
< Cm ||lag, + -+ a,|| +§||Clk1 + - Foay, ||

1 t
+ gl + o agg | > }

c
t t

< C(m [3llaw, + -+ a | > 5|+ m[llagg + -+ ) > Z])
t

< 2Cm [l + -+ J.

So that as a new absolute constant in (b) one can choose 3C. O

2. COROLLARIES

Estimates for moments of the norm of Rademacher sums.

Corollary 1. Let (ay,...,as,) be any collection of a normed space X, ® :
R™ — R* be any continuous increasing function, ®(0) = 0. Then

(a)

ro ) <M S Bl 4 o).

(2”)' k1<...<kn

2n

> awT
1

where C is an absolute constant.

2n
(b) If Y ar =0, then
1

(n})*
c (2n)] > D(cllag, + - +aky,|]) < E(I><
T k1< <kn

).

2n
D T
1

where ¢ is another absolute constant.



242 S. CHOBANYAN AND H. SALEHI

Proof. (a). According to the part (b) of the Theorem and the integration by

parts formula,
) B / P{
0

2n
(I)( Zakrk
7 {|a ta ||>t]d<b(t)
J /{:1 kn C

2n
Z QT
1

> t] 1 (1)

!2
— CBOCllan + +anl) = € S @ (Cllag -+ an ).

(2n> k1< <kn

The part (b) can be derived from Theorem (a) in a similar way. [

A maximal inequality for exchangeable systems of random vari-
ables. Let X be a separable Banach space. A system (i,...,&,) of X-valued
random variables is called exchangeable if for any permutation 7 : {1,...,n} —
{1,...,n} the distribution of ({x(1y, . .., &) is the same as that of (&1,...,&,).
Concerning the issues of probability in a Banach space the reader is referred to
[5].

In [1] we have proved the following maximal inequality for exchangeable sys-

tems of random variables with i & =0
1

CPH'Z&MH > ﬂ < P[r£§5<||€1+---+fk!\ > 1| < OP[Hkark > é} (12)

where (r,,) is a system of Rademacher r.v.’s independent of &’s, ¢ > 0 is arbi-
trary, ¢ and C are absolute constants.

As before p stands for the uniform distribution on the set II of all permuta-
tions w: {1,...,2n} — {1,...,2n}.

Given a collection (ay, ..., as,) C X, we can introduce the following system of
exchangeable random variables &, : Il — X : & (7) = @y, k=1,...,2n.

2n
If > ar = 0, then the right-hand side of (1) for this system takes the form
1

<
,u{gi%x”&,r + o G| >t} _CP[

> 2]
C

2n
> agrk
1

(and using Theorem)
t t
< Com|llo + -+ | > 5| = Culllasy + -+ axll > |- (13)
Cl C11

Corollary 2 (Pruss, [4]).
(a) Let (ai,...,as,) be any collection of vectors of a normed space X (not

2n
necessarily with Y- ar = 0). Then for any t > 0
1

t
plmax [y + - + angl| > 1] < Cu{llawu) ot > S (14)

k<2n C']
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for some absolute constant C'.

(b) For any exchangeable system (&1, ..., &) of X-valued random variables
and any t > 0,

¢
Plmax &+ + &l > 1 gOP[||gl+...+§n|| saj

where C is an absolute constant.

2n
Proof. According to (13), (a) holds true when Y~ ar = 0. Now let (ay,...,as,)
1
be an arbitrary collection. Then for the new collection (b1, ..., ba,), by = ax —a,
k=1,...,2n, (14) is applicable, i.e.,

u [%35 (anq) = @) + -+ + () — @)[| > ¢]

§Cu[

1t
Un(1) + -+ F Un(ny — (01 —I—---+a2n)2H > C]

IN

Cu

1 t
HQ(am) + o () ‘ + |armsry + -+ arinyl| > }

C

t t
< C(M{”aw(l) + - —i—aﬂ(n)H > C} +u Haﬂ(n+1) + - —i—aﬂ(gn)H > 20)

t
<2C'[ - (n >}. 15
< 20p|llan) + -+ + az| > 55 (15)

Let us transform the left-hand side of (15)

[ max | (any — @) + -+ (angy — @) > 1]

k<2n

> pl|maxflazqy + - angy| = flar + -+ azl] > ¢]

- ¢
2 p{max flanq) + - + an || > t] —M{Ilal + ot ag|| > 2]

> pu| maxc ag() + - + an| > ¢]

[ t t
— p|l|az@y + -+ Ayl > 4] —M[||a7r(n+1) + ot || > 4} .

This along with (15) proves (a).
(b) We have

Plmax &+ -+ & > 1
(due to the exchangeability)
= Px u[g%%ggllfm) o el > 1]

(due to the part (a))

t
< CPx M[”fw(l) + -+ oml > C}



244 S. CHOBANYAN AND H. SALEHI

(due to the Fubini theorem and exchangeability)
t

= CP|||& + -+ & >=- O
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