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PROPER MOVING AVERAGE REPRESENTATIONS AND
OUTER FUNCTIONS IN TWO VARIABLES

L. GAWARECKI, V. MANDREKAR, AND P. RICHARD

Abstract. In this work, we consider the problem of moving average repre-
sentations for random fields. As in the Kolmogorov–Wiener case, such repre-
sentations lead to interesting questions in harmonic analysis in the polydisc.
In particular, we study outer functions with respect to half-space, semigroup
and quarterplane and their interrelations.
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1. Introduction

Professor N. Vakhania has been interested in the area of Prediction Theory
and Analysis for infinite dimensional stationary processes, [1]. In this work we
study the moving average (MA) representations for weakly stationary random
fields under half–spaces, semigroups and quarter–planes. We relate the proper-
ness of the MA representation to the analytic properties of the factor of the
spectral density. We interpret the results of Helson and Lowdenslager, [3], in
this context, and relate them to the H-outer property. Using a result in [3], one
can show the equivalence of the outer property of the factor, and the properness
of the semigroup induced MA representation. We use this result to relate λ-
outer functions (in one variable, with the other variable acting as a parameter),
and half-space MA representations.

Finally, we take up the quarter-plane MA representation and relate its proper-
ness to H-outer property of the factor. This can be exploited to obtain a prob-
abilistic result of Soltani, [9]. Connection between outer functions in the sense
of [3] and outer functions in H2 (T 2) is used to obtain the analytic results of
Izuchi and Matsugu, [5], with very simple proofs. Throughout the paper, we
use the standard terminology of the book [2].

2. Half-Space MA Representations

Let {Ω,F , P} be a probability space, and L2(Ω,F , P ) be the complex Hilbert
space of (equivalence classes of) P -square integrable complex-valued functions.

A family
{
Xt, t ∈ Zd

}
⊂ L2(Ω,F , P ) is called a weakly stationary random field
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if E (Xt) = c (from now on c = 0), and

E (XtXt′) = R(t− t′).

In the case of d = 1, {Xn, n ∈ Z} is called a weakly stationary process. With
{Xn}, one associates a spectral measure F through the Bochner Theorem,

R(n) =
1

2π

π∫

−π

einλ dF (λ).

A stationary process has a MA representation if

Xn =
∞∑

k=0

akξn−k, (2.1)

where {ξk, k ∈ Z} are orthonormal elements of L2(Ω,F , P ). It is well known
by a result of Kolmogorov and Wiener, that Xn has a MA representation if

and only if F ¿ Leb, and the density is given by f
(
eiλ

)
=

∣∣∣ϕ
(
eiλ

)∣∣∣
2
, where

ϕ
(
eiλ

)
=

∑∞
k=0 āke

ikλ.

From the point of view of prediction, one needs to know when the MA
representation (2.1) is proper, i.e., when

H(X : n) = H(ξ : n), for each n. (2.2)

Here, H(X : n) = sp {Xk, k ≤ n}.
It is obvious that the above condition holds true if and only if ϕ

(
eiλ

)
is H-

outer, i.e., sp
{
einλϕ

(
eiλ

)
: n ≥ 0

}
= H2 (T ), where H2(T ) = sp

{
einλ, n ≥ 0

}
,

and the closure refers to the space L2([−π, π], Leb). An analytic condition for
ϕ to be H-outer is given by

log

∣∣∣∣∣∣

π∫

−π

ϕ
(
eiλ

)
dσ

∣∣∣∣∣∣
=

π∫

−π

log
∣∣∣ϕ

(
eiλ

)∣∣∣ dσ,

where σ is the normalized Lebesgue measure on [−π, π].
In case G = Z2, Helson and Lowdenslager ([3]) considered the analogue of

this problem by putting an ordering on Z2 induced by a semigroup S so that
S ∪ −S = Z2, and S ∩ −S = {(0, 0)}. A particular example of S is

S = {(j, k) : j ∈ Z+ for k = 0 and j ∈ Z for k ≥ 1}. (2.3)

They showed that a stationary random field has a MA representation, i.e.,

Xm,n =
∑

(j,k)∈S

aj,kξm−j,n−k,

with {ξj,k}(j,k)∈Z2 , orthonormal elements in L2(Ω,F , P ) if and only if the spec-
tral measure of {Xm,n} on T 2 is absolutely continuous with respect to σ2, the

normalized Lebesgue measure on T 2, and f
(
eiλ, eiµ

)
=

∣∣∣ϕ
(
eiλ, eiµ

)∣∣∣
2
. Here

ϕ
(
eiλ, eiµ

)
=

∑
(j,k)∈S āj,ke

ijλ+ikµ is of analytic type (in the sense of S).
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Using the ordering on Z2 induced by S, i.e., (j, k) < (j′, k′) if (j′− j, k′−k) ∈
S, we define

H (X : (m,n)) = sp
{
Xj,k : (j, k) < (m, n) ∈ Z2

}
.

We say that a MA S-representation is proper if

H (X : (m,n)) = H (ξ : (m,n)) , for all (m,n) ∈ Z2.

From the result in [3] we get that a MA representation is proper if and only if

log

∣∣∣∣∣∣

∫

T 2

ϕ
(
eiλ, eiµ

)
dσ2

∣∣∣∣∣∣
=

∫

T 2

log
∣∣∣ϕ

(
eiλ, eiµ

)∣∣∣ dσ2, (2.4)

where ϕ is the function of S-analytic type associated with the MA S-represen-
tation. A function ϕ of S-analytic type is called outer if it satisfies equation
(2.4).

Given a set A ⊂ Z2, and g∈L2 (T 2, σ2), denote [A] :=sp
{
eijλ+ikµ : (j, k)∈A

}
,

and [g]A := sp
{
eijλ+ikµg : (j, k) ∈ A

}
, closed linear subspaces of L2 (T 2, σ2).

The following result is a consequence of Theorem 6 in [3].

Theorem 2.1. Let ϕ be of S-analytic type. Then the following statements
are equivalent:

(i) ϕ is outer,
(ii) [ϕ]S = [S].

Let us denote by Aλ := Z × Z+ the half-space in Z2, and H2
λ := [Aλ]. The

condition (ii) of Theorem 2.1 implies that an outer function ϕ of S-analytic
type satisfies

H2
λ = [Aλ] = [[S]]Aλ

= [[ϕ]S]Aλ
= [ϕ]Aλ

,

giving [ϕ]Aλ
= H2

λ .
Following [5], we define a function g ∈ L2(T 2, σ2) as λ-outer if the cut function

gλ (eiµ) = g
(
eiλ, eiµ

)
is outer in the variable eiµ, σ-a.e. (in eiλ).

The following lemma is a consequence of a result in [4].

Lemma 2.2. If g ∈ H2
λ, then g is λ-outer if and only if [g]Aλ

= H2
λ.

Proof. By Theorem 2 in [4], [g]Aλ
= qH2

λ, where q is a unimodular function,
such that the cut function qλ of q is inner in eiµ. Since g = qh, and the cut
function of g is outer, we get that q is constant in eiµ, σ-a.e. Thus qH2

λ = H2
λ,

giving the necessity.

To get the sufficiency, we assume without lost of generality that g
(
eiλ, eiµ

)

is in H2 (Tµ) for all λ, and as in [2], for each λ, we define

Gr

(
eiλ, eiµ

)
= exp




∫

T

eiλ′ + reiµ

eiλ′ − reiµ
log

∣∣∣g
(
eiλ, eiµ

)∣∣∣ dσ(λ′)


 .
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Then for all eiλ, limr→1− Gr

(
eiλ, eiµ

)
= G

(
eiλ, eiµ

)
is an outer factor (in eiµ) of

g as a function of eiµ. Since

∫

T 2

|G|2dσ2 =
∫

T 2

|g|2dσ2 < ∞,

the function G ∈ L2 (T 2, σ2), we obtain that G is λ-outer. Then q = g/G is
inner in eiµ for all λ. Hence, [g]Aλ

= q[G]Aλ
. From the proof of the necessity,

[G]Aλ
= H2

λ. Thus H2
λ = [g]Aλ

= qH2
λ and consequently, for each λ, q is constant

in µ. Thus g = qG is λ-outer.

As a consequence, we obtain the following theorem.

Theorem 2.3. Let g be of S-analytic type. If g is outer, then g is λ-outer.

Given a function g of S-analytic type, we have

g
(
eiλ, eiµ

)
=

∞∑

j=0

aj,0e
ijλ +

∑

k≥1

∑

j∈Z

aj,ke
ijλ+ikµ.

Let

h(eiλ) =
∞∑

j=0

aj,0e
ijλ, (2.5)

and observe that
∫

T

g
(
eiλ, eiµ

)
dσ(µ) = h

(
eiλ

)
.

Thus if h is outer, then

log

∣∣∣∣∣∣

∫

T 2

g
(
eiλ, eiµ

)
dσ2

∣∣∣∣∣∣
= log

∣∣∣∣∣∣

∫

T

∫

T

g
(
eiλ, eiµ

)
dσ(µ)dσ(λ)

∣∣∣∣∣∣

=
∫

T

log

∣∣∣∣∣∣

∫

T

g
(
eiλ, eiµ

)
∣∣∣∣∣∣
dσ(λ).

If further g is λ-outer, then log
∣∣∣
∫
T g

(
eiλ, eiµ

)
dσ(µ)

∣∣∣ = log
∫
T

∣∣∣g
(
eiλ, eiµ

)∣∣∣ dσ(µ).

Hence we get

Lemma 2.4. Let g be of S-analytic type, and h be as in (2.5). If h is outer
and g is λ-outer, then g is outer.
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3. Quarterplane MA Representations

In [6], a quarterplane MA (QMA) representation was studied for G = Z2.
Here, one does not have an ordering on Z2 (except lexicographic). We say that
{Xm,n, (m,n) ∈ Z2} has a QMA representation if

Xm,n =
∑

k≥0

∑

j≥0

aj,kξm−j,n−k, (3.1)

where {ξj,k, (j, k) ∈ Z2} is an orthonormal family. We say that a function ϕ ∈
H2 (T 2) if

ϕ
(
eiλ, eiµ

)
=

∑

j≥0

∑

k≥0

bj,ke
ijλ+ikµ. (3.2)

We note that ϕ ∈ H2 (T 2) implies that ϕ is of S-analytic type. It is easy
to verify that {Xm,n} has the QMA representation (3.1) if and only if its

spectral measure F ¿ σ2, and the density f
(
eiλ, eiµ

)
=

∣∣∣ϕ
(
eiλ, eiµ

)∣∣∣
2
, where

ϕ ∈ H2 (T 2) and

ϕ
(
eiλ, eiµ

)
=

∑

j,k≥0

āj,ke
ijλ+ikµ.

A QMA representation is proper if and only if

H (X : (m,n)) = sp {Xj,k : j ≤ m, k ≤ n} = H (ξ : (m, n)) .

For any second order random field {ym,n : (m,n) ∈ Z2}, we denote

L1(y : m) = sp {yj,k : j ≤ m, k ∈ Z}
and L2(y : n) = sp {yj,k : j ∈ Z, k ≤ n} .

Also, let pi(y : m) be the projection onto Li(y : m), i = 1, 2. We shall drop
the dependence on y when it is clear from the context. We observe that for
{ξj,k, (j, k) ∈ Z2},

p1(m)p2(n) = p(m, n), (3.3)

where p(m,n) is the projection on H (ξ : (m,n)). Thus we obtain that if the
QMA representation (3.1) is proper, i.e., H (X : (m,n)) = H (ξ : (m,n)), then
for the process {Xm,n : (m,n) ∈ Z2}, equality (3.3) holds true. This condition
was introduced in [6]. Denote, as in [6], Li(X : −∞) =

⋂
m Li(X : m), i = 1, 2.

It was further proved in [6] that under condition (3.3), and the condition:

sp
{
L1(X : −∞) ∪ L2(X : −∞)

}
= {0}, (3.4)

a weakly stationary random field has a proper QMA representation.
We observe

Theorem 3.1. The QMA representation (3.1) for {Xm,n} is proper if and
only if the following three conditions are satisfied:

(i) the spectral measure, F , of {Xm,n}, satisfies F ¿ σ2,

(ii) the density f
(
eiλ, eiµ

)
=

∣∣∣ϕ
(
eiλ, eiµ

)∣∣∣
2
, with ϕ ∈ H2 (T 2),
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(iii) [ϕ]Z2
+

= H2 (T 2).

From the above theorem, we obtain the following result of Soltani [9].

Theorem 3.2. A second order stationary random field has a proper QMA
representation if and only if it satisfies conditions (3.3), (3.4), and (i)–(iii) of
Theorem 3.1.

Since ϕ ∈ H2 (T 2), with [ϕ]Z2
+

= H2 (T 2) (H-outer for two variables), implies

that [ϕ]S =
[
[ϕ]Z2

+

]
S

= [H2 (T 2)]S = [S], we get that ϕ is outer. This was orig-

inally proved in [2]. A counter example to the converse of the above statement
was provided in [8]. In [7], a necessary and sufficient condition was given for
the equivalence of the properties for a function to be H-outer and outer. Thus,
in Theorem 3.1, we cannot replace the condition (iii) by the requirement that
ϕ be outer.

We note that if g ∈ H2 (T 2), then g is of S-analytic type. One can ask
whether one can improve Lemma 2.4 under the assumption that g ∈ H2 (T 2).
Let us observe that, with h as in (2.5), we have

g
(
eiλ, eiµ

)
= h

(
eiλ

)
+ eiµh̃

(
eiλ, eiµ

)
,

where h̃ ∈ H2 (T 2). If g is outer, then, with H2 (Tλ) = sp
{
eijλ : j ∈ Z+

}
in

L2 (T 2, σ2), we get

H2 (Tλ) ⊂ [S] = [g]S = sp
{
eijλh

(
eiλ

)}
⊕M,

with M ⊥ H2 (Tλ). Since h ∈ H2 (Tλ), we obtain

H2 (Tλ) = sp
{
eijλh

(
eiλ

)
, j ≥ 0

}
.

This shows that h is H-outer in Tλ or, equivalently, that h is outer in T . In
combination with Lemma 2.4 we obtain the following result from [5], with a
simple proof.

Theorem 3.3. Let g ∈ H2 (T 2); then g is outer if and only if h, defined in
(2.5) is outer in T , and g is λ-outer.

Remark 3.4. One can derive other results in [5] with simple variations of the
above arguments.
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