ENTROPY NUMBERS OF CERTAIN SUMMATION OPERATORS

J. CREUTZIG AND W. LINDE

Abstract

Given nonnegative real sequences $a=\left(\alpha_{k}\right)_{k \in \mathbb{Z}}$ and $b=\left(\beta_{k}\right)_{k \in \mathbb{Z}}$ we study the generated summation operator $$
S_{a, b}(x):=\left(\alpha_{k}\left[\sum_{l<k} \beta_{l} x_{l}\right]\right)_{k \in \mathbb{Z}}, \quad x=\left(x_{k}\right)_{k \in \mathbb{Z}}
$$

regarded as a mapping from $\ell_{p}(\mathbb{Z})$ to $\ell_{q}(\mathbb{Z})$. We give necessary and sufficient conditions for the boundedness of $S_{a, b}$ and prove optimal estimates for its entropy numbers relative to the summation properties of a and b. Our results are applied to the investigation of the behaviour of

$$
\mathbb{P}\left(\sum_{k \in \mathbb{Z}} \alpha_{k}^{q}\left|W\left(t_{k}\right)\right|^{q}<\varepsilon^{q}\right) \quad \text { and } \quad \mathbb{P}\left(\sup _{k \in \mathbb{Z}} \alpha_{k}\left|W\left(t_{k}\right)\right|<\varepsilon\right)
$$

as $\varepsilon \rightarrow 0$, where $\left(t_{k}\right)_{k \in \mathbb{Z}}$ is some nondecreasing sequence in $[0, \infty)$ and $(W(t))_{t \geq 0}$ denotes the Wiener process.

2000 Mathematics Subject Classification: Primary: 47B06. Secondary: 47B37, 60G15.
Key words and phrases: Summation operator, entropy numbers, small ball probabilities.

1. Introduction

Volterra integral operators are known to play an important role within Functional Analysis as well as Probability Theory. A special class of interest is that of so-called weighted Volterra integral operators $T_{\rho, \psi}$ mapping $L_{p}(0, \infty)$ into $L_{q}(0, \infty)$ and defined by

$$
\begin{equation*}
T_{\rho, \psi}: f \mapsto \rho(s) \int_{0}^{s} \psi(t) f(t) d t \tag{1.1}
\end{equation*}
$$

where $\rho, \psi \geq 0$ are suitable functions on $(0, \infty)$. The main task is to describe properties of $T_{\rho, \psi}$ (boundedness, degree of compactness, etc.) in terms of certain properties of the weight functions ρ and ψ. Although several results have been proved in this direction ([12], [5], [6], [10]), interesting problems remain open. For example, we do not know of a complete characterization of ρ 's and ψ 's such that the approximation or entropy numbers of $T_{\rho, \psi}$ behave exactly as those of T_{1} on $[0,1]$. ($T_{1}=T_{1,1}$ denotes the ordinary integral operator).

Given sequences $a=\left(\alpha_{k}\right)_{k \in \mathbb{Z}}$ and $b=\left(\beta_{k}\right)_{k \in \mathbb{Z}}$, the summation operator $S_{a, b}$: $\ell_{p}(\mathbb{Z}) \rightarrow \ell_{q}(\mathbb{Z})$ defined by

$$
\begin{equation*}
\left.S_{a, b}: x=\left(x_{k}\right)_{k \in \mathbb{Z}} \mapsto\left(\alpha_{k} \sum_{j<k} \beta_{j} x_{j}\right)_{k \in \mathbb{Z}}\right) \tag{1.2}
\end{equation*}
$$

can be viewed as a discrete counterpart to weighted Volterra operators. Thus one may expect for $S_{a, b}$ similar compactness properties (relative to a and b) as for $T_{\rho, \psi}$ (relative to ρ and ψ). This is indeed so as long as one considers upper estimates for the entropy numbers $e_{n}\left(S_{a, b}\right)$. Here the most surprising result (Theorem 2.3) asserts that summation operators can behave as badly and irregularly as weighted integral operators. Yet the situation becomes completely different when considering lower estimates for $e_{n}\left(S_{a, b}\right)$. The deeper reason is as follows: If $\rho \psi>0$ on some interval (some set of positive measure suffices), then the entropy numbers of $T_{\rho, \psi}$ cannot tend to zero faster than those of T_{1} considered on this interval. Since $e_{n}\left(T_{1}\right) \approx n^{-1}$, this order is a natural lower bound for $e_{n}\left(T_{\rho, \psi}\right)$. In the case of summation operators such a "canonical" operator (as T_{1} for $T_{\rho, \psi}$) does not exist. Hence it is not surprising that $e_{n}\left(S_{a, b}\right)$ can tend to zero much faster than n^{-1}.

The aim of this paper is to investigate these phenomena more precisely. We state optimal conditions for a and b in order that $\sup _{n} n e_{n}\left(S_{a, b}\right)<\infty$. More precise statements can be formulated under some additional regularity assumptions on a and b, e.g., monotonicity or an exponential decay of the β_{k} 's.

As is well-known, the ordinary Volterra operator T_{1} is closely related to Brownian motion. More precisely, let $\left(\xi_{k}\right)_{k=1}^{\infty}$ be an i.i.d. sequence of standard normal distributed random variables and let $\left(f_{k}\right)_{k=1}^{\infty}$ be some orthonormal basis in $L_{2}(0, \infty)$. Then

$$
\begin{equation*}
W(t)=\sum_{k=1}^{\infty} \xi_{k}\left(T_{1} f_{k}\right)(t), \quad t \geq 0 \tag{1.3}
\end{equation*}
$$

is a standard Wiener process over $(0, \infty)$. In this sense, summation operators $S_{a, b}: \ell_{2} \rightarrow \ell_{q}$ generate Gaussian sequences $X=\left(X_{k}\right)_{k \in \mathbb{Z}} \in \ell_{q}(\mathbb{Z})$ with

$$
\begin{equation*}
X_{k}=\alpha_{k} W\left(t_{k}\right), \quad k \in \mathbb{Z} \tag{1.4}
\end{equation*}
$$

where t_{k} 's are defined via $\beta_{k}^{2}=t_{k+1}-t_{k}$.
Recent results ([9], [11]) relate the entropy behaviour of an operator with estimates for the probability of small balls of the generated Gaussian random variable. We transform the entropy results proved for $S_{a, b}$ into the small ball estimates for $X=\left(X_{k}\right)_{k \in \mathbb{Z}}$ defined above. Hence we find sufficient conditions for the α_{k} 's and t_{k} 's such that

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} \varepsilon^{2} \log \mathbb{P}\left(\|X\|_{q}<\varepsilon\right)=0 \tag{1.5}
\end{equation*}
$$

These conditions turn out to be (in this language) the best possible ones.
The paper is organized as follows. In Section 2, the main results about the entropy of $S_{a, b}$ are stated. Section 3 provides basic tools and well-known facts,
which are used in Section 4 to prove our results. Section 5 is devoted to the study of some examples. Finally, in Section 6 we establish some small ball estimates for Gaussian vectors as in (1.4), using our entropy results for $S_{a, b}$ proved before.

2. Notation and Main Results

For a given sequence $x=\left(x_{k}\right)_{k \in \mathbb{Z}} \subseteq \mathbb{R}$ and $p \in[1, \infty]$ set

$$
\|x\|_{p}:=\left(\sum_{k=-\infty}^{\infty}\left|x_{k}\right|^{p}\right)^{1 / p} \text { if } p<\infty, \quad\|x\|_{\infty}:=\sup _{k \in \mathbb{Z}}\left|x_{k}\right|
$$

and let $\ell_{p}(\mathbb{Z}):=\left\{x:\|x\|_{p}<\infty\right\}$. As usual, for $p \in[1, \infty]$ the adjoint p^{\prime} is given by $1 / p+1 / p^{\prime}=1$. Now, let $p, q \in[1, \infty]$ be arbitrary. For nonnegative sequences $a=\left(\alpha_{k}\right)_{k \in \mathbb{Z}}$ and $b=\left(\beta_{k}\right)_{k \in \mathbb{Z}}$ satisfying

$$
\begin{equation*}
A_{k}:=\left(\sum_{l \geq k} \alpha_{l}^{q}\right)^{1 / q}<\infty \quad \text { and } \quad B_{k}:=\left(\sum_{l<k} \beta_{l}^{p^{\prime}}\right)^{1 / p^{\prime}}<\infty \tag{2.1}
\end{equation*}
$$

for all $k \in \mathbb{Z}$ (with obvious modifications for $q=\infty$ or $p=1$), the expression

$$
\begin{equation*}
S_{a, b}(x):=\left(\alpha_{k}\left[\sum_{l<k} \beta_{l} x_{l}\right]\right)_{k \in \mathbb{Z}} \tag{2.2}
\end{equation*}
$$

is well-defined for any $x=\left(x_{k}\right)_{k \in \mathbb{Z}} \in \ell_{p}(\mathbb{Z})$. Our first result is a version of the well-known Maz'ja-Rosin Theorem (see, e.g., [12], pp. 39-51), characterizing the boundedness of $S_{a, b}$ in terms of A_{k} and B_{k} given in (2.1):

Theorem 2.1. Under the above assumptions, the operator $S_{a, b}$ is well-defined and bounded from $\ell_{p}(\mathbb{Z})$ to $\ell_{q}(\mathbb{Z})$ iff $D(a, b)<\infty$, where

$$
D(a, b):=\left\{\begin{array}{cl}
\sup _{k \in \mathbb{Z}}\left[A_{k} \cdot B_{k}\right] & \text { for } p \leq q, \tag{2.3}\\
\left(\sum_{k \in \mathbb{Z}}\left[A_{k} \cdot B_{k}^{\frac{p^{\prime}}{q^{\prime}}}\right]^{\frac{p q}{p-q}} \beta_{k-1}^{p^{\prime}}\right)^{\frac{p-q}{p q}} & \text { for } p>q .
\end{array}\right.
$$

Moreover, there is a universal $C_{p, q}>0$ with

$$
\begin{equation*}
\frac{1}{C_{p, q}} D(a, b) \leq\left\|S_{a, b}: \ell_{p}(\mathbb{Z}) \rightarrow \ell_{q}(\mathbb{Z})\right\| \leq C_{p, q} D(a, b) \tag{2.4}
\end{equation*}
$$

Our next aim is to describe the compactness of $S_{a, b}$ in terms of entropy numbers. For the introduction of entropy numbers, let E, F be Banach spaces with unit balls B_{E}, B_{F}. If $T: E \rightarrow F$ is a linear bounded operator, we set the (dyadic) entropy numbers of T to be

$$
e_{n}(T):=\inf \left\{\varepsilon>0: \exists y_{1}, \ldots, y_{2^{n-1}} \in F \text { s. t. } T\left(B_{E}\right) \subseteq \bigcup_{k=1}^{2^{n-1}}\left(y_{k}+\varepsilon B_{F}\right)\right\}
$$

where "+" means the Minkowski sum. It is well-known that T is compact iff $e_{n}(T) \rightarrow 0$, so that it makes sense to consider the speed of decay of $e_{n}(T)$ as a measure for the compactness of T.

To avoid some technical and notational problems, from now on it is assumed that $p>1$, hence $p^{\prime}<\infty$. In the following, the number $r>0$ defined by

$$
\begin{equation*}
1 / r:=1 / q+1 / p^{\prime} \tag{2.5}
\end{equation*}
$$

will play a crucial role. Since $p>1$, we always have $r<\infty$.
Later on, we will use the monotone rearrangement δ_{k}^{*} of a sequence $\left(\delta_{k}\right)_{k \in \mathbb{Z}}$. By this we mean that the sequence $\left(\delta_{k}^{*}\right)_{k \geq 0}$ is the nonincreasing rearrangement of $\left(\delta_{k}\right)_{k \geq 0}$, and that $\left(\delta_{k}^{*}\right)_{k \leq-1}$ is the nondecreasing rearrangement of $\left(\delta_{k}\right)_{k \leq-1}$ (i.e., $\left(\delta_{-k}^{*}\right)_{k \geq 1}$ is the nonincreasing rearrangement of $\left.\left(\delta_{-k}\right)_{k \geq 1}\right)$.

For the nonnegative sequences a and b satisfying (2.1), we define

$$
\begin{equation*}
v_{k}:=\inf \left\{m \in \mathbb{Z}: \sum_{l \leq m} \beta_{l}^{p^{\prime}} \geq 2^{k}\right\} \tag{2.6}
\end{equation*}
$$

for any $k \in \mathbb{Z}$, where $\inf \varnothing:=\infty$, and with these v_{k} 's we set

$$
\delta_{k}(a, b):=\left\{\begin{array}{cl}
2^{k / p^{\prime}}\left(\sum_{l=v_{k}+1}^{v_{k+1}} \alpha_{l}^{q}\right)^{1 / q} & \text { if } v_{k}<\infty \tag{2.7}\\
0 & \text { for } v_{k}=\infty
\end{array}\right.
$$

Here, as well as in the following, the empty sum has to be read as 0 . With r given by (2.5) we define

$$
\begin{equation*}
|(a, b)|_{r}:=\left\|\left(\delta_{k}(a, b)\right)_{k \in \mathbb{Z}}\right\|_{r}=\left(\sum_{k \in \mathbb{Z}} \delta_{k}(a, b)^{r}\right)^{1 / r} \tag{2.8}
\end{equation*}
$$

and

$$
\begin{equation*}
|(a, b)|_{r, \infty}:=\sup _{k \geq 1} k^{1 / r}\left(\delta_{k-1}^{*}(a, b)+\delta_{-k}^{*}(a, b)\right) \tag{2.9}
\end{equation*}
$$

It is easy to see that

$$
\left\|\left(\alpha_{l} \beta_{l-1}\right)_{l \in \mathbb{Z}}\right\|_{r} \leq|(a, b)|_{r} \quad \text { and } \quad|(a, b)|_{r, \infty} \leq c|(a, b)|_{r}
$$

On the other hand, there are easy examples such that $|(a, b)|_{r, \infty}<\infty$ and $\left\|\left(\alpha_{l} \beta_{l-1}\right)_{l \in \mathbb{Z}}\right\|_{r}=\infty$, and vice versa, i.e., these two expressions are not comparable.

Let us formulate now the main results of this paper. We have the following general upper estimate for the entropy numbers of $S_{a, b}$:

Theorem 2.2. Let $S_{a, b} \operatorname{map} \ell_{p}(\mathbb{Z})$ into $\ell_{q}(\mathbb{Z})$.
(1) There is a numerical constant $c>0$ such that

$$
\begin{equation*}
\sup _{n \in \mathbb{N}} n e_{n}\left(S_{a, b}\right) \leq c|(a, b)|_{r} . \tag{2.10}
\end{equation*}
$$

(2) Whenever the right hand side of (2.10) is finite, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} n e_{n}\left(S_{a, b}\right)=0 \tag{2.11}
\end{equation*}
$$

The next result shows that estimate (2.10) cannot in general be improved to an estimate neither against $|(a, b)|_{r, \infty}$ nor against $\left\|\left(\alpha_{l} \beta_{l-1}\right)_{l \in \mathbb{Z}}\right\|_{r}$:

Theorem 2.3. For any sequence $d_{k}>0, k=1,2, \ldots$ satisfying $\sum_{k} d_{k}^{q}<\infty$ and $\sum_{k} d_{k}^{r}=\infty$ there are sequences $a=\left(\alpha_{k}\right)_{k \geq 1}$ and $b=\left(\beta_{k}\right)_{k \geq 1}$ such that:
(1) The operator $S_{a, b}: \ell_{p} \rightarrow \ell_{q}$ is bounded.
(2) $\sum_{k=1}^{\infty}\left[\alpha_{k+1} \beta_{k}\right]^{r}<\infty$.
(3) $d_{k}=\delta_{k}(a, b)=2^{k / p^{\prime}}\left(\sum_{l=v_{k}+1}^{v_{k+1}} \alpha_{l}^{q}\right)^{1 / q}$ for all $k \geq 1$
(4) $\sup _{n \in \mathbb{N}} n e_{n}\left(S_{a, b}\right)=\infty$.

On the other hand, under some additional regularity assumptions about a and b assertion (2.11) holds even under weaker conditions. More precisely, the following is valid.

Proposition 2.4. For a, b given, assume that $\alpha_{k}^{q} / \beta_{k}^{p^{\prime}}$ is monotone near $\pm \infty$ if $q<\infty$, or that α_{k} is monotone near $\pm \infty$ if $q=\infty$. Then the condition $\left\|\left(\alpha_{l} \beta_{l-1}\right)_{l \in \mathbb{Z}}\right\|_{r}<\infty$ implies

$$
\lim _{n \rightarrow \infty} n e_{n}\left(S_{a, b}\right)=0
$$

For sequences b which do not increase too fast (e.g., not superexponentially) at $+\infty$, and do not decrease too fast at $-\infty$, we have the following lower estimate for the entropy numbers of $S_{a, b}$.

Theorem 2.5. Assume that there is $m \geq 1$ such that

$$
\begin{equation*}
\left|\left\{k^{\prime} \in \mathbb{Z}: v_{k^{\prime}}=v_{k}\right\}\right| \leq m \tag{2.12}
\end{equation*}
$$

for all $k \in \mathbb{Z}$. Then, for $\rho>0$ with $1 / s:=\rho-1 / p+1 / q>0$ we have

$$
\begin{equation*}
\sup _{n \in \mathbb{N}} n^{\rho} e_{n}\left(S_{a, b}: \ell_{p} \rightarrow \ell_{q}\right) \geq c \cdot \sup _{n \in \mathbb{N}} n^{1 / s}\left(\delta_{n-1}^{*}(a, b)+\delta_{-n}^{*}(a, b)\right) \tag{2.13}
\end{equation*}
$$

with $c>0$ only depending on p, q, m and ρ. In particular, if $\rho=1$, then

$$
\begin{equation*}
\sup _{n \in \mathbb{N}} n e_{n}\left(S_{a, b}: \ell_{p} \rightarrow \ell_{q}\right) \geq c|(a, b)|_{r, \infty} \tag{2.14}
\end{equation*}
$$

Moreover, for ρ and s in (2.13) we have

$$
\begin{equation*}
\varliminf_{n \rightarrow \infty} n^{\rho} e_{n}\left(S_{a, b}: \ell_{p} \rightarrow \ell_{q}\right) \geq c \varliminf_{n \rightarrow \infty} n^{1 / s}\left(\delta_{n-1}^{*}(a, b)+\delta_{-n}^{*}(a, b)\right) \tag{2.15}
\end{equation*}
$$

Remark. Note that for $v_{k}<\infty, k \in \mathbb{Z}$, i.e., for $\sum_{l \in \mathbb{Z}} \beta_{l}^{p^{\prime}}=\infty$, condition (2.12) is equivalent to

$$
\beta_{k} \leq \gamma\left(\sum_{l<k} \beta_{l}^{p^{\prime}}\right)^{1 / p^{\prime}}, \quad k \in \mathbb{Z}
$$

for some $\gamma>0$.

Of course, condition (2.12) is violated provided that (a) $\beta_{l}=0$ if $l \leq l_{0}$ for some $l_{0} \in \mathbb{Z}$ or
(b) $\sum_{l \in \mathbb{Z}} \beta_{l}^{p^{\prime}}<\infty$.

Here we have the following weaker variant of Theorem 2.5.
Proposition 2.6. Suppose that there are some $k_{0}, k_{1} \in \mathbb{Z}$ such that in case (a) condition (2.12) holds for all $k \geq k_{0}$ or in case (b) for all $k \leq k_{1}$. Then if $1 / s=\rho-1 / p+1 / q>0$, from

$$
\sup _{n \in \mathbb{N}} n^{\rho} e_{n}\left(S_{a, b}: \ell_{p} \rightarrow \ell_{q}\right)<\infty
$$

we conclude that

$$
\sup _{n \in \mathbb{N}} n^{1 / s}\left(\delta_{n-1}^{*}(a, b)+\delta_{-n}^{*}(a, b)\right)<\infty
$$

and (2.15) holds for $S_{a, b}$ as well.
Note that in case (a), $\delta_{-n}(a, b)=0$ for $n \geq n_{0}$, and in case (b), $\delta_{n-1}(a, b)=0$ for $n \geq n_{1}$ with certain $n_{0}, n_{1} \in \mathbb{Z}$. Examples (see Proposition 5.3) show that Theorem 2.5 and Proposition 2.6 become false without an additional regularity assumption.

3. Basic Tools

3.1. Connection to Integral Operators. Let $\rho, \psi:(0, \infty) \rightarrow[0, \infty)$ be measurable functions with

$$
\begin{equation*}
\rho \in L_{q}(x, \infty) \quad \text { and } \quad \psi \in L_{p^{\prime}}(0, x) \tag{3.1}
\end{equation*}
$$

for any $x \in(0, \infty)$. Then for $f \in L_{p}(0, \infty)$ the function

$$
\begin{equation*}
\left(T_{\rho, \psi}(f)\right)(s):=\rho(s) \int_{0}^{s} \psi(t) f(t) d t \tag{3.2}
\end{equation*}
$$

is well-defined. The operator $T_{\rho, \psi}$ is called the Volterra integral operator induced by ρ and ψ. There is a close connection between summation and integral operators. Generally speaking, one can always consider a summation operator as "part" of a special Volterra integral operator. This allows one to use, for these operators, results established in [10].

Let us denote $\Delta_{k}:=\left[2^{k}, 2^{k+1}\right)$ for $k \in \mathbb{Z}$, and set

$$
\begin{equation*}
I_{k}:=\Delta_{2 k}=\left[2^{2 k}, 2^{2 k+1}\right) \quad \text { and } \quad J_{k}:=\Delta_{2 k+1}=\left[2^{2 k+1}, 2^{2 k+2}\right) . \tag{3.3}
\end{equation*}
$$

For any set $X \subseteq(0, \infty)$, let $\mathbf{1}_{X}$ be the indicator function of X. We denote by $\ell_{0}(\mathbb{Z}):=\mathbb{R}^{\mathbb{Z}}$ the space of all real sequences and set $L_{0}(0, \infty)$ to be the space of all equivalence classes of measurable functions. It is easily checked that for any $p \in[1, \infty]$ the mappings

$$
\begin{equation*}
\Phi_{I}^{p}: \ell_{0}(\mathbb{Z}) \rightarrow L_{0}(0, \infty), \quad\left(x_{k}\right)_{k \in \mathbb{Z}} \mapsto \sum_{k \in \mathbb{Z}} x_{k} \mathbf{1}_{I_{k}}\left|I_{k}\right|^{-1 / p} \tag{3.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\Phi_{J}^{p}: \ell_{0}(\mathbb{Z}) \rightarrow L_{0}(0, \infty), \quad\left(x_{k}\right)_{k \in \mathbb{Z}} \mapsto \sum_{k \in \mathbb{Z}} x_{k} \mathbf{1}_{J_{k}}\left|J_{k}\right|^{-1 / p} \tag{3.5}
\end{equation*}
$$

induce isometric embeddings of $\ell_{p}(\mathbb{Z})$ into $L_{p}(0, \infty)$ (for $p=\infty$ let, as usual, $1 / p=0)$. Given now sequences $a=\left(\alpha_{k}\right)_{k \in \mathbb{Z}}$ and $b=\left(\beta_{k}\right)_{k \in \mathbb{Z}}$, we set

$$
\begin{equation*}
\rho:=\Phi_{I}^{q}(a) \quad \text { and } \quad \psi:=\Phi_{J}^{p^{\prime}}(b) \tag{3.6}
\end{equation*}
$$

i.e., we have

$$
\begin{equation*}
\rho=\sum_{k \in \mathbb{Z}} \alpha_{k} \mathbf{1}_{I_{k}}\left|I_{k}\right|^{-1 / q} \quad \text { and } \quad \psi=\sum_{k \in \mathbb{Z}} \beta_{k} \mathbf{1}_{J_{k}}\left|J_{k}\right|^{-1 / p^{\prime}} . \tag{3.7}
\end{equation*}
$$

The connection between summation and integral operators reads as follows:
Proposition 3.1. In the above setting, ρ and ψ defined in (3.6) satisfy (3.1) if and only if a and b satisfy (2.1), and it holds

$$
\begin{equation*}
T_{\rho, \psi} \circ \Phi_{J}^{p}=\Phi_{I}^{q} \circ S_{a, b} \tag{3.8}
\end{equation*}
$$

Moreover, $T_{\rho, \psi}$ is bounded from L_{p} to L_{q} iff $S_{a, b}$ is so from ℓ_{p} to ℓ_{q}. In this case there is an operator $Q: L_{p}(0, \infty) \rightarrow \ell_{p}(\mathbb{Z})$ with $\|Q\| \leq 1$ such that for all $f \in L_{p}(0, \infty)$ we have

$$
\begin{equation*}
\left\|T_{\rho, \psi}(f)\right\|_{q}=\left\|S_{a, b} \circ Q(f)\right\|_{q} \tag{3.9}
\end{equation*}
$$

In particular,

$$
\begin{equation*}
\left\|T_{\rho, \psi}: L_{p} \rightarrow L_{q}\right\|=\left\|S_{a, b}: \ell_{p} \rightarrow \ell_{q}\right\| . \tag{3.10}
\end{equation*}
$$

Proof. The equivalence of (3.1) and (2.1) is clear by the definition of ρ and ψ and of Φ_{I}^{q} and $\Phi_{J}^{p^{\prime}}$, respectively. We easily compute

$$
T_{\rho, \psi}\left(\Phi_{J}^{p}\left(x_{k}\right)\right)=\sum_{k \in \mathbb{Z}} \alpha_{k}\left|I_{k}\right|^{-1 / q}\left[\sum_{l<k} \beta_{l} x_{l}\right] \mathbf{1}_{I_{k}}=\Phi_{I}^{q}\left(S_{a, b}\left(x_{k}\right)\right) .
$$

This verifies that (3.8) holds.
If $T_{\rho, \psi}$ is bounded, then, due to (3.8), so is the operator $S_{a, b}$, and $\left\|S_{a, b}\right\| \leq$ $\left\|T_{\rho, \psi}\right\|$. Conversely, if $S_{a, b}$ is bounded and $f \in L_{p}((0, \infty))$, set

$$
\begin{equation*}
Q(f):=\left(\left|J_{k}\right|^{-1 / p^{\prime}} \int_{J_{k}} f(t) d t\right)_{k \in \mathbb{Z}} \tag{3.11}
\end{equation*}
$$

Due to Hölder's inequality, $Q(f) \in \ell_{p}$ with $\|Q(f)\|_{p} \leq\|f\|_{p}$, and, additionally, we find

$$
\begin{equation*}
\left\|T_{\rho, \psi}(f)\right\|_{q}^{q}=\left.\left.\sum_{k \in \mathbb{Z}} \alpha_{k}^{q}\left|\sum_{l<k} \beta_{l}\right| J_{l}\right|^{-1 / p^{\prime}} \int_{J_{l}} f(t) d t\right|^{q}=\left\|S_{a, b}(Q(f))\right\|_{q}^{q} . \tag{3.12}
\end{equation*}
$$

This proves (3.9), and implies, in particular, that $\left\|T_{\rho, \psi}\right\| \leq\left\|S_{a, b}\right\|$ which completes the proof.

As a simple corollary we have

Corollary 3.2. For a and b satisfying (2.1), and ρ and ψ defined as in (3.7) we have

$$
(1 / 2) e_{n}\left(T_{\rho, \psi}\right) \leq e_{n}\left(S_{a, b}\right) \leq 2 e_{n}\left(T_{\rho, \psi}\right)
$$

Proof. First note that

$$
e_{n}(T) \leq 2 e_{n}(J \circ T)
$$

for any operator $T: E \rightarrow F$ and any isometric embedding $J: F \rightarrow F_{0}$. Hence, by (3.8) we conclude

$$
e_{n}\left(S_{a, b}\right) \leq 2 e_{n}\left(\Phi_{I}^{q} \circ S_{a, b}\right)=2 e_{n}\left(T_{\rho, \psi} \circ \Phi_{J}^{p}\right) \leq 2 e_{n}\left(T_{\rho, \psi}\right)\left\|\Phi_{J}^{p}\right\| \leq 2 e_{n}\left(T_{\rho, \psi}\right) .
$$

On the other hand, by (3.9) we have (use Lemma 4.2 in [10], yet observe that there the entropy numbers were defined slightly different so that additional factor 2 had to be added)

$$
e_{n}\left(T_{\rho, \psi}\right) \leq 2 e_{n}\left(S_{a, b} \circ Q\right) \leq 2 e_{n}\left(S_{a, b}\right)\|Q\| \leq 2 e_{n}\left(S_{a, b}\right),
$$

which completes the proof.

For later use we cite now some of the main results in [10] about weighted Volterra integral operators. Let ρ and ψ now be arbitrary nonnegative measurable functions on $(0, \infty)$ satisfying (3.1). For $s>0$, set

$$
\begin{equation*}
R(s):=\|\rho\|_{L_{q}(s, \infty)} \quad \text { and } \quad \Psi(s):=\|\psi\|_{L_{p^{\prime}}(0, s)} \tag{3.13}
\end{equation*}
$$

The following version of the Maz'ja-Rosin Theorem can be found in [10], Theorem 6.1:

Theorem 3.3. Let $1 \leq p, q \leq \infty$ and $\rho, \psi \geq 0$ on $(0, \infty)$. Then $T_{\rho, \psi}$ is bounded from $L_{p}(0, \infty)$ into $L_{q}(0, \infty)$ iff $\mathcal{D}(\rho, \psi)<\infty$, where

$$
\mathcal{D}(\rho, \psi):=\left\{\begin{array}{cl}
\sup _{s>0} R(s) \Psi(s) & \text { if } p \leq q \tag{3.14}\\
\left(\int_{0}^{\infty}\left[R(s) \cdot \Psi(s)^{p^{\prime} / q^{\prime}}\right]^{\frac{p q}{p-q}} \psi(s)^{p^{\prime}} d s\right)^{\frac{p-q}{p q}} & \text { for } p>q
\end{array}\right.
$$

Moreover, there are universal constants $c_{p, q}, C_{p, q}>0$ such that

$$
\begin{equation*}
c_{p, q} \mathcal{D}(\rho, \psi) \leq\left\|T_{\rho, \psi}: L_{p} \rightarrow L_{q}\right\| \leq C_{p, q} \mathcal{D}(\rho, \psi) \tag{3.15}
\end{equation*}
$$

Now we turn to upper estimates for the entropy numbers of $T_{\rho, \psi}$. Therefore set

$$
\begin{equation*}
u_{k}:=\inf \left\{s>0: \int_{0}^{s} \psi(t)^{p^{\prime}} d t \geq 2^{k}\right\}, \quad k \in \mathbb{Z} \tag{3.16}
\end{equation*}
$$

and define

$$
\begin{equation*}
\delta_{k}(\rho, \psi):=2^{k / p^{\prime}}\left(\int_{u_{k}}^{u_{k+1}} \psi(t)^{q} d t\right)^{1 / q} \tag{3.17}
\end{equation*}
$$

Similarly to the setting for a and b, with r given by (2.5) define

$$
\begin{equation*}
|(\rho, \psi)|_{r}:=\left\|\left(\delta_{k}(\rho, \psi)\right)_{k \in \mathbb{Z}}\right\|_{r}=\left(\sum_{k \in \mathbb{Z}} \delta_{k}(a, b)^{r}\right)^{1 / r} \tag{3.18}
\end{equation*}
$$

and

$$
\begin{equation*}
|(\rho, \psi)|_{r, \infty}:=\sup _{k \geq 1} k^{1 / r}\left(\delta_{k}^{*}(a, b)+\delta_{-k+1}^{*}(a, b)\right) . \tag{3.19}
\end{equation*}
$$

With this notation we have ([10], Theorem 4.6):
Theorem 3.4. Let $p>1$ and $1 \leq q \leq \infty$. Then for all ρ, ψ as above, the following statements are valid.
(1) For $T_{\rho, \psi}$ as in (3.2), we have $\sup _{n} n e_{n}\left(T_{\rho, \psi}\right) \leq C|(\rho, \psi)|_{r}$.
(2) Whenever $|(\rho, \psi)|_{r}<\infty$, we even have

$$
\begin{equation*}
\varlimsup_{n \rightarrow \infty} n e_{n}\left(T_{\rho, \psi}\right) \leq C\|\rho \psi\|_{r} \tag{3.20}
\end{equation*}
$$

Remarks. (1) There exist functions ρ and ψ (cf. [10], Theorem 2.3) with $\|\rho \psi\|_{r}<\infty$ such that $\varlimsup_{n \rightarrow \infty} n e_{n}\left(T_{\rho, \psi}\right)=\infty$. But note that since these ρ 's and ψ 's are not of form (3.7) with suitable sequences a and b, hence they cannot be used to construct similar examples for summation operators. However to prove Theorem 2.3 the general ideas may be taken over in order.
(2) In [10] lower estimates for $e_{n}\left(T_{\rho, \psi}\right)$ were also proved. But unfortunately all these lower bounds turn out to be zero in the case of disjointly supported functions ρ and ψ. So they do not provide any information about lower bounds for $e_{n}\left(S_{a, b}\right)$.
3.2. Entropy Numbers of Diagonal Operators. For a given sequence $\sigma=$ $\left(\sigma_{k}\right)_{k \geq 1}$ of nonnegative numbers, one defines the diagonal operator

$$
\begin{equation*}
D_{\sigma}(x):=\left(\sigma_{k} x_{k}\right)_{k \in \mathbb{N}}, \quad x=\left(x_{k}\right)_{k \in \mathbb{N}} . \tag{3.21}
\end{equation*}
$$

Considered as a mapping from $\ell_{p}(\mathbb{N})$ to $\ell_{q}(\mathbb{N})$, the entropy of these operators can be estimated by means of σ_{k} 's. As an example, we have the following special case of general results in [1] or [13].

Theorem 3.5. Let $p, q \in[1, \infty]$ be arbitrary, and let $\sigma=\left(\sigma_{k}\right)_{k \geq 0}$ be a nonnegative bounded sequence of real numbers. Let $\rho>0$ satisfy $1 / s:=\rho-1 / p+$ $1 / q>0$. Then there are constants $c_{1}, c_{2}>0$ depending on p, q and ρ only such that

$$
\begin{equation*}
c_{1} \sup _{n \in \mathbb{N}} n^{1 / s} \sigma_{n}^{*} \leq \sup _{n \in \mathbb{N}} n^{\rho} e_{n}\left(D_{\sigma}: \ell_{p}(\mathbb{N}) \rightarrow \ell_{q}(\mathbb{N})\right) \leq c_{2} \sup _{n \in \mathbb{N}} n^{1 / s} \sigma_{n}^{*} . \tag{3.22}
\end{equation*}
$$

For the lower bound, one even has

$$
\begin{equation*}
n^{1 / q-1 / p} \sigma_{n}^{*} \leq 6 e_{n}\left(D_{\sigma}\right) \tag{3.23}
\end{equation*}
$$

Let us draw an easy conclusion out of this:

Corollary 3.6. In the above setting,

$$
\begin{equation*}
c_{1} \underline{\lim }_{n \rightarrow \infty} n^{1 / s} \sigma_{n}^{*} \leq \lim _{n \rightarrow \infty} n^{\rho} e_{n}\left(D_{\sigma}\right) \tag{3.24}
\end{equation*}
$$

as well as

$$
\begin{equation*}
\varlimsup_{n \rightarrow \infty} n^{\rho} e_{n}\left(D_{\sigma}\right) \leq 2 c_{2} \varlimsup_{n \rightarrow \infty} n^{1 / s} \sigma_{n}^{*} \tag{3.25}
\end{equation*}
$$

holds.
Proof. Without loss of generality, assume that σ_{n} 's are already nonincreasing, e.g., $\sigma_{n}=\sigma_{n}^{*}$. Then estimate (3.24) is an immediate consequence of (3.23).

To prove (3.25), fix a number $N \in \mathbb{N}$ and set

$$
D^{N}\left(\left(x_{i}\right)_{i=1}^{\infty}\right):=\left(\sigma_{1} x_{1}, \ldots, \sigma_{N} x_{N}, 0, \ldots\right), \quad D_{0}^{N}:=D_{\sigma}-D^{N}
$$

Because of $e_{2 n-1}\left(D_{\sigma}\right) \leq e_{n}\left(D^{N}\right)+e_{n}\left(D_{0}^{N}\right)$ and the exponential decay of $e_{n}\left(D^{N}\right)$ as $n \rightarrow \infty$ (cf. [2], 1.3.36), we get

$$
\begin{equation*}
\varlimsup_{n \rightarrow \infty} n^{\rho} e_{n}\left(D_{\sigma}\right) \leq 2 \varlimsup_{n \rightarrow \infty} n^{\rho} e_{n}\left(D_{0}^{N}\right) \leq 2 \sup _{n \in \mathbb{N}} n^{\rho} e_{n}\left(D_{0}^{N}\right) \tag{3.26}
\end{equation*}
$$

Now D_{0}^{N} is not a diagonal operator with nonincreasing entries, but this difficulty can be easily overcome. For $x=\left(x_{i}\right)_{i \in \mathbb{N}}$ let

$$
S_{N}^{-}(x):=\left(x_{i+N}\right)_{i \in \mathbb{N}} \quad \text { and } \quad S_{N}^{+}(x):=\left(0, \ldots, 0, x_{1}, \ldots\right)
$$

be the operators of shifting N times to the right or to the left in $\ell_{p}(\mathbb{N})$ or $\ell_{q}(\mathbb{N})$, respectively. If

$$
D_{1}^{N}\left(\left(x_{i}\right)_{i=1}^{\infty}\right):=\left(x_{1} \sigma_{N+1}, x_{2} \sigma_{N+2}, \ldots\right)
$$

is the diagonal operator defined by $\left(\sigma_{N+i}\right)_{i \geq 1}$, we clearly have

$$
D_{0}^{N}=S_{N}^{+} \circ D_{1}^{N} \circ S_{N}^{-} \quad \text { and } \quad D_{1}^{N}=S_{N}^{-} \circ D_{0}^{N} \circ S_{N}^{+},
$$

and therefore (note that both shift operators have norm one) it holds by the multiplicity of the entropy numbers

$$
e_{n}\left(D_{0}^{N}\right)=e_{n}\left(D_{1}^{N}\right)
$$

But for D_{1}^{N} Theorem 3.5 applies and leads to

$$
\sup _{n \in \mathbb{N}} n^{\rho} e_{n}\left(D_{1}^{N}\right) \leq c_{2} \sup _{n \in \mathbb{N}} n^{1 / s} \sigma_{n+N}
$$

with $s>0$ defined in this theorem. Since $n^{1 / s} \leq(n+N)^{1 / s}$, this yields

$$
\begin{equation*}
\sup _{n \in \mathbb{N}} n^{\rho} e_{n}\left(D_{0}^{N}\right) \leq c_{2} \sup _{n \in \mathbb{N}}(n+N)^{1 / s} \sigma_{n+N}=c_{2} \sup _{m>N} m^{1 / s} \sigma_{m} . \tag{3.27}
\end{equation*}
$$

Now we combine (3.26) and (3.27) to find that

$$
\begin{equation*}
\varlimsup_{n \rightarrow \infty} n^{\rho} e_{n}\left(D_{\sigma}\right) \leq 2 c_{2} \sup _{n>N} n^{1 / s} \sigma_{n} \tag{3.28}
\end{equation*}
$$

holds for all $N \in \mathbb{N}$. Taking the infimum over the right side of (3.28), we end up with

$$
\varlimsup_{n \rightarrow \infty} n^{\rho} e_{n}\left(D_{\sigma}\right) \leq 2 c_{2} \inf _{N \in \mathbb{N}}\left(\sup _{n>N} n^{1 / s} \sigma_{n}\right)=2 c_{2} \varlimsup_{n \rightarrow \infty} n^{1 / s} \sigma_{n}
$$

which proves (3.25).
It is of more use for us to consider diagonal operators mapping $\ell_{p}(\mathbb{Z})$ into $\ell_{q}(\mathbb{Z})$, generated, say, by a sequence $\left(\sigma_{k}\right)_{k \in \mathbb{Z}}$. However these operators are isomorphic to the product of two diagonal operators generated by $\left(\sigma_{k-1}\right)_{k \geq 1}$ and $\left(\sigma_{-k}\right)_{k \geq 1}$. It is then quite easy to establish

Corollary 3.7. Let $p, q \in[1, \infty]$ be arbitrary, and let $\sigma=\left(\sigma_{k}\right)_{k \in \mathbb{Z}}$ be a nonnegative bounded sequence of real numbers. For given $\rho>0$ assume $1 / s:=$ $\rho-1 / p+1 / q>0$. Then there are constants $c_{1}, c_{2}>0$ depending only on p, q and ρ such that

$$
\begin{equation*}
c_{1} \sup _{n \in \mathbb{N}} n^{1 / s}\left(\sigma_{n-1}^{*}+\sigma_{-n}^{*}\right) \leq \sup _{n \in \mathbb{N}} n^{\rho} e_{n}\left(D_{\sigma}\right) \leq c_{2} \sup _{n \in \mathbb{N}} n^{1 / s}\left(\sigma_{n-1}^{*}+\sigma_{-n}^{*}\right) \tag{3.29}
\end{equation*}
$$

and, moreover,

$$
\varliminf_{n \rightarrow \infty} n^{\rho} e_{n}\left(D_{\sigma}\right) \geq c_{1} \varliminf_{n \rightarrow \infty} n^{1 / s}\left(\sigma_{n-1}^{*}+\sigma_{-n}^{*}\right)
$$

as well as

$$
\varlimsup_{n \rightarrow \infty} n^{\rho} e_{n}\left(D_{\sigma}\right) \leq c_{2} \varlimsup_{n \rightarrow \infty} n^{1 / s}\left(\sigma_{n-1}^{*}+\sigma_{-n}^{*}\right)
$$

4. Proof of the Results

Let us start with the proof of Theorem 2.1.
Proof of Theorem 2.1. Let $a=\left(\alpha_{k}\right)_{k \in \mathbb{Z}}$ and $b=\left(\beta_{k}\right)_{k \in \mathbb{Z}}$ be given, satisfying (2.1), and define ρ and ψ by means of (3.7). Then $R(s)$ and $\Psi(s)$ are given by (3.13). Because of Proposition 3.1 and Theorem 3.3 we have the estimate

$$
\frac{1}{C_{p, q}} \mathcal{D}(\rho, \psi) \leq\left\|S_{a, b}: \ell_{p}(\mathbb{Z}) \rightarrow \ell_{q}(\mathbb{Z})\right\| \leq C_{p q} \mathcal{D}(\rho, \psi)
$$

with $\mathcal{D}(\rho, \psi)$ given in (3.14). So it remains to show that with $D(a, b)$ from (2.3) we have

$$
\begin{equation*}
c_{1} \mathcal{D}(\rho, \psi) \leq D(a, b) \leq c_{2} \mathcal{D}(\rho, \psi) \tag{4.1}
\end{equation*}
$$

Let us treat the case $p \leq q$ first. Take any $s \in I_{k}$ for some $k \in \mathbb{Z}$. Then on the one hand we have $R(s) \leq A_{k}$, while, on the other hand, $\Psi(s)=B_{k}$. Now assume $s \in J_{k}$ for some $k \in \mathbb{Z}$. Then $R(s)=A_{k+1}$, while $\Psi(s) \leq B_{k+1}$. Combining both cases, we find

$$
\begin{equation*}
\sup _{s>0} R(s) \cdot \Psi(s) \leq \sup _{k \in \mathbb{Z}}\left[A_{k} \cdot B_{k}\right] \tag{4.2}
\end{equation*}
$$

Since $A_{k} \cdot B_{k}=R\left(2^{2 k}\right) \cdot \Psi\left(2^{2 k}\right)$, we even have equality in (4.2), which proves (4.1) for $p \leq q$.

Let us now assume $p>q$. First note that the integral in the definition of $\mathcal{D}(\rho, \psi)$ has only to be taken over $\bigcup_{k \in \mathbb{Z}} J_{k}$. But if $s \in J_{k-1}$, then $R(s)=A_{k}$ while $\Psi(s) \leq B_{k}$, hence (recall $\psi(s)=\beta_{k-1}\left|J_{k-1}\right|^{-1 / p^{\prime}}$)

$$
\mathcal{D}(\rho, \psi) \leq D(a, b)
$$

Conversely, whenever $s \in\left[2^{2 k+3 / 2}, 2^{2 k+2}\right] \subseteq J_{k}$, we have $R(s)=A_{k+1}$, while

$$
\Psi(s) \geq\left(B_{k}^{p^{\prime}}+2^{-1} \beta_{k}^{p^{p^{\prime}}}\right)^{1 / p^{\prime}} \geq 2^{-1 / p^{\prime}} B_{k+1}
$$

Consequently, we obtain

$$
\left(\int_{J_{k}}\left[R(s) \cdot \Psi(s)^{p^{\prime} / q^{\prime}}\right]^{\frac{p q}{p-q}} \psi(s)^{p^{\prime}} d s\right)^{\frac{p-q}{p q}} \geq 2^{-1 / q^{\prime}}\left[\left(A_{k+1} \cdot B_{k+1}^{p^{\prime} / q}\right)^{\frac{p q}{p-q}} \beta_{k}^{p^{\prime}}\right]^{\frac{p-q}{p q}}
$$

yielding

$$
D(a, b) \leq 2^{1 / q^{\prime}} \mathcal{D}(\rho, \psi)
$$

which proves (4.2) in this case as well.
Proof of Theorem 2.2. Let a, b be given, and ρ, ψ be defined via (3.7). In view of Proposition 3.1 and Theorem 3.4 we have to show only that

$$
\begin{equation*}
\delta_{k}(a, b)=\delta_{k}(\rho, \psi) \tag{4.3}
\end{equation*}
$$

where δ_{k} 's are defined in (2.7) and (3.17), respectively. But for v_{k} as in (2.6) and u_{k} as in (3.16), we have $u_{k} \in \bar{J}_{v_{k}}=\left[2^{2 k+1}, 2^{2 k+2}\right]$. Inserting this into the definition of δ_{k} 's yields (4.3), and hence Theorem 2.2.
Proof of Theorem 2.3. We treat the case $q<\infty$ first. Let d_{k} be given with

$$
\begin{equation*}
\sum_{k \in \mathbb{N}} d_{k}^{q}<\infty \quad \text { and } \quad \sum_{k \in \mathbb{N}} d_{k}^{r}=\infty \tag{4.4}
\end{equation*}
$$

We assume $0<d_{k} \leq 1$. For any $k \in \mathbb{N}$, we can find $s_{k} \in \mathbb{N}$ such that

$$
\begin{equation*}
s_{k} \leq \frac{1}{d_{k}^{q}} \leq 2 s_{k} \tag{4.5}
\end{equation*}
$$

According to our assumptions, it is possible to find a partition $\left(K_{m}\right)_{m \in \mathbb{N}}$ of \mathbb{N} with $\inf K_{m+1}=\sup K_{m}+1$, and

$$
\begin{equation*}
\sum_{k \in K_{m}} d_{k}^{r} \geq m^{r} \tag{4.6}
\end{equation*}
$$

Set $\nu_{m}:=\max _{k \in K_{m}} d_{k}^{-1}$. Then for any $k \in K_{m}$ there are $n_{k} \in \mathbb{N}$ such that

$$
\begin{equation*}
\left(\nu_{m} d_{k}\right)^{r} \leq n_{k} \leq 2\left(\nu_{m} d_{k}\right)^{r} . \tag{4.7}
\end{equation*}
$$

Further we define

$$
\begin{equation*}
\gamma_{k, j}:=\sum_{l<k}\left(1+2 s_{l}\right) n_{k}+(j-1)\left(1+2 s_{k}\right) \tag{4.8}
\end{equation*}
$$

for $k \in \mathbb{N}$ and $j=1, \ldots, n_{k}+1$. In particular, $\gamma_{1,1}=0$ and $\gamma_{k, n_{k}+1}=\gamma_{k+1,1}$. Now we are ready to define a partition of \mathbb{N} suitable for our purposes: For any $k \in \mathbb{N}$ and $j=1, \ldots, n_{k}$ set

$$
\begin{equation*}
A_{k, j}^{+}:=\left\{\gamma_{k, j}+1, \ldots, \gamma_{k, j}+s_{k}\right\} \tag{4.9}
\end{equation*}
$$

as well as

$$
\begin{equation*}
I_{k, j}:=\left\{\gamma_{k, j}+s_{k}+1\right\} \tag{4.10}
\end{equation*}
$$

and

$$
\begin{equation*}
A_{k, j}^{-}:=\left\{\gamma_{k, j}+s_{k}+2, \ldots, \gamma_{k, j+1}\right\} . \tag{4.11}
\end{equation*}
$$

Clearly, $\left|A_{k, j}^{+}\right|=\left|A_{k, j}^{-}\right|=s_{k}$, and

$$
\begin{equation*}
A_{k, 1}^{+} \prec I_{k, 1} \prec A_{k, 1}^{-} \prec A_{k, 2}^{+} \prec \cdots \prec A_{k, n_{k}}^{-} \prec A_{k+1,1}^{+} \prec \cdots, \tag{4.12}
\end{equation*}
$$

where \prec denotes the natural ordering of intervals in \mathbb{N}. Denoting

$$
\begin{equation*}
\mathcal{U}_{k}:=\bigcup_{j=1}^{n_{k}}\left(A_{k, j}^{+} \cup I_{k, j} \cup A_{k, j}^{-}\right)=\left\{\gamma_{k, 1}+1, \ldots, \gamma_{k+1,1}\right\} \tag{4.13}
\end{equation*}
$$

it is clear that $\mathbb{N}=\bigcup_{k \geq 1} \mathcal{U}_{k}$. Let us define $\beta_{0}:=1$, and

$$
\begin{equation*}
\beta_{l}:=\frac{2^{(k-1) / p^{\prime}}}{n_{k}^{1 / p^{\prime}}\left(1+2 s_{k}\right)^{1 / p^{\prime}}} \quad \text { for } l \in \mathcal{U}_{k} \tag{4.14}
\end{equation*}
$$

This way we ensure (note that $\left.\left|\mathcal{U}_{k}\right|=n_{k}\left(1+2 s_{k}\right)\right)$ that for v_{k} 's defined in (2.6) we have $v_{k}=\gamma_{k, 1}$ for $k \geq 1$ and $v_{k}=0$ if $k \leq 0$ so that

$$
\begin{equation*}
\mathcal{U}_{k}=\left\{v_{k}+1, \ldots, v_{k+1}\right\}, \quad k \geq 1 \tag{4.15}
\end{equation*}
$$

Now, let us set

$$
\alpha_{l}:= \begin{cases}\frac{2^{-k / p^{\prime}} d_{k}}{n_{k}^{1 / q}} & \text { if } l \in I_{k, j} \text { for some } k \in \mathbb{N}, j=1, \ldots, n_{k} \tag{4.16}\\ 0 & \text { otherwise }\end{cases}
$$

We can easily compute that

$$
\begin{equation*}
\sum_{l=v_{k}+1}^{v_{k+1}} a_{l}^{q}=\sum_{l=1}^{n_{k}} \frac{2^{-k q / p^{\prime}} d_{k}^{q}}{n_{k}}=2^{-k q / p^{\prime}} d_{k}^{q} \tag{4.17}
\end{equation*}
$$

In particular, we know $a=\left(\alpha_{l}\right)_{l \in \mathbb{Z}} \in \ell_{q}(\mathbb{Z})$, and $\delta_{k}(a, b)=d_{k}$ and hence (3) holds.

If $l \in I_{k, j}$, then $l-1 \in \mathcal{U}_{k}$, which implies

$$
\begin{aligned}
\sum_{l \in \mathbb{N}}\left(\alpha_{l} \beta_{l-1}\right)^{r} & =\sum_{k \in \mathbb{N}} \sum_{j=1}^{n_{k}}\left(\frac{2^{-k / p^{\prime}} d_{k}}{n_{k}^{1 / q}} \cdot \frac{2^{(k-1) / p^{\prime}}}{n_{k}^{1 / p^{\prime}}\left(1+2 s_{k}\right)^{1 / p^{\prime}}}\right)^{r} \\
& \leq \sum_{k \in \mathbb{N}} n_{k} \frac{d_{k}^{r}}{n_{k}\left(1+2 s_{k}\right)^{r / p^{\prime}}} \leq \sum_{k \in \mathbb{N}}\left(d_{k} /\left(2 s_{k}\right)^{1 / p^{\prime}}\right)^{r}
\end{aligned}
$$

Because of the definition of s_{k} we assured $2 s_{k} \geq d_{k}^{-q}$, and hence we can estimate further

$$
\begin{equation*}
\sum_{l \in \mathbb{N}}\left(\alpha_{l} \beta_{l-1}\right)^{r} \leq \sum_{k \in \mathbb{N}} d_{k}^{\left(1+q / p^{\prime}\right) r}=\sum_{k \in \mathbb{N}} d_{k}^{q}<\infty \tag{4.18}
\end{equation*}
$$

i.e., (2) is valid. Using Theorem 2.1 one easily checks that $S_{a, b}$ is bounded, i.e.,(1) is satisfied as well.

So it remains to verify (4). To do so, let us fix $k \in \mathbb{N}$ and $j \in\left\{1, \ldots, n_{k}\right\}$. Then consider the vector $x^{k, j}=\left(x_{l}^{k, j}\right)_{l \in \mathbb{Z}}$ given by

$$
x_{l}^{k, j}:= \begin{cases}s_{k}^{-1 / p} & \text { if } l \in A_{k, j}^{+} \tag{4.19}\\ -s_{k}^{-1 / p} & \text { for } l \in A_{k, j}^{-} \\ 0 & \text { otherwise }\end{cases}
$$

Recall that $\left|A_{k, j}^{+}\right|=\left|A_{k, j}^{-}\right|=s_{k}$, so $\left\|x^{k, j}\right\|_{p} \leq 2$. Setting $y^{k, j}:=S_{a, b}\left(x^{k, j}\right)$, we have

$$
y_{l}^{k, j}= \begin{cases}s_{k}^{1 / p^{\prime}} \frac{d_{k}}{n_{k}^{1 / r}\left(1+2 s_{k}\right)^{1 / p^{\prime}}} & \text { if } l \in I_{k, j} \tag{4.20}\\ 0 & \text { otherwise }\end{cases}
$$

For $m \in \mathbb{N}$, set $N_{m}:=\sum_{k \in K_{m}} n_{k}$. Let us denote by $e_{k, j}$ the standard basis of $\ell_{p}^{N_{m}}$ or $\ell_{q}^{N_{m}}$, respectively, where k runs through K_{m} and j through $1, \ldots, n_{k}$. Then we define two mappings, an injection

$$
\begin{equation*}
X_{m}: \ell_{p}^{N_{m}} \rightarrow \ell_{p}(\mathbb{Z}), \quad e_{k, j} \mapsto x^{k, j} \tag{4.21}
\end{equation*}
$$

and a quasi-projection

$$
Y_{m}: \ell_{q}(\mathbb{Z}) \rightarrow \ell_{q}^{N_{m}}, \quad e_{l} \mapsto \begin{cases}e_{k, j} & \text { if } l \in I_{k, j} \tag{4.22}\\ 0 & \text { otherwise }\end{cases}
$$

We have $\left\|X_{m}\right\| \leq 2$ and $\left\|Y_{m}\right\| \leq 1$. Additionally,

$$
\begin{equation*}
Y_{m} \circ S_{a, b} \circ X_{m}=D_{\sigma^{m}}, \tag{4.23}
\end{equation*}
$$

where $D_{\sigma^{m}}$ is the diagonal operator generated by the sequence

$$
\begin{equation*}
\sigma_{k, j}^{m}=s_{k}^{1 / p^{\prime}} \frac{d_{k}}{n_{k}^{1 / r}\left(1+2 s_{k}\right)^{1 / p^{\prime}}} \geq 3^{-1 / p^{\prime}} \frac{d_{k}}{n_{k}^{1 / r}} \geq 1 / 6 \nu_{m}^{-1} \tag{4.24}
\end{equation*}
$$

(Here we have used the definition of n_{k}.) It is well-known (cf. [13] or (3.23)) that

$$
\begin{equation*}
N e_{N}\left(i d: \ell_{p}^{N} \rightarrow \ell_{q}^{N}\right) \geq(1 / 6) N^{1 / r} \tag{4.25}
\end{equation*}
$$

so, putting things together and using (4.23), (4.24) and (4.25) we get

$$
\begin{equation*}
N_{m} e_{N_{m}}\left(S_{a, b}\right) \geq 1 / 6 \nu_{m}^{-1} N_{m} e_{N_{m}}\left(i d: \ell_{p}^{N_{m}} \rightarrow \ell_{q}^{N_{m}}\right) \geq c \nu_{m}^{-1} N_{m}^{1 / r} \tag{4.26}
\end{equation*}
$$

But due to the definition of n_{k} we have

$$
\begin{equation*}
N_{m} \geq \nu_{m}^{r} \sum_{k \in K_{m}} d_{k}^{r}, \tag{4.27}
\end{equation*}
$$

which, inserted in (4.26), yields, with regard to (4.6),

$$
\begin{equation*}
N_{m} e_{N_{m}}\left(S_{a, b}\right) \geq c\left(\sum_{k \in K_{m}} d_{k}^{r}\right)^{1 / r} \geq c m \tag{4.28}
\end{equation*}
$$

so that $\varlimsup_{n \rightarrow \infty} n e_{n}\left(S_{a, b}\right)=\infty$.
Let now $q=\infty$, so $r=p^{\prime}$. This means we have $\sup _{n} d_{n}<\infty$ while $\sum_{n} d_{n}^{p^{\prime}}=$ ∞. We adapt the construction above, changing only the definition of variables where q is involved. So define $s_{k}:=2^{k}$, and set $\alpha_{l}:=2^{-k / p^{\prime}} d_{k}$ for $l \in I_{k, j}$, while all other variables are defined as above (they have different values now, though). It is trivial to see that $\alpha_{l} \in \ell_{\infty}$ and that $\delta_{k}(a, b)=d_{k}$. Further, we estimate

$$
\sum_{l \in \mathbb{Z}}\left[\alpha_{l} \beta_{l-1}\right]^{p^{\prime}}=\sum_{k \in \mathbb{N}} \sum_{j=1}^{n_{k}} \frac{d_{k}^{p^{\prime}}}{n_{k}\left(1+2 s_{k}\right)^{p^{\prime}}} \leq\left(\sup _{n \in \mathbb{N}} d_{n}^{p^{\prime}}\right) \sum_{k \in \mathbb{N}} 2^{-k p^{\prime}}<\infty .
$$

As above, Theorem 2.1 shows the boundedness of $S_{a, b}$. The construction of X_{m} and Y_{m} remains exactly the same, and since (4.25) remains valid for $q=\infty$, the arguments given above apply also here, so (4.28) holds in this case, too.

Next we want to prove Proposition 2.4. For this it clearly suffices to show the following:

Lemma 4.1. Assume $\alpha_{l}^{q} / \beta_{l-1}^{p^{\prime}}$ to be monotone near $\pm \infty$ if $q<\infty$, or α_{k} to be monotone near $\pm \infty$ for $q=\infty$. Then $\left(\alpha_{l} \beta_{l-1}\right)_{l \in \mathbb{Z}} \in \ell_{r}$ always implies $|(a, b)|_{r}<\infty$.

Remark. It is notable that in the setting of Lemma 4.1, one cannot establish the estimate $|(a, b)|_{r} \leq c\left\|\left(\alpha_{l} \beta_{l-1}\right)_{l}\right\|_{r}$, as simple examples show.

Proof of Lemma 4.1. Let us first assume $q<\infty$. Since all possible situations can be treated similarly, we treat, e.g., the case where $\alpha_{l}^{q} / \beta_{l-1}^{p^{\prime}}$ is monotonically increasing near ∞, say, for $k>k_{0}$. So let $k>k_{0}$ be given with $v_{k+2}<\infty$ and $v_{k} \neq v_{k+1}$. Then, $\alpha_{l}^{q} \leq \beta_{l-1}^{p^{\prime}} \alpha_{v_{k+1}}^{q}\left(\beta_{v_{k+1}-1}\right)^{-p^{\prime}}$ holds for any $l \in\left\{v_{k}+1, \ldots, v_{k+1}\right\}$ and hence

$$
\begin{align*}
\delta_{k}(a, b)^{r}=2^{k r / p^{\prime}}\left(\sum_{l=v_{k}+1}^{v_{k+1}} \alpha_{l}^{q}\right)^{r / q} & \leq 2^{k r / p^{\prime}}\left(\sum_{l=v_{k}}^{v_{k+1}-1} \beta_{l}^{p^{\prime}}\right)^{r / q} \frac{\alpha_{v_{k+1}}^{r}}{\beta_{v_{k+1}-1}^{r p^{\prime}}} \\
& \leq 2^{k+1} \frac{\alpha_{v_{k+1}}^{r}}{\beta_{v_{k+1}-1}^{r p^{\prime} / q}} . \tag{4.29}
\end{align*}
$$

On the other hand, for any $l \in\left\{v_{k+1}+1, \ldots, v_{k+2}+1\right\}$ we have of course $\alpha_{l}^{q} \geq \beta_{l-1}^{p^{\prime}} \alpha_{v_{k+1}+1}^{q}\left(\beta_{v_{k+1}}\right)^{-p^{\prime}}$, which implies

$$
\begin{equation*}
\sum_{l=v_{k+1}+1}^{v_{k+2}+1} \alpha_{l}^{r} \beta_{l-1}^{r} \geq\left(\sum_{l=v_{k+1}}^{v_{k+2}} \beta_{l}^{p^{\prime}}\right) \frac{\alpha_{v_{k+1}+1}^{r}}{\beta_{v_{k+1}}^{r p^{\prime} / q}} \geq 2^{k+1} \frac{\alpha_{v_{k+1}}^{r}}{\beta_{v_{k+1}-1}^{r p^{\prime} / q}} . \tag{4.30}
\end{equation*}
$$

We combine (4.29) and (4.30) to see that

$$
\begin{equation*}
\delta_{k}(a, b)^{r} \leq \sum_{l=v_{k+1}+1}^{v_{k+2}+1} \alpha_{l}^{r} \beta_{l-1}^{r} \tag{4.31}
\end{equation*}
$$

holds for all $k>k_{0}$ with $v_{k+2}<\infty$ and $v_{k}<v_{k+1}$. In order to prove that $\sum_{k>k_{0}} \delta_{k}(a, b)^{r}<\infty$, in view of (4.31) it suffices to show that with $K:=\{k \in$ $\mathbb{Z}: k>k_{0}$ and $\left.v_{k}<v_{k+1} \leq v_{k+2}<\infty\right\}$ we have

$$
\begin{equation*}
\sum_{k \in K} \sum_{l=v_{k+1}+1}^{v_{k+2}+1} \alpha_{l}^{r} \beta_{l-1}^{r} \leq 2 \sum_{l \in \mathbb{Z}} \alpha_{l}^{r} \beta_{l-1}^{r} . \tag{4.32}
\end{equation*}
$$

This takes place if every summand appearing in the right-hand sum appears at most two times in the sums on the left-hand side. Thus we have to show only that for any $l \in \mathbb{Z}$ the set

$$
M_{l}:=\left\{k \in \mathbb{Z}: v_{k} \neq v_{k+1}, \quad v_{k+1}+1 \leq l \leq v_{k+2}+1\right\}
$$

consists of at most two elements. So assume that $k_{1}, k_{2}, k_{3} \in M_{l}$ with $k_{1}<k_{2}<$ k_{3}. Since $v_{k_{3}}<v_{k_{3}+1}$, we get

$$
\begin{equation*}
v_{k_{1}+2} \leq v_{k_{2}+1} \leq v_{k_{3}}<v_{k_{3}+1} . \tag{4.33}
\end{equation*}
$$

But by the definition of M_{l} we must have $v_{k_{3}+1} \leq l-1 \leq v_{k_{1}+2}$, which is a contradiction. So we know $\left|M_{l}\right| \leq 2$, and (4.32) is shown.

Let us now consider the case $q=\infty$, so $r=p^{\prime}$. Again, we demonstrate only the summability in $+\infty$, provided that α_{k} is monotonically increasing for $k>k_{0}$. The arguments above have only to be modified slightly: For any $k>k_{0}$ with $v_{k}<v_{k+1}$ we have

$$
\delta_{k}(a, b)^{p^{\prime}}=2^{k} \sup _{v_{k}<l \leq v_{k+1}} \alpha_{l}^{p^{\prime}}=2^{k} \alpha_{v_{k+1}}^{p^{\prime}},
$$

while

$$
\sum_{l=v_{k+1}+1}^{v_{k+2}+1} \alpha_{l}^{p^{\prime}} \beta_{l-1}^{p^{\prime}} \geq \alpha_{v_{k+1}+1}^{p^{\prime}}\left(\sum_{l=v_{k+1}}^{v_{k+2}} \beta_{l}^{p^{\prime}}\right) \geq \alpha_{v_{k+1}}^{p^{\prime}} 2^{k+1} .
$$

So we conclude that it suffices to verify (4.32) for the case $q=\infty$, which is proved completely analogously as above for the case $q<\infty$.

Next we prove Theorem 2.5. To do so we construct suitable "embeddings" of diagonal operators. Let $m \in \mathbb{N}$ be a number for which the regularity condition (2.12) holds. For $l \in \mathbb{Z}$ we set

$$
\begin{equation*}
l+(2 m+4) \mathbb{Z}:=\{l+(2 m+4) k: k \in \mathbb{Z}\} \tag{4.34}
\end{equation*}
$$

as usual. If $l \in\{0, \ldots, 2 m+3\}$, then we define

$$
\begin{equation*}
\pi_{l}: \mathbb{Z} \rightarrow l+(2 m+4) \mathbb{Z}, \quad \pi_{l}(k):=l+(2 m+4) k \tag{4.35}
\end{equation*}
$$

Now let D^{l} be a diagonal operator generated by the sequence

$$
\begin{equation*}
\sigma_{k}^{l}:=\delta_{\pi_{l}(k)}(a, b)=2^{\pi_{l}(k) / p^{\prime}}\left(\sum_{j=v_{\pi_{l}(k)}+1}^{v_{\pi_{l}(k)+1}} \alpha_{j}^{q}\right)^{1 / q} \tag{4.36}
\end{equation*}
$$

With these operators, we have
Proposition 4.2. For any $l \in\{0, \ldots, 2 m+3\}$, there is a bounded linear operator $X^{l}: \ell_{p}(\mathbb{Z}) \rightarrow \ell_{p}(\mathbb{Z})$ with $\left\|X^{l}\right\| \leq C_{m}$ and

$$
\begin{equation*}
\left\|D^{l}(x)\right\| \leq 2\left\|S_{a, b} \circ X^{l}(x)\right\| \tag{4.37}
\end{equation*}
$$

for all $x \in \ell_{p}(\mathbb{Z})$.
Before we prove Proposition 4.2, let us mention a useful lemma:
Lemma 4.3. Assume $v_{k} \neq v_{k+1}$. Then

$$
\begin{equation*}
2^{k-1} \leq \sum_{j=v_{k-1}}^{v_{k+1}-1} \beta_{l}^{p^{\prime}} \leq 2^{k+1} \tag{4.38}
\end{equation*}
$$

Proof. The upper estimate is trivial. For the lower estimate, combine

$$
\sum_{l<v_{k+1}} \beta_{l}^{p^{\prime}} \geq \sum_{l \leq v_{k}} \beta_{l}^{p^{\prime}} \geq 2^{k} \quad \text { with } \sum_{l<v_{k-1}} \beta_{l}^{p^{\prime}}<2^{k-1}
$$

Proof of Proposition 4.2. We prove the proposition for the case $l=0$, the other cases can be treated analogously. Let $\left(e_{k}\right)_{k \in \mathbb{Z}}$ be the standard base of $\ell_{p}(\mathbb{Z})$. We define the mapping X^{0} by setting $X^{0}\left(e_{k}\right):=x^{k}$, where x^{k} 's are defined below. The construction guarantees that the vectors $y^{k}:=S_{a, b}\left(x^{k}\right)$ are disjointly supported, that $\left\|x^{k}\right\|_{p} \leq c$, and moreover $\left\|y^{k}\right\| \geq 1 / 2 \sigma_{k}^{0}$ with σ_{k}^{0} defined in (4.36) for $l=0$. From this, one can directly conclude the assertion. So let $k \in \mathbb{Z}$ be given, and set $k_{0}:=(2 m+4) k=\pi_{0}(k)$. If $v_{k_{0}}=v_{k_{0}+1}$, then $\sigma_{k}^{0}=\delta_{k_{0}}(a, b)=0$, and we set $x^{k}:=0$. Otherwise, we distinguish two cases:

Case 1: $v_{k_{0}-1} \neq v_{k_{0}}$.
Then we fix $k_{1} \in\left\{k_{0}+m+2, k_{0}+2 m+2\right\}$ such that $v_{k_{1}} \neq v_{k_{1}+1}$ (this is possible due to our assumption (2.12)). Since $k_{1}-1>k_{0}+1+m$, (2.12) also shows that $v_{k_{1}-1}>v_{k_{0}+1}$. Now we define $x^{k}=\left(x_{j}^{k}\right)_{j \in \mathbb{Z}}$ via

$$
x_{j}^{k}:=2^{-k_{0} / p} \cdot \begin{cases}\beta_{j}^{p^{\prime}-1} & \text { if } j \in\left\{v_{k_{0}-2}, \ldots, v_{k_{0}}-1\right\} \tag{4.39}\\ -\mathcal{C}_{k} \beta_{j}^{p^{\prime}-1} & \text { for } j \in\left\{v_{k_{1}-1}, \ldots, v_{k_{1}+1}-1\right\}, \\ 0 & \text { otherwise }\end{cases}
$$

where

$$
\begin{equation*}
\mathcal{C}_{k}:=\left(\sum_{j=v_{k_{0}-2}}^{v_{k_{0}}-1} \beta_{l}^{p^{\prime}}\right)\left(\sum_{j=v_{k_{1}-1}}^{v_{k_{1}+1}-1} \beta_{l}^{p^{\prime}}\right)^{-1} . \tag{4.40}
\end{equation*}
$$

Lemma 4.3 tells us that $\mathcal{C}_{k} \in\left[2^{-2 m-4}, 2^{-m+1}\right]$. It is easy to obtain

$$
\left\|x^{k}\right\|_{p}^{p}=2^{-k_{0}}\left[\sum_{j=v_{k_{0}-2}}^{v_{k_{0}}-1} \beta_{j}^{p^{\prime}}+\mathcal{C}_{k}^{p} \sum_{j=v_{k_{1}-1}}^{v_{k_{1}+1}-1} \beta_{j}^{p^{\prime}}\right] \leq 1+2^{-k_{0}+1} 2^{k_{0}+2 m+1} \leq 2^{2 m+2} .
$$

Let $y^{k}=\left(y_{l}^{k}\right)_{l \in \mathbb{Z}}:=S_{a, b}\left(x^{k}\right)$. We will not calculate all values of y_{l}^{k} 's, since it is only important to note that $y_{l}^{k} \geq 0$, and

$$
y_{l}^{k}= \begin{cases}0 & \text { if } l<v_{k_{0}-2} \tag{4.41}\\ 2^{-k_{0} / p} \alpha_{l} \sum_{j=v_{k_{0}-2}}^{v_{k_{0}-1}} \beta_{j}^{p^{\prime}} & \text { when } l \in\left\{v_{k_{0}}+1, \ldots, v_{k_{0}+1}\right\} \\ 0 & \text { for } l \geq v_{k_{1}+1}\end{cases}
$$

Case 2: $v_{k_{0}}=v_{k_{0}-1}$.
In this case, because of $v_{k_{0}}<v_{k_{0}+1}$, we know that

$$
\begin{equation*}
2^{k_{0}-1} \leq \beta_{v_{k_{0}}}^{p^{\prime}} \leq 2^{k_{0}+1} \tag{4.42}
\end{equation*}
$$

Let k_{1} be fixed like in case 1 , and set

$$
x_{j}^{k}:=2^{-k_{0} / p} \begin{cases}\beta_{v_{k_{0}}}^{p^{\prime}-1} & \text { for } j=v_{k_{0}} \tag{4.43}\\ -\mathcal{C}_{k} \beta_{j}^{p^{\prime}-1} & \text { for } j \in\left\{v_{k_{1}-1}, \ldots, v_{k_{1}+1}-1\right\} \\ 0 & \text { otherwise }\end{cases}
$$

where this time

$$
\begin{equation*}
\mathcal{C}_{k}:=\beta_{v_{k_{0}}}^{p^{\prime}}\left(\sum_{j=v_{k_{1}-1}}^{v_{k_{1}+1}-1} \beta_{l}^{p^{\prime}}\right)^{-1} . \tag{4.44}
\end{equation*}
$$

Because of (4.42) and Lemma 4.3, we know that $\mathcal{C}_{k} \in\left[2^{-2 m-4}, 2^{-m+1}\right]$. Again, it is easy to obtain $\left\|x^{k}\right\|_{p} \leq 2^{(2 m+2) / p}$. Setting $y^{k}:=S_{a, b}\left(x^{k}\right)$, we conclude that

$$
y_{l}^{k}= \begin{cases}0 & \text { if } l<v_{k_{0}} \tag{4.45}\\ 2^{-k_{0} / p} \alpha_{l} \beta_{v_{k_{0}}} & \text { when } l \in\left\{v_{k_{0}}+1, \ldots, v_{k_{0}+1}\right\} \\ 0 & \text { for } l \geq v_{k_{1}+1}\end{cases}
$$

So in both cases we have defined our vectors x^{k}. Since $k_{1} \leq k_{0}+2 m+2 \leq$ $\pi_{0}(k+1)-2$, we easily see that the y^{k} 's are as disjointly supported as the x^{k},s are with

$$
\begin{equation*}
\left\|y^{k}\right\|_{q} \geq 2^{k_{0} / p^{\prime}-1}\left(\sum_{j=v_{k_{0}}+1}^{v_{k_{0}+1}} \alpha_{j}^{q}\right)^{1 / q}=1 / 2 \sigma_{k}^{0} \tag{4.46}
\end{equation*}
$$

Taking into account $y^{k}=S_{a, b} \circ X^{0}\left(e_{k}\right)$, we conclude that (4.37) holds.
Before we can finally prove Theorem 2.5, a technical difficulty has to be fixed. Note that for a subsequence $\sigma_{\pi(n)}$ of a sequence σ_{n}, the sequence $\left(\sigma_{\pi(n)}\right)_{n}^{*}$ cannot, in general, be estimated from below by σ_{n}^{*}, e.g. $\left(\sigma_{\pi(n)}\right)_{n}^{*}$ could be constantly 0
and σ_{n}^{*} be 1 . In particular, for the sequences σ^{l} defined in (4.36), $\left(\sigma^{l}\right)_{n}^{*}$ cannot be estimated from below by $\delta_{n}^{*}(a, b)$, but fortunately this is possible for the maximum:

Lemma 4.4. Let $\left(\sigma_{n}\right)_{n \geq 0}$ be a nonnegative sequence tending to zero, and let $\left(\sigma_{\pi_{1}(n)}\right)_{n \in \mathbb{N}}, \ldots,\left(\sigma_{\pi_{N}(n)}\right)_{n \in \mathbb{N}}$ be partial sequences of $\left(\sigma_{n}\right)_{n \in \mathbb{N}}$, where the π_{j} 's satisfy $\bigcup_{j=1}^{N} \pi_{j}(\mathbb{N})=\mathbb{N}$. Then for any $s>0$ we have

$$
\begin{equation*}
\sup _{n \in \mathbb{N}} n^{1 / s} \sigma_{n}^{*} \leq 2 N^{1 / s} \max _{j=1, \ldots, N} \sup _{n \in \mathbb{N}} n^{1 / s}\left(\sigma_{\pi_{j}(n)}\right)_{n}^{*}, \tag{4.47}
\end{equation*}
$$

and for all $k \in \mathbb{N}$

$$
\begin{equation*}
(N k)^{1 / s} \sigma_{k N}^{*} \leq 2 N^{1 / s} k^{1 / s} \max _{j=1, \ldots, N}\left(\sigma_{\pi_{j}(n)}\right)_{k}^{*} \tag{4.48}
\end{equation*}
$$

holds.
Proof. For $x \geq 0$ denote $\lfloor x\rfloor:=\sup \{n \in \mathbb{N}: n \leq x\}$. Given $n \in \mathbb{N}$, there are $k_{1}, \ldots, k_{n} \in \mathbb{N}$ with $\sigma_{k_{i}} \geq \sigma_{n}^{*} / 2$. For $l:=\lfloor n / N\rfloor+1$ we conclude that there is $j \in \mathbb{N}$ such that $\left|\pi_{j}(\mathbb{N}) \cap\left\{k_{1}, \ldots, k_{n}\right\}\right| \geq l$. Consequently, for this j we have $\left(\sigma_{\pi_{j}(n)}\right)_{l}^{*} \geq \sigma_{n}^{*} / 2$, and since $n / l \leq N$, we find

$$
n^{1 / s} \sigma_{n}^{*} \leq 2(n / l)^{1 / s} l^{1 / s}\left(\sigma_{\pi_{j}(n)}\right)_{l}^{*} \leq 2 N^{1 / s} l^{1 / s}\left(\sigma_{\pi_{j}(n)}\right)_{n}^{*}
$$

which implies (4.47). The second assertion is analogous.
Proof of Theorem 2.5. Using Lemma 4.2 from [10], it is easy to deduce from Proposition 4.2 and Corollary 3.7 that

$$
\begin{align*}
\sup _{n \in \mathbb{N}} n^{\rho} e_{n}\left(S_{a, b}\right) & \geq 1 / 4 \max _{l \leq 2 m+3} \sup _{n \in \mathbb{N}} n^{\rho} e_{n}\left(D^{l}\right) \\
& \geq 1 / 4 \max _{l \leq 2 m+3} \sup _{n \in \mathbb{N}} n^{1 / s}\left(\left(\sigma^{l}\right)_{n}^{*}+\left(\sigma^{l}\right)_{-n+1}^{*}\right) \tag{4.49}
\end{align*}
$$

with D^{l} and σ^{l} defined in (4.36). On the other hand, by Lemma 4.4 with $\delta_{n}:=\delta_{n}(a, b)$ we get

$$
\begin{aligned}
\sup _{n \in \mathbb{N}} n^{1 / s}\left(\delta_{n-1}^{*}+\delta_{-n}^{*}\right) & \leq \sup _{n \in \mathbb{N}} n^{1 / s} \delta_{n-1}^{*}+\sup _{n \in \mathbb{N}} n^{1 / s} \delta_{-n}^{*} \\
& \leq C \max _{l=0, \ldots, 2 m+3}\left(\sup _{n \in \mathbb{N}} n^{1 / s}\left(\sigma^{l}\right)_{n-1}^{*}\right) \\
& +C \max _{l=0, \ldots, 2 m+3}\left(\sup _{n \in \mathbb{N}} n^{1 / s}\left(\sigma^{l}\right)_{-n}^{*}\right) \\
& \leq 2 C \max _{l=0, \ldots, 2 m+3}\left(\sup _{n \in \mathbb{N}} n^{1 / s}\left(\left(\sigma^{l}\right)_{n-1}^{*}+\left(\sigma^{l}\right)_{-n}^{*}\right)\right) .
\end{aligned}
$$

Combined with (4.49), this shows the first assertion.
The last estimate is based on the fact that for $a_{n}, b_{n} \geq 0$ we have

$$
\sup _{n}\left(a_{n}+b_{n}\right) \leq \sup _{n} a_{n}+\sup _{n} b_{n} \leq 2 \sup _{n}\left(a_{n}+b_{n}\right)
$$

Such estimates cannot be established for the infimum. So for estimate (2.15) we have to be a little more careful. First we define two subspaces of $\ell_{p}(\mathbb{Z})$, namely

$$
\begin{equation*}
\ell_{p}^{+}:=\left\{\left(x_{k}\right)_{k \in \mathbb{Z}} \in \ell_{p}(\mathbb{Z}): x_{k}=0 \text { for } k<0\right\} \tag{4.50}
\end{equation*}
$$

as well as

$$
\begin{equation*}
\ell_{p}^{-}:=\left\{\left(x_{k}\right)_{k \in \mathbb{Z}} \in \ell_{p}(\mathbb{Z}): x_{k}=0 \text { if } k \geq 0, \sum_{j<0} \beta_{j} x_{j}=0\right\} \tag{4.51}
\end{equation*}
$$

The corresponding restrictions of $S_{a, b}$ are denoted analogously, e.g.,

$$
\begin{equation*}
S_{a, b}^{+}:=\left(S_{a, b}\right)_{\left.\right|_{p} ^{+}}, \quad S_{a, b}^{-}:=\left(S_{a, b}\right)_{\mid \ell_{p}^{-}} \tag{4.52}
\end{equation*}
$$

We observe that $\operatorname{Im}\left(S_{a, b}^{+}\right) \cap \operatorname{Im}\left(S_{a, b}^{-}\right)=\{0\}$. It is easy to deduce that

$$
\begin{equation*}
e_{n}\left(S_{a, b}^{+}\right)+e_{n}\left(S_{a, b}^{-}\right) \leq C_{p, q} e_{n}\left(S_{a, b}\right) \tag{4.53}
\end{equation*}
$$

A careful inspection of the proof of Proposition 4.2 reveals that $X^{l}\left(e_{k}\right) \in \ell_{p}^{+}$if $k \geq 0$, and that $X^{l}\left(e_{k}\right) \in \ell_{p}^{-}$if $k<-1$. As above, this yields

$$
e_{n}\left(S_{a, b}^{+}\right) \geq C \max _{0 \leq l \leq 2 m+3} e_{n}\left(D_{\left(\sigma_{k}^{l}\right)_{k \geq 0}}\right)
$$

and

$$
e_{n}\left(S_{a, b}^{-}\right) \geq C^{\prime} \max _{0 \leq l \leq 2 m+3} e_{n}\left(D_{\left(\sigma_{-k}^{l}\right)_{k \geq 2}}\right)
$$

From this we easily derive with the help of (3.23) and (4.48) that

$$
\begin{equation*}
n^{\rho} e_{n}\left(S_{a, b}^{+}\right) \geq C n^{1 / s} \delta_{(2 m+4)(n-1)}^{*} \tag{4.54}
\end{equation*}
$$

and

$$
\begin{equation*}
n^{\rho} e_{n}\left(S_{a, b}^{-}\right) \geq C^{\prime} n^{1 / s}\left(\left(\delta_{-k}\right)_{k \geq 2 m+4}\right)_{(2 m+4) n}^{*} \tag{4.55}
\end{equation*}
$$

But it is not hard to see that $\left(\left(\delta_{-k}\right)_{k \geq 2 m+4}\right)_{(2 m+4) n}^{*} \geq \delta_{-2(2 m+4) n}^{*}$, which allows to continue the estimate (4.55) into

$$
\begin{equation*}
n^{\rho} e_{n}\left(S_{a, b}^{-}\right) \geq C^{\prime} n^{1 / s} \delta_{-2(2 m+4) n}^{*} \tag{4.56}
\end{equation*}
$$

Combined with (4.54) and (4.53), this reveals

$$
n^{\rho} e_{n}\left(S_{a, b}\right) \geq C^{\prime \prime} n^{1 / s}\left(\delta_{2(2 m+4) n-1}^{*}+\delta_{-2(2 m+4) n}^{*}\right)
$$

From this we are directly led to (2.15).

5. Examples and Special Cases

At first we will study polynomial growth of the α_{k} 's and β_{k} 's: Let us assume that for $\alpha, \beta \in \mathbb{R}$ we have $\alpha_{k}=k^{-\alpha}$ and $\beta_{k}=k^{-\beta}$ if $k \geq 1$, and $\alpha_{k}=0=\beta_{k}$ otherwise. First of all, (2.1) is satisfied iff $\alpha>1 / q$ for $q<\infty$, and iff $\alpha \geq 0$ when $q=\infty$. For A_{k} and B_{k} given by (2.1) we find that then $A_{k} \approx k^{-\alpha+1 / q}$ while

$$
B_{k} \approx \begin{cases}k^{-\beta+1 / p^{\prime}}, & \beta<1 / p^{\prime} \tag{5.1}\\ \log k, & \beta=1 / p^{\prime} \\ c, & \beta>1 / p^{\prime}\end{cases}
$$

Assume first $p \leq q$. Then Theorem 2.1 tells us that $S_{a, b}$ is bounded iff $A_{k} \cdot B_{k}$ is so; by treating the three cases given in (5.1) separately and regarding $1 / p^{\prime} \geq$ $1 / r-\alpha$ one can easily check that $S_{a, b}$ is bounded from ℓ_{p} to ℓ_{q} iff $\alpha+\beta \geq 1 / r$. For $p>q$, the condition in Theorem 2.1 seems to be more complicated; however, using (5.1) one can verify that in this case we can estimate

$$
\left[A_{k} \cdot B_{k}^{p^{\prime} / q^{\prime}}\right]^{\frac{p q}{p-q}} \beta_{k-1}^{p^{\prime}} \approx \begin{cases}k^{\frac{p q}{p-q}(1-\alpha-\beta)}, & \beta<1 / p^{\prime} \tag{5.2}\\ k^{\frac{p q}{p-q}(1 / q-\alpha)-1}(\log k)^{\frac{p q}{q^{\prime}(p-1)}}, & \beta=1 / p^{\prime} \\ k^{\frac{p q}{p-q}(1 / q-\alpha)-\beta p^{\prime}}, & \beta>1 / p^{\prime}\end{cases}
$$

For $\beta \geq 1 / p^{\prime}$ this is always summable, while for $\beta<1 / p^{\prime}$ we infer that $S_{a, b}$ is bounded from ℓ_{p} to ℓ_{q} iff $\frac{p q}{p-q}(1-\alpha-\beta)<-1$, which is equivalent to $\alpha+\beta>1 / r$. Since $1 / p^{\prime}>1 / r-\alpha$ (we have $q<\infty$ in this case), we find that for $p>q$ the operator $S_{a, b}$ is bounded iff $\alpha+\beta>1 / r$. Next we wish to calculate $\delta_{k}(a, b)$. For this purpose we assume from now on that $\beta<1 / p^{\prime}$. Then it is easy to see that for v_{k} as in (2.6) we have $v_{k} \approx 2^{k /\left(1-\beta p^{\prime}\right)}$, and consequently,

$$
\delta_{k}(a, b) \approx 2^{k / p^{\prime}}\left(\sum_{j=2^{k /\left(1-\beta p^{\prime}\right)}}^{2^{(k+1) /\left(1-\beta p^{\prime}\right)}} j^{-\alpha q}\right)^{1 / q} \approx 2^{k\left((1 / q-\alpha) /\left(1-\beta p^{\prime}\right)+1 / p^{\prime}\right)} .
$$

Since it is easily verified that $(1 / q-\alpha) /\left(1-\beta p^{\prime}\right)<-1 / p^{\prime}$ if and only if $\beta>1 / r-\alpha$, we derive that $S_{a, b}$ is compact iff $\beta>1 / r-\alpha$, and in this case, we have an exponential decrease of $\delta_{k}(a, b)$. Through easy direct calculations one verifies that $\delta_{k}(a, b)$ decrease even more rapidly for $\beta \geq 1 / p^{\prime}$. Summing up our results and using Theorem 2.2, we verify the following proposition:

Proposition 5.1. For $\alpha, \beta \in \mathbb{R}$, define $S_{\alpha, \beta}: \ell_{p}(\mathbb{N}) \rightarrow \ell_{q}(\mathbb{N})$ by

$$
S_{\alpha, \beta}: x=\left(x_{k}\right)_{k \in \mathbb{N}} \mapsto\left(k^{-\alpha} \sum_{l=1}^{k-1} l^{-\beta} x_{l}\right)_{k \in \mathbb{N}}
$$

Then
(i) $S_{\alpha, \beta}$ is bounded from ℓ_{p} to ℓ_{q} iff

$$
\begin{cases}\alpha \geq 0 \text { and } \alpha+\beta \geq 1 / r & \text { if } q=\infty \\ \alpha>1 / q \text { and } \alpha+\beta \geq 1 / r & \text { if } p \leq q<\infty \\ \alpha>1 / q \text { and } \alpha+\beta>1 / r & \text { for } p>q\end{cases}
$$

and
(ii) $S_{\alpha, \beta}$ is compact iff $\alpha>1 / q(\alpha \geq 0$, if $q=\infty)$, and $\alpha+\beta>1 / r$. In this case, we have $\lim _{n \rightarrow \infty} n e_{n}\left(S_{\alpha, \beta}\right)=0$.
As a second class of interest we investigate the case that β_{k} 's grow exponentially:

Proposition 5.2. Let $a=\left(\alpha_{k}\right)_{k \in \mathbb{Z}}$ be arbitrary, and let $\beta_{k}=2^{k / p^{\prime}}, k \in \mathbb{Z}$.
Then we have

$$
\begin{equation*}
c_{1}|(a, b)|_{r, \infty} \leq \sup _{n \in \mathbb{N}} n e_{n}\left(S_{a, b}\right) \leq c_{2}|(a, b)|_{r, \infty} \tag{5.3}
\end{equation*}
$$

and

$$
\begin{equation*}
c_{1} \lim _{n \rightarrow \infty} n^{1 / r} \tau_{n} \leq \varliminf_{n \rightarrow \infty} n e_{n}\left(S_{a, b}\right) \leq \varlimsup_{n \rightarrow \infty} n e_{n}\left(S_{a, b}\right) \leq c_{2} \varlimsup_{n \rightarrow \infty} n^{1 / r} \tau_{n}, \tag{5.4}
\end{equation*}
$$

with $\tau_{n}:=\delta_{n-1}^{*}(a, b)+\delta_{-n}^{*}(a, b)$.
Proof. Note first that $\delta_{k}(a, b)=2^{k / p^{\prime}} \alpha_{k}$ for $k \in \mathbb{Z}$. Let $V: \ell_{p}(\mathbb{Z}) \rightarrow \ell_{p}(\mathbb{Z})$ denote an auxiliary summation operator defined by

$$
V\left(\left(x_{k}\right)_{k \in \mathbb{Z}}\right):=\left(2^{-k / p^{\prime}} \sum_{j<k} x_{j} 2^{j / p^{\prime}}\right)_{k \in \mathbb{Z}}
$$

Using Theorem 2.1 one easily checks that V is bounded. We set now D : $\ell_{p}(\mathbb{Z}) \rightarrow \ell_{q}(\mathbb{Z})$ to be the diagonal operator generated by the sequence $\delta_{k}(a, b)$. Then it is trivial to obtain $S_{a, b}=D \circ V$, yielding $e_{n}\left(S_{a, b}\right) \leq C e_{n}(D)$. On the other hand, let $R: \ell_{p}(\mathbb{Z}) \rightarrow \ell_{p}(\mathbb{Z})$ be given by $R\left(e_{k}\right):=2 e_{k-1}-e_{k}$. We find that $D=S_{a, b} \circ R$, and thus $e_{n}(D) \leq C^{\prime} e_{n}\left(S_{a, b}\right)$. Now we have to estimate $e_{n}(D)$ only, which has already been done in Corollary 3.7.

Next we study the case of a rapid (i.e., superexponential) increase of β_{k} :
Proposition 5.3. Set $\beta_{k}=2^{2^{k}}$ for $k \geq 0$ and $\beta_{k}=0$ for $k<0$. Then for any sequence $a=\left(\alpha_{k}\right)_{k \in \mathbb{Z}}$ we have

$$
\begin{equation*}
|(a, b)|_{r, \infty} \geq c \sup _{l \in \mathbb{N}} l^{1 / r}\left(\alpha_{l} \beta_{l}\right)_{l}^{*}, \tag{5.5}
\end{equation*}
$$

while

$$
\begin{equation*}
\sup _{l \in \mathbb{N}} l e_{l}\left(S_{a, b}\right) \leq C \sup _{l \in \mathbb{N}} l^{1 / r}\left(\alpha_{l} \beta_{l-1}\right)_{l}^{*} . \tag{5.6}
\end{equation*}
$$

In particular, if we set $\alpha_{l}:=2^{-l} \beta_{l-1}^{-1}$ whenever $l \geq 0$, and $\alpha_{l}=0$ otherwise, then $|(a, b)|_{r, \infty}=\infty$ while $\sup _{n} n e_{n}\left(S_{a, b}\right)<\infty$.

Proof. It is easy to see that $v_{k}=\left\lfloor\log _{2} k\right\rfloor$ for $k \geq k_{0}$, where as usual

$$
\lfloor x\rfloor:=\inf \{n \in \mathbb{N}: n \geq x\}
$$

In particular, $v_{k} \neq v_{k+1}$ iff $k=2^{l}-1$ for some $l \geq 1$. So for $k=2^{l}-1$ we derive

$$
\begin{equation*}
\delta_{k}(a, b)=2^{k / p^{\prime}} \alpha_{v_{k+1}}=2^{\left(2^{l}-1\right) / p^{\prime}} \alpha_{l} \geq c_{p} \beta_{l} \alpha_{l} \tag{5.7}
\end{equation*}
$$

Since $k^{1 / r} \geq l^{1 / r}$, this implies (5.5).
On the other hand, let $V: \ell_{p}(\mathbb{Z}) \rightarrow \ell_{p}(\mathbb{Z})$ be defined by

$$
\begin{equation*}
V\left(\left(x_{l}\right)_{l \in \mathbb{Z}}\right):=\left(\beta_{l-1}^{-1} \sum_{j<l} \beta_{j} x_{j}\right)_{l \in \mathbb{Z}} . \tag{5.8}
\end{equation*}
$$

Then we have by Theorem 2.1 that $\|V\| \leq C_{p}$ and, additionally,

$$
\begin{equation*}
S_{a, b}=D_{\alpha_{l} \cdot \beta_{l-1}} \circ V \tag{5.9}
\end{equation*}
$$

Thus $e_{n}\left(S_{a, b}\right) \leq C_{p} e_{n}\left(D_{\left(\alpha_{l} \cdot \beta_{l-1}\right)}\right)$ and so (5.6) follows by virtue of Theorem 3.5.

Finally, we will estimate the first entropy numbers of finite-dimensional standard summation operators. Estimates for the approximation, Gelfand and Kolmogorov numbers of such operators can be found in [8]. Let $N \geq 2$ be arbitrary, and set $\lambda:=\min \{1,1 / r\}$. Then for the standard summation operator $S_{1}^{N}: \ell_{p}^{N} \rightarrow \ell_{q}^{N}$ with

$$
S_{1}^{N}\left(\left(x_{i}\right)_{i=1}^{N}\right):=\left(\sum_{j<i} x_{j}\right)_{i=1}^{N}
$$

we have
Proposition 5.4. There are universal constants $c_{0}, c_{1}, c_{2}>0$ such that the estimate

$$
\begin{equation*}
c_{1} \frac{N^{1 / r}}{n} \leq e_{n}\left(S_{1}^{N}: \ell_{p}^{N} \rightarrow \ell_{q}^{N}\right) \leq c_{2} \frac{N^{1 / r}}{n} \tag{5.10}
\end{equation*}
$$

holds for all $n \leq c_{0} N^{\lambda}$.
Proof. We start with the upper estimate. Therefore choose $m \in \mathbb{N}$ such that

$$
2^{m} \leq N<2^{m+1}
$$

v_{k} 's are given now by

$$
v_{k}= \begin{cases}1 & \text { for } k \leq 0 \tag{5.11}\\ 2^{k} & \text { if } 1 \leq k \leq m \\ \infty & \text { when } k>m\end{cases}
$$

Thus $\delta_{k}(a, b)=2^{k / p^{\prime}+k / q}=2^{k / r}$ for $k=0, \ldots, m-1$, and for $k=m$ we have $\delta_{m}(a, b)=2^{m / p^{\prime}}\left(N-2^{m}\right)^{1 / q} \leq 2^{m / r}$. By Theorem 2.2 we obtain

$$
\sup _{n \in \mathbb{N}} n e_{n}\left(S_{1}^{N}\right) \leq c\left(\sum_{k=0}^{m} \delta_{k}^{r}\right)^{1 / r} \leq c 2^{m / r} \leq c^{\prime} N^{1 / r} .
$$

For the lower estimate, set

$$
I_{j}:=\left[\frac{j-1}{N}, \frac{j}{N}\right], \quad 1 \leq j \leq N
$$

and denote by P_{N} the conditional expectation operator mapping from $L_{p}[0,1]$ to $L_{p}[0,1]$ generated by the partition $I_{1}, \ldots I_{N}$ of $[0,1]$, i.e.,

$$
P_{N}(f):=\sum_{j=1}^{N} \mathbf{1}_{I_{j}}\left|I_{j}\right|^{-1} \int_{I_{j}} f(t) d t
$$

It is easily checked that $\left\|P_{N}\right\|=1$. Further we define φ_{p} to be an embedding of ℓ_{p}^{N} into $L_{p}[0,1]$ with

$$
\varphi_{p}\left(\left(x_{j}\right)\right):=\sum_{j=1}^{N} x_{j} \mathbf{1}_{I_{j}}\left|I_{j}\right|^{-1 / p} .
$$

Recalling $\left|I_{j}\right|=N^{-1}$, we derive easily

$$
\begin{equation*}
\left(\varphi_{q} \circ\left(N^{-1 / r} S_{1}^{N}\right) \circ \varphi_{p}^{-1} \circ P_{N}\right) f=\sum_{k=1}^{N} \mathbf{1}_{I_{k}}\left(\sum_{j<k} \int_{I_{j}} f d t\right) . \tag{5.12}
\end{equation*}
$$

Next define $R_{N}: L_{p}[0,1] \rightarrow L_{q}[0,1]$ via

$$
\left(R_{N} f\right)(s):=\sum_{k=1}^{N}\left(\int_{\frac{k-1}{N}}^{s} f(t) d t\right) \mathbf{1}_{I_{k}}(s)
$$

Using (5.12), we find

$$
\begin{equation*}
T_{1}=R_{N}+\left(\varphi_{q} \circ\left(N^{-1 / r} S_{1}^{N}\right) \circ \varphi_{p}^{-1} \circ P_{N}\right) \tag{5.13}
\end{equation*}
$$

We derive an upper bound for $\left\|R_{N}\right\|$ by estimating (we assume $q<\infty$; the case $q=\infty$ may be treated in the same way)

$$
\begin{aligned}
\left\|R_{N} f\right\|_{q} & =\left(\sum_{k=1}^{N} \int\left|\int_{I_{k}} \int_{\frac{k-1}{N}}^{s} f(t) d t\right|^{q} d s\right)^{1 / q} \\
& \leq\left(\sum_{k=1}^{N} \int_{I_{k}}\left(s-\frac{k-1}{N}\right)^{q / p^{\prime}} d s\left(\int_{I_{k}}|f(t)|^{p} d t\right)^{q / p}\right)^{1 / q} \\
& \leq N^{-1 / r}\left(\sum_{k=1}^{N}\left(\int_{I_{k}}|f(t)|^{p} d t\right)^{q / p}\right)^{1 / q}
\end{aligned}
$$

The last sum can either be estimated by $\|f\|_{p}$ when $p \geq q$, or by $N^{1 / q-1 / p}\|f\|_{p}$ if $p \leq q$. This shows that $\left\|R_{N}\right\| \leq N^{-\lambda}$.

From now on, d_{1}, d_{2}, \ldots shall denote fixed constants (that is, the value of d_{i} remains the same at each occurrence). Because of the additivity of the entropy numbers (see, e.g., [2]) and equality (5.13) we come to

$$
e_{n}\left(T_{1}\right) \leq\|R\|+e_{n}\left(\varphi_{q} \circ\left(N^{-1 / r} S_{1}^{N}\right) \circ \varphi_{p}^{-1} \circ P_{N}\right) \leq d_{1} N^{-\lambda}+d_{2} N^{-1 / r} e_{n}\left(S_{1}^{N}\right) .
$$

Since it is well-known that $e_{n}\left(T_{1}\right) \geq d_{3} / n$ (cf. [7]), this reveals

$$
\begin{equation*}
d_{2} N^{-1 / r} e_{n}\left(S_{1}^{N}\right) \geq \frac{d_{3}}{n}-\frac{d_{1}}{N^{\lambda}} \tag{5.14}
\end{equation*}
$$

for all $n, N \in \mathbb{N}$. Let $c_{0}:=d_{3}\left(2 d_{1}\right)^{-1}$, then (5.14) provides that for $n \leq c_{0} N^{\lambda}$ we have

$$
N^{-1 / r} e_{n}\left(S_{1}^{N}\right) \geq \frac{d_{3}}{2 d_{2} n}
$$

For $p<q$, Proposition 5.4 is somewhat unsatisfying, because we can estimate $e_{n}\left(S_{1}^{N}\right)$ only for $n \leq c_{0} N^{1 / r}$. Recall that in this case, $1 / r<1$. We leave this as an open problem.

Problem. ${ }^{1}$ Find optimal estimates for $e_{n}\left(S_{1}^{N}: \ell_{p}^{N} \rightarrow \ell_{q}^{N}\right)$ when $p<q$ and $c_{0} N^{1 / r} \leq n \leq N$.

6. Some Probabilistic Applications

Let T be an operator from a (separable) Hilbert space H into a Banach space E, and let $\left(\xi_{k}\right)_{k=1}^{\infty}$ be an i.i.d. sequence of $\mathcal{N}(0,1)$-distributed random variables. Then the behaviour of $e_{n}(T)$ as $n \rightarrow \infty$ is known to be closely related with the properties of the E-valued Gaussian random variable

$$
\begin{equation*}
X:=\sum_{k=1}^{\infty} \xi_{k} \cdot T f_{k} \tag{6.1}
\end{equation*}
$$

where $\left(f_{k}\right)_{k=1}^{\infty}$ denotes some orthonormal basis in H. For example, in [4] it was proved that $\sum_{n=1}^{\infty} n^{-1 / 2} e_{n}(T)<\infty$ implies the a.s. convergence of (6.1) in E, while, conversely, the a.s. convergence of (6.1) yields $\sup _{n} n^{1 / 2} e_{n}(T)<\infty$ (cf. [14]). A faster decay of $e_{n}(T)$ as $n \rightarrow \infty$ is reflected by a "better" small ball behaviour of X. More precisely the following holds (cf. [9], [11] and [3]):

Proposition 6.1. Let $0<\alpha<2$ and $T: H \rightarrow E$ generating X via (6.1). Then the following statements are equivalent:
(i) $\varlimsup_{n \rightarrow \infty} n^{1 / \alpha} e_{n}(T):=c_{\alpha}(T)<\infty$.
(ii) $\lim _{\varepsilon \rightarrow 0} \varepsilon^{\frac{2 \alpha}{2-\alpha}} \log \mathbb{P}\left(\|X\|_{E}<\varepsilon\right):=-d_{\alpha}(X)>-\infty$.

[^0]Moreover,

$$
\begin{equation*}
d_{\alpha}(X) \leq c_{0} \cdot c_{\alpha}(T)^{\frac{2 \alpha}{2-\alpha}} \tag{6.2}
\end{equation*}
$$

for some universal $c_{0}>0$. Conversely, if T satisfies

$$
\underline{l i m}_{n \rightarrow \infty} n^{1 / \alpha} e_{n}(T):=\kappa_{\alpha}(T)>0
$$

then

$$
\varlimsup_{\varepsilon \rightarrow 0} \varepsilon^{\frac{2 \alpha}{2-\alpha}} \log \mathbb{P}\left(\|X\|_{E}<\varepsilon\right):=-\lambda_{\alpha}(X)<0
$$

and

$$
\lambda_{\alpha}(X) \geq c_{0}^{\prime} \kappa_{\alpha}(T)^{\frac{2 \alpha}{2-\alpha}}
$$

We want to apply these relations between the entropy and the small ball behaviour to the summation operator $S_{a, b}: \ell_{2}(\mathbb{Z}) \rightarrow \ell_{q}(\mathbb{Z}), 1 \leq q \leq \infty$. To do so, let $W=(W(t))_{t \geq 0}$ be a standard Wiener process over $[0, \infty)$. Taking the natural unit vector basis $\left(e_{k}\right)_{k \in \mathbb{Z}}$ in $\ell_{2}(\mathbb{Z})$ leads to

$$
\begin{equation*}
X=\sum_{k=-\infty}^{\infty} \xi_{k} S_{a, b}\left(e_{k}\right) \tag{6.3}
\end{equation*}
$$

where the $\ell_{q}(\mathbb{Z})$-valued Gaussian random variable $X=\left(X_{k}\right)_{k \in \mathbb{Z}}$ is defined by

$$
\begin{equation*}
X_{k}:=\alpha_{k} W\left(t_{k}\right) \tag{6.4}
\end{equation*}
$$

with $t_{k}:=\sum_{j<k} \beta_{j}^{2}$ being an increasing sequence of nonnegative numbers such that $\lim _{k \rightarrow-\infty} t_{k}=0$. In our situation we have $r=\frac{2 q}{2+q}$ and v_{k} 's given in (2.6) can be calculated by

$$
\begin{equation*}
v_{k}=\sup \left\{m \in \mathbb{Z}: t_{m}<2^{k}\right\} . \tag{6.5}
\end{equation*}
$$

With this notation the following is valid:
Theorem 6.2. Let $\left(\alpha_{k}\right)_{k \in \mathbb{Z}}$ be a sequence of nonnegative numbers satisfying (2.1) and let $\left(t_{k}\right)_{k \in \mathbb{Z}}$ be a nondecreasing sequence with $\lim _{k \rightarrow-\infty} t_{k}=0$. For $X=$ $\left(X_{k}\right)_{k \in \mathbb{Z}}$ defined by (6.4) and v_{k} 's as in (6.5) we have the following.
(i) If

$$
\begin{equation*}
\sum_{k=-\infty}^{\infty} 2^{\frac{k q}{2+q}} \cdot\left(\sum_{l=v_{k}+1}^{v_{k+1}} \alpha_{l}^{q}\right)^{\frac{2}{2+q}}<\infty \tag{6.6}
\end{equation*}
$$

then

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} \varepsilon^{2} \log \mathbb{P}\left(\|X\|_{q}<\varepsilon\right)=0 \tag{6.7}
\end{equation*}
$$

(ii) Assume that $\left[t_{k+1}-t_{k}\right]^{-1} \alpha_{k}^{q}$ is monotone near $\pm \infty$. Then (6.7) holds provided that

$$
\begin{equation*}
\sum_{k=-\infty}^{\infty}\left[t_{k}-t_{k-1}\right]^{\frac{q}{2+q}} \cdot \alpha_{k}^{\frac{2 q}{2+q}}<\infty \tag{6.8}
\end{equation*}
$$

Proof. Combining Proposition 6.1 for $\alpha=1$ with Theorem 2.2, one easily sees that (6.6) implies

$$
\begin{equation*}
\varliminf_{\varepsilon \rightarrow 0} \varepsilon^{2} \log \mathbb{P}\left(\|X\|_{q}<\varepsilon\right)=-d_{1}(X)>-\infty \tag{6.9}
\end{equation*}
$$

Yet by the second part of Theorem 2.2 and estimate (6.2) we even have $d_{1}(X)=$ 0 which completes the proof of (i). Assertion (ii) is a direct consequence of Proposition 2.4. Recall that $\beta_{k}^{2}=t_{k+1}-t_{k}$.

Remarks. (1) Theorem 2.3 shows that, in general, condition (6.6) cannot be replaced by the weaker assumption (6.8). More precisely, for each $q \in[1, \infty]$ there are α_{k} 's and t_{k} 's satisfying (6.8), yet

$$
\varliminf_{\varepsilon \rightarrow 0} \varepsilon^{2} \log \mathbb{P}\left(\|X\|_{q}<\varepsilon\right)=-\infty
$$

(2) In the case $q=\infty$ Theorem 6.2 reads as follows. Suppose that

$$
\begin{equation*}
\sum_{k=-\infty}^{\infty} 2^{k} \sup _{v_{k}<l \leq v_{k+1}} \alpha_{l}^{2}<\infty \tag{6.10}
\end{equation*}
$$

Then

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} \varepsilon^{2} \log \mathbb{P}\left(\sup _{k \in \mathbb{Z}} \alpha_{k}\left|W\left(t_{k}\right)\right|<\varepsilon\right)=0 . \tag{6.11}
\end{equation*}
$$

Again, (6.11) becomes wrong under a weaker condition

$$
\begin{equation*}
\sum_{k=-\infty}^{\infty}\left[t_{k}-t_{k-1}\right] \cdot \alpha_{k}^{2}<\infty \tag{6.12}
\end{equation*}
$$

Recall that (6.12) suffices for α_{k} 's monotone near $\pm \infty$.
Observe that Theorem 6.2 provides us with sufficient conditions for

$$
\begin{equation*}
-\log \mathbb{P}\left(\|X\|_{q}<\varepsilon\right) \preceq \varepsilon^{-\alpha} \tag{6.13}
\end{equation*}
$$

in the case $\alpha=2$. Of course, similar conditions would also be of interest for α 's different of 2 , yet we could not handle this problem by our methods. Recall that we have derived upper bounds for the entropy of summation operators by the corresponding results about integration operators. And there only the case $\alpha=2$ has been treated. But for t_{k} 's not increasing too fast we can prove necessary conditions for (6.13) and all $\alpha>0$. To be more precise, suppose that t_{k} 's satisfy

$$
\begin{equation*}
\sup \left\{\frac{t_{k+1}}{t_{k}}: t_{k}>0\right\}<\infty . \tag{6.14}
\end{equation*}
$$

Then the following holds.

Proposition 6.3. Let $X=\left(X_{k}\right)_{k \in \mathbb{Z}}$ be a Gaussian sequence defined by (6.4) with t_{k} 's satisfying (6.14). If

$$
\begin{equation*}
\varliminf_{\varepsilon \rightarrow 0} \varepsilon^{\alpha} \log \mathbb{P}\left(\|X\|_{q}<\varepsilon\right)>-\infty \tag{6.15}
\end{equation*}
$$

for some $\alpha>0$, then necessarily

$$
\begin{equation*}
\sup _{n \geq 1} n^{1 / \alpha+1 / q}\left(\delta_{n-1}^{*}+\delta_{-n}^{*}\right)<\infty \tag{6.16}
\end{equation*}
$$

with

$$
\begin{equation*}
\delta_{n}=2^{n / 2}\left(\sum_{l=v_{k}+1}^{v_{k+1}} \alpha_{l}^{q}\right)^{1 / q}, \quad n \in \mathbb{Z} \tag{6.17}
\end{equation*}
$$

and v_{k} 's defined by (6.5).
Proof. Using Proposition 6.1, we see that (6.15) implies

$$
\begin{equation*}
\sup _{n \geq 1} n^{\rho} e_{n}\left(S_{a, b}\right)<\infty \tag{6.18}
\end{equation*}
$$

where, as before, $\beta_{k}^{2}=t_{k+1}-t_{k}$ and $\rho=1 / \alpha+1 / 2$. Let us first treat the case $t_{k}>0$ for all $k \in \mathbb{Z}$ and $\sup _{k} t_{k}=\infty$. Then condition (6.14) implies

$$
\begin{equation*}
\sup _{k \in \mathbb{Z}}\left|\left\{k^{\prime}: v_{k}=v_{k^{\prime}}\right\}\right|<\infty \tag{6.19}
\end{equation*}
$$

(in fact, here (6.14) and (6.19) are even equivalent), i.e., condition (2.12) is satisfied. Thus Theorem 2.5 applies and by (6.16) we obtain

$$
\sup _{n \geq 1} n^{1 / s}\left(\delta_{n-1}^{*}+\delta_{-n}^{*}\right)<\infty
$$

where

$$
1 / s=\rho-1 / 2+1 / q=1 / \alpha+1 / q .
$$

This completes the proof in this case.
Next assume $t_{k}>0$ and $\sup _{k} t_{k}<\infty$. Then by (6.14) there is $k_{0} \in \mathbb{N}$ such that

$$
\sup _{k \leq k_{0}}\left|\left\{k^{\prime}: v_{k}=v_{k^{\prime}}\right\}\right|<\infty
$$

Here Proposition 2.6 applies and completes the proof as before.
If we have $\sup _{k} t_{k}<\infty$ and $t_{k}=0$ for $k \leq \tilde{k}$,

$$
\left|\left\{n \in \mathbb{Z}: \delta_{n} \neq 0\right\}\right|<\infty
$$

so there is nothing to prove.
Finally, if $t_{k}=0$ for $k \leq \tilde{k}$ and $\sup _{k} t_{k}=\infty$, this time (6.14) yields

$$
\sup _{k \geq k_{0}}\left|\left\{k^{\prime}: v_{k}=v_{k^{\prime}}\right\}\right|<\infty
$$

for a certain $k_{0} \in \mathbb{N}$, and we may proceed as in the preceding case.
Next we ask for conditions which ensure $-\log \mathbb{P}\left(\|X\|_{q}<\varepsilon\right) \succeq \varepsilon^{-\alpha}$ for some $\alpha>0$.

Proposition 6.4. Let $\left(t_{k}\right)_{k \in \mathbb{Z}}$ and X be as in Proposition 6.3. If for some $\alpha>0$ and δ_{n} 's defined by (6.17)

$$
\varliminf_{n \rightarrow \infty} n^{1 / \alpha+1 / q}\left(\delta_{n-1}^{*}+\delta_{-n}^{*}\right)>0
$$

then necessarily

$$
\varlimsup_{\varepsilon \rightarrow 0} \varepsilon^{\alpha} \log \mathbb{P}\left(\|X\|_{q}<\varepsilon\right)<0
$$

Proof. This can be proved exactly as Proposition 6.3 by using Theorem 2.5, Proposition 2.6 and Proposition 6.1.

Let us illustrate the preceding results by an example. We define random variables $\left(Y_{k}\right)_{k \geq 1}$ by

$$
Y_{k}:=\left(\frac{1}{2^{k}} \sum_{l=2^{k}}^{2^{k+1}-1}\left|\frac{W(l)}{l^{1 / 2}}\right|^{q}\right)^{1 / q}, \quad q<\infty
$$

and

$$
Y_{k}:=\sup _{2^{k} \leq l<2^{k+1}}\left|\frac{W(l)}{l^{1 / 2}}\right|, \quad q=\infty .
$$

Proposition 6.5. Let $\left(\gamma_{k}\right)_{k \geq 1}$ be a sequence of nonnegative real numbers, and for $q \in[1, \infty]$, let $1 / r=1 / 2+1 / q$.
(i) If $\left\|\left(\gamma_{k}\right)_{k \in \mathbb{N}}\right\|_{r}<\infty$, then $\lim _{\varepsilon \rightarrow 0} \varepsilon^{2} \log \mathbb{P}\left(\sum_{k=1}^{\infty} \gamma_{k}^{q} Y_{k}^{q}<\varepsilon^{q}\right)=0$.
(ii) For γ_{k} decreasing and $-\log \mathbb{P}\left(\sum_{k=1}^{\infty} \gamma_{k}^{q} Y_{k}^{q}<\varepsilon^{q}\right) \preceq \varepsilon^{-\alpha}$ we necessarily have $\sup _{k \geq 1} k^{1 / \alpha+1 / q} \gamma_{k}<\infty$.
(iii) Suppose that γ_{k} 's are decreasing with $\gamma_{k} \succeq k^{-1 / \alpha-1 / q}$ for a certain $\alpha>0$. Then it follows $-\log \mathbb{P}\left(\sum_{k=1}^{\infty} \gamma_{k}^{q} Y_{k}^{q}<\varepsilon^{q}\right) \succeq \varepsilon^{-\alpha}$.
In all three cases, for $q=\infty$, one has to read $\mathbb{P}\left(\sup _{k \geq 1} \gamma_{k} Y_{k}<\varepsilon\right)$ everywhere.
Proof. We set

$$
\alpha_{l}=2^{-k / q} \gamma_{k} l^{-1 / 2}, \quad 2^{k} \leq l<2^{k+1}
$$

for any $k \geq 0$, and $\alpha_{l}=0$ if $l<0$. Then it is easy to obtain

$$
\begin{equation*}
\left\|\left(\gamma_{k} Y_{k}\right)_{k \in \mathbb{Z}}\right\|_{q}=\|X\|_{q} \tag{6.20}
\end{equation*}
$$

with $X=\left(X_{l}\right)_{l \in \mathbb{Z}}=\left(\alpha_{l} W(l)\right)_{l \in \mathbb{Z}}$. Let b be given by $\beta_{k}=1$ if $k \geq 0, \beta_{k}=0$ otherwise. Then $t_{l}=l$ for $l \geq 0$, and $t_{l}=0$ otherwise. For v_{k} 's defined in (2.6) we have $v_{k}=0$ for $k \leq 0$ and $v_{k}=2^{k}-1$ for $k \geq 1$. Thus

$$
\delta_{k}(a, b)=2^{k / 2-k / q} \gamma_{k}\left(\sum_{l=2^{k}}^{2^{k+1}-1} l^{-q / 2}\right)^{1 / q}
$$

if $q<\infty$ and

$$
\delta_{k}(a, b)=2^{k / 2} \gamma_{k}\left(\sup _{2^{k} \leq l<2^{k+1}} l^{-1 / 2}\right)=\gamma_{k}
$$

for $q=\infty$. In any case we obtain

$$
\begin{equation*}
2^{-1 / 2} \gamma_{k} \leq \delta_{k}(a, b) \leq \gamma_{k} \tag{6.21}
\end{equation*}
$$

so that $\left(\gamma_{k}\right)_{k \in \mathbb{N}} \in \ell_{r}(\mathbb{N})$ iff $\left(\delta_{k}\right)_{k \in \mathbb{N}} \in \ell_{r}(\mathbb{N})$, and (i) follows from Theorem 6.2. Conversely, if γ_{k} 's are decreasing, by (6.21) we have $\sup _{k \geq 1} k^{1 / \alpha+1 / q} \gamma_{k}<\infty$ iff the same holds for δ_{k}^{*} 's. So (ii) is a consequence of Proposition 6.3 and (6.20). Similarly, assertion (iii) is proved.

References

1. B. Carl, Entropy numbers of diagonal operators with application to eigenvalue problems. J. Approx. Theor. 32(1981), 135-150.
2. B. Carl and I. Stephani, Entropy, compactness and approximation of operators. Cambridge Univ. Press, Cambridge, 1990.
3. J. Creutzig, Gaußmaße kleiner Kugeln und metrische Entropie. Diplomarbeit, FSU Jena, 1999.
4. R. M. Dudley, The sizes of compact subsets of Hilbert space and continuity of Gaussian processes. J. Funct. Anal. 1(1967), 290-330.
5. D. E. Edmunds, W. D. Evans, and D. J. Harris, Approximation numbers of certain Volterra integral operators. J. London Math. Soc. 37(1988), 471-489.
6. D. E. Edmunds, W. D. Evans, and D. J. Harris, Two-sided estimates of the approximation numbers of certain Volterra integral operators. Studia Math. 124(1997), 59-80.
7. D. E. Edmunds and H. Triebel, Function spaces, entropy numbers and differential operators. Cambridge Univ. Press, Cambridge, 1996.
8. A. Hinrichs, Summationsoperatoren in ℓ_{p}-Räumen. Diplomarbeit, FSU Jena, 1993.
9. J. Kuelbs and W. V. Li, Metric entropy and the small ball problem for Gaussian measures. J. Funct. Anal. 116(1993), 133-157.
10. M. Lifshits and W. Linde, Approximation and entropy numbers of Volterra operators with application to Brownian motion. Preprint, 1999; to appear in Mem. Amer. Math. Soc.
11. W. V. Li and W. Linde, Approximation, metric entropy and small ball estimates for Gaussian measures. Ann. Probab. 27(1999), 1556-1578.
12. V. G. Maz'Ja, Sobolev spaces. Springer Verlag, Berlin, 1985.
13. A. Pietsch, Operator Ideals. Verlag der Wissenschaften, Berlin, 1978.
14. V. N. Sudakov, Gaussian measures, Cauchy measures and ϵ-entropy. Soviet Math. Dokl. 10(1969), 310-313.
(Received 8.07.2000)
Authors' address:
Friedrich-Schiller-Universität Jena
Ernst-Abbe-Platz 1-4
07743 Jena, Germany
E-mail: jakob@creutzig.de, lindew@minet.uni-jena.de

[^0]: ${ }^{1}$ Recently M. Lifshits kindly showed us a proof of the following fact: For any $h>0$ and any pair $(p, q) \neq(1, \infty)$ there is $c(p, q, h)>0$ such that $e_{n}\left(S^{N}\right) \geq c(p, q, h) n^{-1} N^{1 / r}, n \geq(1-h) N$. Since the upper estimate is valid for all $n \in \mathbb{N}$, this almost answers the problem.

