ON THE TAIL ESTIMATION OF THE NORM OF RADEMACHER SUMS*

S. CHOBANYAN AND H. SALEHI

Abstract. The main aim of this paper is to prove a bilateral inequality for $P[\|\sum_{1}^{n} a_k r_k\| > t]$, where t > 0, (a_k) are elements of a normed space, while (r_k) are Rademacher functions. Then this inequality is applied for estimation of $E\|\sum_{1}^{n} a_k r_k\|$. As another corollary we give a maximal inequality for exchangeable random variables that recently has been published in [4].

2000 Mathematics Subject Classification: 60B12, 60G09.

Key words and phrases: Rademacher sums, tail estimation, exchangeable system of random variables, maximal inequality.

1. The Main Assertion

Theorem. Let (a_1, \ldots, a_{2n}) be a collection of elements of a normed space X (real or complex), r_1, \ldots, r_{2n} be Rademacher functions (i.i.d. random variables taking only two values -1 and +1 with equal probabilities) defined on a probability space (Ω, \mathcal{A}, P) .

(a) If $\sum_{k=1}^{2n} a_k = 0$, then for any t > 0 the following bilateral inequality holds

$$c m \Big[\|a_{k_1} + \dots + a_{k_n}\| > \frac{t}{c} \Big] \le P \Big[\Big\| \sum_{1}^{2n} a_k r_k \Big\| > t \Big]$$

$$\le C m \Big[\|a_{k_1} + \dots + a_{k_n}\| > \frac{t}{C} \Big],$$
 (1)

where c, C are absolute constants, while m is the uniform distribution on the set of all collections of integers $1 \le k_1 < k_2 < \cdots < k_n \le 2n$.

(b) The right-hand side inequality takes place in general, without the assumption $\sum_{k=1}^{2n} a_k = 0$ (may be with a different absolute constant C).

^{*} A general source for this article is the reference [4]; its first author is Professor N. Vakhania to whom this work is dedicated.

Proof. First let us prove the left-hand side inequality of (a). Denote by μ the uniform distribution on the set Π of all permutations of $\{1, \ldots, 2n\}$. Then we have for any collection of signs $\theta = (\theta_1, \ldots, \theta_n)$

$$\mu\left[\left\|\sum_{1}^{n} a_{\pi(k)}\right\| > t\right] = \mu\left[\left\|\sum_{1}^{n} (a_{\pi(k)} - a_{\pi(n+k)})\theta_{k}\right\| > 2t\right]$$

(since $\sum_{i=1}^{2n} a_i = 0$). This gives

$$\mu\left[\left\|\sum_{1}^{n} a_{\pi(k)}\right\| > t\right] = P \times \mu\left[\left\|\sum_{1}^{n} (a_{\pi(k)} - a_{\pi(n+k)})r_{k}\right\| > 2t\right]$$

$$\leq P \times \mu\left[\left\|\sum_{1}^{n} a_{\pi(k)}r_{k}\right\| > t\right] + P \times \mu\left[\left\|\sum_{1}^{n} a_{\pi(n+k)}r_{k}\right\| > t\right]$$

(due to the Lévy inequality and Fubini theorem)

$$P \times \mu \left[\left\| \sum_{1}^{n} a_{\pi(k)} r_{k} \right\| > t \right] + P \times \mu \left[\left\| \sum_{1}^{n} a_{\pi(k)} r_{k} \right\| > t \right]$$

$$\leq 4P \times \mu \left[\left\| \sum_{1}^{2n} a_{\pi(k)} r_{k} \right\| > t \right].$$

Now the use of the obvious equality

$$\mu\left[\left\|\sum_{1}^{n} a_{\pi(k)}\right\| > t\right] = m\left[\left\|\sum_{1}^{n} a_{k_{l}}\right\| > t\right], \quad t > 0,$$

proves the left-hand side inequality of (1) with $c = \frac{1}{4}$.

To prove the right-hand side inequality of (a), denote

$$\xi(\omega) = \sum_{1}^{2n} a_k r_k(\omega) , \quad \eta(\pi, \omega) = \sum_{1}^{n} (a_{\pi(2k-1)} - a_{\pi(2k)}) r_{\pi(2k-1)}(\omega) , \qquad (2)$$

where $\pi:\{1,\ldots,2n\}\to\{1,\ldots,2n\}$ is a permutation. One can easily verify that

$$\frac{1}{(2n)!} \sum_{\pi} \eta(\pi, \omega) = \frac{n}{2n-1} \xi(\omega). \tag{3}$$

As above, μ denotes the uniform distribution on the set Π of all permutations. Then (3) means that $E_{\mu} \eta(\pi, \omega) = \frac{n}{2n-1} \xi(\omega)$, where E_Q denotes the expectation w.r.t. the probability measure Q; we omit the index when Q is assumed.

Let us exploit the following Kahane inequality for a positive random variable Y:

$$P[Y > \lambda EY] \ge (1 - \lambda)^2 \frac{(EY)^2}{EY^2},$$

where $0 < \lambda < 1$ is any real (see [3, Ch. I]). Then for any λ we can write

$$\mu\left\{\pi: \|\eta(\pi,\omega)\| > \lambda \frac{n}{2n-1} \|\xi(\omega)\|\right\} \ge \mu\left\{\pi: \|\eta(\pi,\omega)\| > \lambda E_{\mu} \|\eta(\pi,\omega)\|\right\}$$

$$\ge \frac{(1-\lambda)^{2} (E_{\mu} \|\eta(\pi,\omega)\|)^{2}}{E_{\mu} \|\eta(\pi,\omega)\|^{2}} \ge \frac{(1-\lambda)^{2} \|\xi(\omega)\|^{2}}{4E_{\mu} \|\eta(\pi,\omega)\|^{2}}.$$
(4)

On the other hand, for any s > 0, by the Markov inequality,

$$P\left\{\omega: (E_{\mu}\|\eta(\pi,\omega)\|^{2})^{1/2}I_{[\|\xi(\omega)\|>t]} > s\right\}$$

$$\leq \frac{(E_{P}E_{\mu}\|\eta\|^{2})^{1/2}P^{1/2}[\|\xi(\omega)\|>t]}{s}.$$
(5)

According to the definition of $\eta(\pi,\omega)$ (see (2)), and the triangle inequality,

$$(E_P \| \eta(\pi, \omega) \|^2)^{1/2} \le \left(E_P \| \sum_{1}^{n} a_{\pi(2k-1)} r_{\pi(2k-1)} \|^2 \right)^{1/2}$$

$$+ \left(E_P \| \sum_{1}^{n} a_{\pi(2k)} r_{\pi(2k)} \|^2 \right)^{1/2}$$

(by the Levy inequality)

$$\leq 2 \Big(2E_P \Big\| \sum_{1}^{2n} a_k r_k \Big\|^2 \Big)^{1/2},$$

which results in

$$|E_P \|\eta(\pi,\omega)\|^2 \le 8E_P \|\sum_{1}^{2n} a_k r_k\|^2$$
.

Now we can go on in (5):

$$\leq \frac{1}{s} 8(E\|\xi\|^2)^{1/2} P^{1/2} [\|\xi\| > t]. \tag{6}$$

Assume that $E\|\xi\|^2=1$ and put $s=c_0P^{-1/2}[\|\xi\|>t]$. Then (6) gives

$$P\left[(E_{\mu}\|\eta(\pi,\omega)\|^{2})^{1/2} > s ; \|\xi(\omega)\| > t\right] \le \frac{8}{c_{0}} P\left[\|\xi\| > t\right].$$

$$P\left[(E_{\mu}\|\eta(\pi,\omega)\|^{2})^{1/2} \le s ; \|\xi(\omega)\| > t\right] \ge P\left[\|\xi(\omega)\| > t\right]$$

$$-\frac{8}{c_{0}} P\left[\|\xi(\omega)\| > t\right] = \left(1 - \frac{8}{c_{0}}\right) P\left[\|\xi(\omega)\| > t\right]. \tag{7}$$

Let us now introduce the event

$$A = \{ \omega : E_{\mu} || \eta(\pi, \omega) ||^{2} \le s ; ||\xi(\omega)|| > t \}.$$

According to (7),

$$P(A) \ge \left(1 - \frac{8}{c_0}\right) P[\|\xi(\omega)\| > t],$$

and according to (4) we have, for any $\omega \in A$,

$$\mu\Big\{\pi: \|\eta(\pi,\omega)\| > \frac{\lambda t}{2}\Big\} \ge \frac{(1-\lambda)^2 t^2}{2s^2} = \frac{(1-\lambda)^2 t^2}{2c_0^2} P[\|\xi\| > t].$$

Integrating both sides with respect to ω we get

$$P \times \mu \left\{ (\pi, \omega) : \|\eta(\pi, \omega)\| > \frac{\lambda t}{2} \right\} \ge \frac{(1 - \lambda)^2 t^2}{2c_0^2} P^2[\|\xi\| > t]$$

(using another Kahane inequality $P[\|\sum a_k r_k\| > 2t] \le 4P^2[\|\sum a_k r_k\| > t]$ from [2, Ch. 2])

$$\geq C_1(1-\lambda)^2 t^2 P[\|\xi\| > 2t],$$

where $C_1 = \frac{1}{8}(1 - \frac{8}{c_0})\frac{1}{c_0^2} \le \frac{1}{3756}$. The last inequality gives us that for each t > 0, $0 < \lambda < 1$,

$$P[\|\xi\| > t] \le \frac{C_2}{(1-\lambda)^2 t^2} P \times \mu \left[\|\eta\| > \frac{\lambda t}{4} \right]$$

$$= \frac{C_2}{(1-\lambda)^2 t^2} m \left[\|a_{k_1} + \dots + a_{k_n}\| > \frac{\lambda t}{8} \right], \tag{8}$$

where C_2 is an absolute constant (e.g., $C_2 = 3756 \times 4 = 15024$ fits). The inequality is fine for large t's. We have to get rid of t^{-2} for small t's. Fix any $0 < t_0 < 1$. Then (8) implies that for any $t > t_0$

$$P \times \mu \left[\|\eta\| > \frac{\lambda t}{2} \right] \ge \frac{(1-\lambda)^2 t_0^2}{C_2} P[\|\xi\| > t].$$
 (9)

Now let $t \leq t_0$ and use the Kahane inequality to show that

$$P \times \mu \left[\|\eta\| > tE \|\eta(\pi, \omega)\| \right] \ge (1 - t)^2 \frac{(E \|\eta(\pi, \omega)\|)^2}{E \|\eta(\pi, \omega)\|^2}$$
$$\ge (1 - t)^2 \left(\frac{n}{2n - 1} \right)^2 \frac{(E \|\xi\|)^2}{4E \|\xi\|^2}$$
(10)

(the Khinchine–Kahane inequality $\frac{E\|\xi\|}{(E\|\xi\|^2)^{1/2}} \ge 2^{-1/2}$, see [3])

$$\geq \frac{1}{32}(1-t_0)^2 P[\|\xi\| > t].$$

Further, for left-hand side in (10) we have

$$P \times \mu \left[\|\eta\| > tE \|\eta(\pi, \omega)\| \right] \leq P \times \mu \left[\|\eta\| > t \frac{n}{2n - 1} E \|\xi\| \right]$$

$$\leq P \times \mu \left[\|\eta\| > \frac{t}{2} \frac{E \|\xi\|}{(E \|\xi\|^2)^{1/2}} \right] \leq P \times \mu \left[\|\eta\| > \frac{t}{2\sqrt{2}} \right].$$

So, for any $t \leq t_0 < 1$

$$P[\|\xi\| > t] \le \frac{32}{(1 - t_0)^2} P \times \mu \left[\|\eta\| > \frac{t}{2\sqrt{2}} \right]. \tag{11}$$

Now (9) and (11) imply the existence of an absolute constant C such that the inequality

$$P[\|\xi\| > t] \le CP \times \mu[\|\eta\| > \frac{2t}{C}] = Cm[\|a_{k_1} + \dots + a_{k_n}\| > \frac{t}{C}]$$

holds true for any t > 0.

So, inequality (1) is proved under the condition that $E||\xi||^2 = 1$. For a general collection $(a_1, \ldots, a_{2n}) \subset X$ we apply (1) to $(a_1/(E\|\xi\|^2)^{1/2}, \ldots, a_{2n}/(E\|\xi\|^2)^{1/2})$ and use the fact that (1) is true for any t > 0. The part (a) of the Theorem is proved.

Proof of part (b). Let $(a_1, \ldots, a_{2n}) \subset X$ be an arbitrary collection. In order to reduce the issue to a), consider the collection (b_1,\ldots,b_{2n}) , where $b_k=$ $a_k - \bar{a}$, $\bar{a} = \frac{1}{2n}(a_1 + \cdots + a_{2n})$. Since $\sum_{k=1}^{2n} b_k = 0$, we can write according to (a):

$$P\left[\left\|\sum_{1}^{2n} a_{k} r_{k}\right\| - \left\|\sum_{1}^{2n} a_{k}\right\| > t\right]$$

$$\leq Cm \left[\left\|a_{k_{1}} + \dots + a_{k_{n}}\right\| + \frac{1}{2}\|a_{1} + \dots + a_{2n}\| > \frac{t}{C}\right]$$

$$\leq Cm \left[\left\|a_{k_{1}} + \dots + a_{k_{n}}\right\| + \frac{1}{2}\|a_{k_{1}} + \dots + a_{k_{n}}\|$$

$$+ \frac{1}{2}\|a_{k'_{1}} + \dots + a_{k'_{n}}\| > \frac{t}{C}\right]$$

$$\leq C\left(m \left[3\|a_{k_{1}} + \dots + a_{k_{n}}\| > \frac{t}{C}\right] + m\left[\|a_{k'_{1}} + \dots + a_{k'_{n}}\| > \frac{t}{C}\right]\right)$$

$$\leq 2C m \left[\|a_{k_{1}} + \dots + a_{k_{n}}\| > \frac{t}{3C}\right].$$

So that as a new absolute constant in (b) one can choose 3C.

2. Corollaries

Estimates for moments of the norm of Rademacher sums.

Corollary 1. Let (a_1, \ldots, a_{2n}) be any collection of a normed space X, Φ : $R^+ \to R^+$ be any continuous increasing function, $\Phi(0) = 0$. Then (a)

$$E\Phi\left(\left\|\sum_{1}^{2n} a_k r_k\right\|\right) \le C \frac{(n!)^2}{(2n)!} \sum_{k_1 < \dots < k_n} \Phi(C\|a_{k_1} + \dots + a_{k_n}\|),$$

where C is an absolute constant.
(b) If
$$\sum_{k=1}^{2n} a_k = 0$$
, then

$$c \frac{(n!)^2}{(2n)!} \sum_{k_1 < \dots < k_n} \Phi(c || a_{k_1} + \dots + ak_n ||) \le E \Phi(\left\| \sum_{1}^{2n} a_k r_k \right\|),$$

where c is another absolute constant.

Proof. (a). According to the part (b) of the Theorem and the integration by parts formula,

$$E \Phi\left(\left\|\sum_{1}^{2n} a_{k} r_{k}\right\|\right) = \int_{0}^{\infty} P\left[\left\|\sum_{1}^{2n} a_{k} r_{k}\right\| > t\right] \mu \Phi(t)$$

$$\leq \int_{0}^{\infty} Cm\left[\left\|a_{k_{1}} + \dots + a_{k_{n}}\right\| > \frac{t}{C}\right] d\Phi(t)$$

$$= CE\Phi(C\left\|a_{k_{1}} + \dots + a_{k_{n}}\right\|) = C\frac{(n!)^{2}}{(2n)!} \sum_{k_{1} < \dots < k_{n}} \Phi(C\left\|a_{k_{1}} + \dots + a_{k_{n}}\right\|).$$

The part (b) can be derived from Theorem (a) in a similar way. \Box

A maximal inequality for exchangeable systems of random variables. Let X be a separable Banach space. A system (ξ_1, \ldots, ξ_n) of X-valued random variables is called exchangeable if for any permutation $\pi : \{1, \ldots, n\} \to \{1, \ldots, n\}$ the distribution of $(\xi_{\pi(1)}, \ldots, \xi_{\pi(n)})$ is the same as that of (ξ_1, \ldots, ξ_n) . Concerning the issues of probability in a Banach space the reader is referred to [5].

In [1] we have proved the following maximal inequality for exchangeable systems of random variables with $\sum_{k=1}^{n} \xi_k = 0$:

$$cP\left[\left\|\sum \xi_k r_k\right\| > \frac{t}{c}\right] \le P\left[\max_{k \le n} \|\xi_1 + \dots + \xi_k\| > t\right] \le CP\left[\left\|\sum \xi_k r_k\right\| > \frac{t}{C}\right], \tag{12}$$

where (r_n) is a system of Rademacher r.v.'s independent of ξ 's, t > 0 is arbitrary, c and C are absolute constants.

As before μ stands for the uniform distribution on the set Π of all permutations $\pi: \{1, \ldots, 2n\} \to \{1, \ldots, 2n\}$.

Given a collection $(a_1, \ldots, a_{2n}) \subset X$, we can introduce the following system of exchangeable random variables $\xi_k : \Pi \to X : \quad \xi_k(\pi) = a_{\pi(k)}, \quad k = 1, \ldots, 2n$. If $\sum_{k=1}^{2n} a_k = 0$, then the right-hand side of (1) for this system takes the form

$$\mu \left[\max_{k \le 2n} \|a_{\pi(1)} + \dots + a_{\pi(k)}\| > t \right] \le CP \left[\left\| \sum_{1}^{2n} a_k r_k \right\| > \frac{t}{C} \right]$$

(and using Theorem)

$$\leq C_1 m \left[\|a_{k_1} + \dots + a_{k_n}\| > \frac{t}{C_1} \right] = C_1 \mu \left[\|a_{\pi(1)} + \dots + a_{\pi(n)}\| > \frac{t}{C_1} \right]. \tag{13}$$

Corollary 2 (Pruss, [4]).

(a) Let (a_1, \ldots, a_{2n}) be any collection of vectors of a normed space X (not necessarily with $\sum_{k=1}^{2n} a_k = 0$). Then for any t > 0

$$\mu \Big[\max_{k \le 2n} \|a_{\pi(1)} + \dots + a_{\pi(k)}\| > t \Big] \le C \mu \Big[\|a_{\pi(1)} + \dots + a_{\pi(n)}\| > \frac{t}{C} \Big]$$
 (14)

for some absolute constant C.

(b) For any exchangeable system $(\xi_1, \ldots, \xi_{2n})$ of X-valued random variables and any t > 0,

$$P\left[\max_{k \le 2n} \|\xi_1 + \dots + \xi_k\| > t\right] \le CP\left[\|\xi_1 + \dots + \xi_n\| > \frac{t}{C}\right],$$

where C is an absolute constant.

Proof. According to (13), (a) holds true when $\sum_{1}^{2n} a_k = 0$. Now let (a_1, \ldots, a_{2n}) be an arbitrary collection. Then for the new collection (b_1, \ldots, b_{2n}) , $b_k = a_k - \bar{a}$, $k = 1, \ldots, 2n$, (14) is applicable, i.e.,

$$\mu \left[\max_{k \leq 2n} \| (a_{\pi(1)} - \bar{a}) + \dots + (a_{\pi(k)} - \bar{a}) \| > t \right] \\
\leq C \mu \left[\left\| a_{\pi(1)} + \dots + a_{\pi(n)} - (a_1 + \dots + a_{2n}) \frac{1}{2} \right\| > \frac{t}{C} \right] \\
\leq C \mu \left[\left\| \frac{1}{2} (a_{\pi(1)} + \dots + a_{\pi(n)}) \right\| + \left\| a_{\pi(n+1)} + \dots + a_{\pi(2n)} \right\| > \frac{t}{C} \right] \\
\leq C \left(\mu \left[\left\| a_{\pi(1)} + \dots + a_{\pi(n)} \right\| > \frac{t}{C} \right] + \mu \left[\left\| a_{\pi(n+1)} + \dots + a_{\pi(2n)} \right\| > \frac{t}{2C} \right) \\
\leq 2C \mu \left[\left\| a_{\pi(1)} + \dots + a_{\pi(n)} \right\| > \frac{t}{2C} \right]. \tag{15}$$

Let us transform the left-hand side of (15)

$$\mu \Big[\max_{k \le 2n} \| (a_{\pi(1)} - \bar{a}) + \dots + (a_{\pi(k)} - \bar{a}) \| > t \Big]$$

$$\geq \mu \Big[\| \max_{k \le 2n} \| a_{\pi(1)} + \dots + a_{\pi(k)} \| - \| a_1 + \dots + a_{2n} \| \| > t \Big]$$

$$\geq \mu \Big[\max_{k \le 2n} \| a_{\pi(1)} + \dots + a_{\pi(k)} \| > t \Big] - \mu \Big[\| a_1 + \dots + a_{2n} \| > \frac{t}{2} \Big]$$

$$\geq \mu \Big[\max_{k \le 2n} \| a_{\pi(1)} + \dots + a_{\pi(k)} \| > t \Big]$$

$$- \mu \Big[\| a_{\pi(1)} + \dots + a_{\pi(n)} \| > \frac{t}{4} \Big] - \mu \Big[\| a_{\pi(n+1)} + \dots + a_{\pi(2n)} \| > \frac{t}{4} \Big].$$

This along with (15) proves (a).

(b) We have

$$P\Big[\max_{k\leq 2n}\|\xi_1+\cdots+\xi_k\|>t\Big]$$

(due to the exchangeability)

$$= P \times \mu \Big[\max_{k \le 2n} \|\xi_{\pi(1)} + \dots + \xi_{\pi(k)}\| > t \Big]$$

(due to the part (a))

$$\leq CP \times \mu \Big[\|\xi_{\pi(1)} + \dots + \xi_{\pi(n)}\| > \frac{t}{C} \Big]$$

(due to the Fubini theorem and exchangeability)

$$= CP \left[\|\xi_1 + \dots + \xi_n\| > \frac{t}{C} \right]. \quad \Box$$

References

- 1. S. Chobanyan, H. Salehi, Exact maximal inequalities for exchangeable systems of random variables. *Teoriya Veroyat. i Primenen.* **45**(2000), No. 3, 555–567.
- 2. J.-P. Kahane, Some random series of functions. D.C. Heat and Company, Lexington, Massachusetts, 1968.
- 3. R. Latala and K. Oleszkiewicz, On the best constant in the Khinchine–Kahane inequality. *Studia Math.* **109**(1994), 101–104.
- 4. A. R. Pruss, A maximal inequality for partial sums of finite exchangeable sequence of random variables. *Proc. Amer. Math. Soc.* **126**(1998), No. 6, 1811–1819.
- 5. N. N. VAKHANIA, V. I. TARIELADZE, and S. A. CHOBANYAN, Probability distributions on Banach spaces. D. Reidel Publishing Co., Dordrecht, 1987.

(Received 15.02.2001)

Authors' addresses:

S. Chobanyan Muskhelishvili Institute of Computational Mathematics Georgian Academy of Science 8, Akuri St., Tbilisi 380093 Georgia

Department of Statistics and Probability Michigan State University A 419 Wells Hall, East Lansing, MI 48824, U.S.A. E-mail: chobanyan@stt.msu.edu

H. Salehi

Department of Statistics and Probability Michigan State University A 415 Wells Hall, East Lansing, MI 48824, U.S.A.

E-mail: salehi@stt.msu.edu