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BOUNDARY INTEGRAL EQUATIONS OF PLANE
ELASTICITY IN DOMAINS WITH PEAKS
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Abstract. Boundary integral equations of elasticity theory in a plane do-
main with a peak at the boundary are considered. Solvability and uniqueness
theorems as well as results on the asymptotic behaviour of solutions near the
peak are obtained.
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1. Introduction

The theory of elastic potentials for domains with smooth boundaries is well
developed (see the monographs [6], [17]). For domains with piecewise smooth
boundaries “without zero angles” theorems on the unique solvability of integral
equations of elasticity were obtained in [7] by a method which does not use
Fredholm and singular integral operators theories. Solutions of integral equa-
tions are expressed by the inverse operators of auxiliary exterior and interior
boundary value problems, i.e., theorems on the solvability of boundary integral
equations follow from the theory of elliptic boundary value problems in domains
with piecewise smooth boundaries.

We apply the same approach to integral equations of the plane elasticity
theory on a contour with a peak. We also use the complex form of solutions to
the elasticity equations suggested by G. V. Kolosov. This method was further
developed by N. I. Muskhelishvili (see [16]).

Since even for smooth functions in the right-hand side these integral equa-
tions, in general, have no solutions in the class of summable functions, we study
modified integral equations for which theorems on the unique solvability prove
to be valid.

Using the same method we obtained (see [9]–[11]) asymptotic formulas for
solutions of integral equations of the logarithmic potential theory near cusps
on boundary curves. This approach permitted us also to find, for each integral
equation, a pair of weighted Lp-spaces such that the corresponding integral
operator maps one space onto another (see [12]–[15]).
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In the recent articles [1], [2], criteria of solvability in weighted Lp-spaces of
boundary integral equations of the logarithmic potential theory on contours with
peaks were obtained. The method used in these papers is based on reducing of
boundary value problems to the Riemann–Hilbert problem for analytic functions
on the unit circumference.

Here we give a brief description of the results obtained in the present paper.
Let Ω be a plane simply connected domain bounded by a closed piecewise

smooth curve S with a peak at the origin O. Suppose that either Ω or its
complement Ωc is described in the Cartesian coordinates x, y near O by the
inequalities κ−(x) < y < κ+(x), 0 < x < δ, where κ± are C∞-functions on [0, δ]
satisfying

κ±(0) = κ′±(0) = 0 and κ
′′
+(0) > κ

′′
−(0).

In the first case we say that O is an outward peak and in the second one O is
an inward peak.

We introduce the class Nν (ν > −1) of infinitely differentiable on S\{O}
vector-valued functions h admitting representations h±(x) = xνq±(x) on the
arcs S± = {(x, κ±(x)) : x ∈ (0, δ]}, where the vector-valued functions q±
belong to C∞[0, δ] and satisfy |q+(0)|+ |q−(0)| 6= 0. Let N denote the set

N =
⋃

ν>−1

Nν ,

and let Mβ (β > −1) be the class of differentiable vector-valued functions on
S\{O} satisfying

σ(r)(z) = O(xβ−r), z = x + iy = (x, y), r = 0, 1.

We introduce the class M as

M =
⋃

β>−1

Mβ.

For domains with an outward peak we put

Mext =
⋃

β>−1/2

Mβ .

We consider the interior and exterior first boundary value problems

4∗u = µ4u + (λ + µ)∇div u = 0 in Ω, u = g on S , (D+)

4∗u = 0 in Ωc, u = g on S , u(z) = O(1) as |z| → ∞ ,
(D−)

and the interior and exterior second boundary value problems

4∗u = 0 in Ω, Tu = h on S , (N+)

4∗u = 0 in Ωc, Tu = h on S , u(z) = o(1) as |z| → ∞ ,
(N−)

for the displacement u = (u1, u2). Here T (∂ζ , nζ) is the traction operator

T (∂ζ , nζ) u = 2µ∂u/∂n + λn div u + µ[n, rot u],
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where n = (nξ, nη) is the outward normal to the boundary S at the point ζ =
(ξ, η), and λ, µ are the Lamé coefficients. Henceforth we shall not distinguish a
displacement u = (u1, u2) and a complex displacement u = u1 + iu2.

A classical method for solving the first and second boundary value problems
of elasticity theory consists in representing their solutions in the form of the
double-layer potential

Wσ(z) =
∫

S

{T (∂ζ , nζ) Γ (z, ζ)}∗ σ(ζ)dsζ ,

and the simple-layer potential

V τ(z) =
∫

S

Γ(z, ζ)τ(ζ)dsζ , z = (x, y) ∈ Ω or Ωc ,

where * denotes the passage to the transposed matrix and Γ is the Kelvin–
Somigliana tensor

Γ(z, ζ) =
λ + 3µ

4πµ(λ + 2µ)

{
log

1

|z − ζ|

(
1 0
0 1

)

+
λ + µ

λ + 3µ

1

|z − ζ|2
(

(x− ξ)2 (x− ξ)(y − η)
(x− ξ)(y − η) (y − η)2

)}

.

For the problems D+ and N− the densities of the corresponding potentials can
be found from the systems of boundary integral equations

−2−1σ + Wσ = g (1)

and

−2−1τ + TV τ = h . (2)

Under certain general conditions on g in (1) there exist solutions u+ and u−

of the problems D+ and D− in Ω and Ωc with the boundary data g satisfying

g(z) = lim
ε→0

∫

{S:|ζ|>ε}
Γ(z, ζ)

(
T (∂ζ , nζ)u

+(ζ)− T (∂ζ , nζ)u
−(ζ)

)
dsζ + u−(∞) (3)

on S \ {O}. Let v− denote a solution of N− in Ωc, vanishing at infinity, with
the boundary data T u+ on S \ {O}. We can choose v− so that, for w =
v− − u− + u−(∞) on z ∈ S \ {O}, the equality

w(z)− 2 lim
ε→0

∫

{S:|ζ|>ε}
{T (∂ζ , nζ) Γ (z, ζ)}∗w(ζ)dsζ = −2ϕ(z) + 2u−(∞) (4)

holds. Solutions of equations (1) and (2) are constructed by means of (3) and
(4). So, the function

σ = v− − g

is a solution of (1). A solution of (2) can be obtained as follows. Let us introduce
the solution v− of N− in Ωc with the boundary data h, vanishing at infinity,
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and the solution u+ of D+ in Ω equal to v− on S \ {O}. Under sufficiently
general assumptions on h we can select v− and u+ so that the density

τ = T u+ − h

satisfies (2).
Inward peak. In fact, the integral equation (1), in general, has no solutions in

M even if g ∈ N vanishes on S±. However, for a function from Nν with ν > 3
the solvability of (1) can be attained by changing the equation in the following
way. A solution u of the problem D+ is sought as the sum of the double-layer
potential with density σ and the linear combination of explicitly given functions
A1, A2 and A3 with unknown real coefficients

u(z) = Wσ(z) + c1A1(z) + c2A2(z) + c3A3(z).

The functions A1, A2, A3 are given by

A1(z) =
i

2µ
[2κ Im z1/2 − z−1/2 Im z] +

+ i
(κ− 1)(α+ − α−)

8πκµ
[2κ Im (z3/2 log z)− 3z1/2 log z Im z −

− 2z1/2 Im z]− i
(κ− 1)α+

2µ
z3/2,

A2(z) = − Q

2µ
[2κ Im z1/2 + z−1/2 Im z]−

−Q
(α+ − α−)(κ + 1)

8πµκ
[2κ Im (z3/2 log z) + 3z1/2 log z Im z +

+ 2z1/2 Im z] +
i

2µ
[2κ Im z3/2 − 3z1/2 Im z] + Q

(κ + 1)α+

2µ
z3/2,

A3(z) = −κ + 1

µ
Im z − (α+ − α−)(κ + 1)

4πµκ
[2κ Im (z2 log z) +

+ 4z log z Im z + 2z Im z] +
(κ + 1)α+

µ
z2,

where

κ = (λ + 3µ)/(λ + µ) and Q = [(α+ + α−)− (α+ − α−)/2κ + 2α−] /2 .

Here and in the sequel by symbols zν(log z)k we mean the branch of the analytic
function taking real values on the upper boundary of the slit along the positive
part of the real axis. By the limit relation for the double-layer potential we
obtain

−2−1σ + Wσ + c1A1 + c2A2 + c3A3 = g (5)

for the pair (σ, c), where c = (c1, c2, c3).
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We prove the uniqueness assertion for equation (5) in the class of pairs {σ, c}
with σ ∈ M and c ∈ R3 in Theorem 5. The solvability of (5) with the right-
hand side g ∈ Nν , ν > 3, in M×R3 is proved in Theorem 6. Moreover, in the
same theorem we derive the following asymptotic formula for σ near the peak:

σ(z) =
(
α(log x)2 + β log x + γ

)
x−1/2 + O(x−ε), z ∈ S,

with positive ε.
A solution v of the problem N− with the boundary data h from Nν , ν > 3, is

sought in the form of the simple-layer potential V τ . The density τ satisfies the
system of integral equations (2) on S\{O}. In Theorems 7 and 8 we prove that
if h has the zero mean value on S, then equation (2) has the unique solution τ
in the class M and this solution admits the following representation on the arcs
S±:

τ±(z) = α±x−1/2 + O(1) .

Outward peak. We represent a solution u of the problem D+ as the double-
layer potential Wσ. The density σ is found from the system of integral equations
(1). It is proved that the kernel of the integral operator in (1) is two-dimensional
in the class M. Solutions of the homogeneous system of integral equations (1)
are functions obtained as restrictions to S of solutions to the homogeneous
problem N−. Near the peak these displacements have the estimate O(r−1/2)
with r being the distance to the peak. So Mext is the uniqueness class for
equation (1). The situation where (1) has at least two solutions is considered
in Theorem 9.

The non-homogeneous integral equation (1) is studied in Theorem 10. We
show that the solvability in M holds for all functions g from the class Nν , ν > 0.
One of the solutions of (1) has the representations on S±:

σ(x) = β±xν−1 + O(1) for ν 6= 1/2,

σ(x) = β±x−1/2 log x + O(1) for ν = 1/2.

The integral equation (2) is uniquely solvable in the class M if the right-hand
side h ∈ Nν with ν > 0 satisfies

∫

S

hds = 0,
∫

S

hζds = 0,

where ζ is any solution of the homogeneous equation (1) in the class M. In
order to remove the orthogonality condition we are looking for a solution v of
the problem N− with the boundary data h from N as the sum of the simple-
layer potential V τ and the linear combination of functions %1(z), %2(z) with
unknown coefficients

v(z) = V τ(z) + t1%1(z) + t2%2(z).
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The functions %k(z), k = 1, 2, are defined by complex stress functions (complex
potentials) ϕk(z), ψk(z):

%k(z) =
1

2µ

[
κϕk(z)− zϕ′k(z)− ψk(z)

]
,

ϕ1(z) =
(

zz0

z − z0

)1/2

, ψ1(z) = −3

2

(
zz0

z − z0

)1/2

,

ϕ2(z) = i
(

zz0

z − z0

)1/2

, ψ2(z) =
i

2

(
zz0

z − z0

)1/2

,

where z0 is a fixed point in Ω. The boundary equation

−2−1τ + T V τ + t1T%1 + t2T%2 = h (6)

is considered with respect to the pair (τ, t), where τ is the density of the simple-
layer potential and t = (t1, t2) is a vector in R2. In Theorems 11 and 12 we prove
the existence and uniqueness of the solution of (6), respectively. In Theorem 12
we also study the asymptotic behaviour of solutions. We prove that for h ∈ Nν

with 0 < ν < 1 the density τ has the following representations on the arcs S±:

τ(x) = β±xν−1 + O(x−1/2) for 0 < ν < 1/2,

τ(x) = γ±x−1/2 log x + β±x−1/2 + O(log x) for ν = 1/2,

τ(x) = γ±x−1/2 + β±xν−1 + O(log x) for 1/2 < ν < 1.

Assertions on the asymptotics of solutions to problems D+ and N− are col-
lected in Theorems 1–4.

2. Boundary Value Problems of Elasticity

We represent densities of integral equations of elasticity theory by means of
solutions of certain auxiliary interior and exterior boundary value problems.
The auxiliary results concerning such problems are collected in this section.

2.1. Asymptotic behaviour of solutions to the problem D+. We in-
troduce some notation to be used in the proof of the following theorem and
elsewhere.

Let β > 0. As in [5], by W l
2,β(G) we denote the weighted Sobolev space with

the norm

∑̀

k=0

∫

G

|∇k(eβtf)|2dtdu




1/2

,

where ∇k is the vector of all derivatives of order k. By W̊ l
2,β(G) we mean the

completion of C∞
0 in the W l

2,β(G)-norm and let W 0
2,β = L2,β.
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Theorem 1. Let Ω have an outward peak. Suppose that g is an infinitely
differentiable function on the curve S\{O} and let g have the following repre-
sentations on the arcs S±:

g±(z) =
n+1∑

k=0

Q
(k+1)
± (log x)xk+ν + O

(
xn+2+ν−ε

)
, z = x + iy, ν > −1,

where Q
(j)
± are polynomials of degree j and ε is a small positive number.

Suppose the above representations can be differentiated n+2 times. Then the
problem D+ has a solution u of the form

u(z) =
1

2µ

[
κϕn(z)− zϕ′n(z)− ψn(z)

]
+ u0(z), z ∈ Ω, (7)

where ∇ku0(z) = O(|z|n−2k) for k = 0, . . . , n and

ϕn(z) =
n+1∑

k=0

P (k+2)
ϕ (log z)zν+k−1,

ψn(z) =
n+1∑

k=0

P
(k+2)
ψ (log z)zν+k−1 .

Here P (j)
ϕ and P

(j)
ψ are polynomials of degree j.

Proof. (i) We are looking for a displacement vector un such that the vector-
valued function gn = g−un belong to C∞(S\{O}) and (gn)±(x) = xν(qn)±(x) ,
where (qn)± are infinitely differentiable on [0, δ] and satisfy ∇k(qn)±(x) =
O(xn+1−k−ε), k = 0, . . . , n + 2, on the arcs S± with ε being a small positive
number.

To this end, we use the method of complex stress functions (see [16], Ch. II).
The displacement vector u is related to complex potentials ϕ and ψ as follows:

2µu(z) = κϕ(z)− zϕ ′(z)− ψ(z),

where functions ϕ and ψ are to be defined by the boundary data of the problem
D+.

It suffices to consider a function g(z) coinciding with A±xν(log x)m on S±.
We shall seek the functions ϕ and ψ in the form

ϕ(z) = zν−1
m∑

k=0

βk(log z)m−k + ε0z
ν(log z)m,

ψ(z) = zν−1
m∑

k=0

γk(log z)m−k + δ0z
ν(log z)m

for ν 6= 1. There exist βk, γk, ε0 and δ0 such that κϕ(z)−zϕ′(z)−ψ(z) restricted
to S± is equal to 2µA±xν(log x)m plus terms of the form c±xi(log x)j, admitting
the estimate O(xν(log x)m−1).
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We substitute expansions of ϕ and ψ in powers of x along S± into the equation

1

2µ
(κϕ(z)− zϕ′(z)− ψ(z)) = g(z), z = x + iy ∈ S .

Comparing the coefficients in xν(log x)m and xν−1(log x)m we obtain the system




i(κ′′+(0)− κ′′−(0))(ν − 1)(κβ0 + (ν − 3)β0 + γ0 = 4µ(A+ − A−)

κβ0 − (ν − 1)β0 − γ0 = 0

with respect to β0 and γ0. Let us choose ε0 arbitrarily. Then δ0 is defined by
the equation

κε0 − νε0 − δ0 = µ(A+ + A−)

− i

4
(κ′′+(0) + κ′′−(0))(ν − 1)(κβ0 + (ν − 3)β0 + γ0) .

If βk are given, then γk (k ≥ 1) are found from the chain of equations

κβk − (ν − 1)βk − γk − (m− k + 1)βk−1 = 0 .

In the case ν = 1 we seek the functions ϕ and ψ in the form

ϕ(z) =
m+1∑

k=0

βk(log z)m+1−k + ε0z(log z)m,

ψ(z) =
m+1∑

k=0

γk(log z)m+1−k + δ0z(log z)m .

The coefficients β0 and γ0 are found from the system




κβ0 − γ0 = 0 ,

i(m + 1)(κ′′+(0)− κ′′−(0))(κβ0 − β0 + γ0) = 2µ(A+ − A−) .

Further, we choose ε0 arbitrarily and find δ0 from the equation

κε0 − ε0 − δ0 = (m + 1)β0 + µ(A+ + A−)− i

4
(κ′′+(0) + κ′′−(0))(κβ0 − β0 + γ0) .

Given βk, we find γk (k ≥ 1) from the chain of equations

κβk − γk = (m + 1− k)βk−1 .

(ii) By u(1) we denote a vector-valued function equal to gn on S\{O} and
satisfying the estimates

u(1)(z) = O(|z|n+1+ν−ε), ∇ku(1)(z) = O(|z|n+ν−k−ε), k = 1, . . . , n + 2 .

Let the vector-valued function u(2) be the unique solution of the boundary value
problem

4∗u(2) = −4∗u(1) in Ω, u(2) ∈ W̊ 1
2 (Ω). (8)
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After the change of the variable z = ζ−1 (ζ = ξ + iη), equation (8) with respect
to U (2)(ξ, η) = u(2)( ξ

|ζ|2 ,− η
|ζ|2 ) takes the form

L(∂ξ, ∂η) U (2) = ∆∗ U (2) + L(∂ξ, ∂η) U (2) = F (1) in Λ,

where a curvilinear semi-infinite strip Λ is the image of Ω, L(∂ξ, ∂η) is the
second order differential operator with coefficients having the estimate O(1/ξ)
as ξ → +∞, and ∇kF (1)(ζ) = O(|ζ|−n−ν−2−k+ε), k = 0, . . . , n.

Let ρ be a function from the class C∞
0 (R) vanishing for ξ < 1 and equal to 1

for ξ > 2, and let ρr(ξ) = ρ(ξ/r). Clearly,

ξnL(∂ξ, ∂η)ξ
−nŨ (2) = ∆∗Ũ (2) + R(∂ξ, ∂η)Ũ

(2),

where R(∂ξ, ∂η) is the second order differential operator with coefficients admit-
ting the estimate O(1/ξ) as ξ → +∞. Therefore the boundary value problem

∆∗Ũ (2) + ρrŨ
(2) = F (2) in Λ, Ũ (2) = 0 on ∂Λ,

where

F (2)(ξ, η) = ξnF (1)(ξ, η) and ∇kF (2)(ξ, η) = O(ξ−2−ν−k+ε), k = 0, . . . , n ,

is uniquely solvable in W̊ 1
2 (Λ) for large r. From the local estimate

‖Ũ (2)‖W n+2
2 (Λ∩{`−1<ξ<`+1}) ≤ const

(
‖χF (2)‖W n

2 (Λ) + ‖χŨ (2)‖L2(Λ)

)
, (9)

where χ belongs to C∞
0 (`− 2, `+2) and equals to one in (`− 1, `+1), and from

the Sobolev embedding theorem it follows that the vector-valued function Ũ (2)

and its derivatives up to order n are bounded as ξ →∞. We set

U (3)(ξ, η) = ξ−nŨ (2)(ξ, η) and ∇kU (3)(ξ, η) = O(ξ−n), k = 0, . . . , n.

Clearly, U (3) belongs to the space W̊ 1
2 (Λ) and satisfies

L(∂ξ, ∂η)U
(3) = F (1)

for ξ > 2r. Using a partition of unity and the same local estimate we obtain
that U (2) − U (3) ∈ W̊ 1

2 ∩W n+2
2 (Λ2r), where Λ2r = Λ ∩ {ξ > 2r}.

LetD(∂ξ, ∂η) denote the differential operator4∗ continuously mapping W̊ 1
2,β∩

W n+2
2,β (Π) into W n

2,β(Π), where Π=
{
(ξ, η) : −κ′′+(x)/2<η < −κ′′−(x)/2

}
. Eigen-

values of the operator pencil D(ik, ∂η) are nonzero roots of the equation

α2k2 = κ(sinh αk)2,

where α = (κ′′+(0) − κ′′−(0))/2 and κ = (λ + 3µ)/(λ + µ). Since the operator
D(∂ξ, ∂η) is the “limit” operator for L(∂ξ, ∂η) and since the real axis has no
eigenvalues of D(ik, ∂η), there exists β > 0 such that

U (2) − U (3) ∈ W n+2
2,β ∩ W̊ 1

2,β(Λ)
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(cf. [5], [8]). Now, since U (2) = U (3) + (U (2)−U (3)), it follows from the Sobolev
embedding theorem that

∇kU (2)(ξ, η) = O(|ξ|−n) for k = 0, . . . , n .

Therefore from (i) and (ii) we find that the function u = un + u(1) + u(2) is
a solution of the problem D+ and has the required representation (7) with
u0 = u(1) + u(2).

Corollary 1.1. Let g have the following representations on the arcs S±:

g±(x) =
n+1∑

k=0

q
(k)
± xk+ν + O(xn+2+ν), ν > −1,

with real coefficients q
(k)
± . Then the functions ϕn and ψn in (7) have the form

ϕn(z) = β0z
−1 + (β1,0 + β1,1 log z) +

n+1∑

k=2

βkz
k−1,

ψn(z) = γ0z
−1 + (γ1,0 + γ1,1 log z) +

n+1∑

k=2

γkz
k−1

for ν = 0,

ϕn(z) = (β0,0 + β0,1 log z) +
n+1∑

k=1

βkz
k, ψn(z) = (γ0,0 + γ0,1 log z) +

n+1∑

k=1

γkz
k

for ν = 1, and

ϕn(z) =
n+1∑

k=0

βkz
k+ν−1, ψn(z) =

n+1∑

k=0

γkz
k+ν−1

otherwise.

Theorem 2. Let Ω have an inward peak. Suppose g is an infinitely differen-
tiable function on the curve S\{O} and its restrictions to the arcs S± have the
representations

g±(z) =
n+1∑

k=0

Q
(k+1)
± (log x)xk+ν + O(xn+ν+2−ε), ν > −1,

where Q
(j)
± are polynomials of degree j and ε is a small positive number. Suppose

that these representations can be differentiated n + 2 times. Then the problem
D+ has a solution of the form

u(z) =
1

2µ

[
κ(ϕn(z) + ϕ∗(z))− z(ϕ′n(z) + ϕ′∗(z))

− (ψn(z) + ψ∗(z))
]
+ u0(z) , (10)
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where ∇`u0(z) = O(|z|n+[ν]+1−`−ε), ` = 1, . . . , n. The complex potentials ϕn,
ψn, ϕ∗ and ψ∗ are represented as follows:

ϕn(z) =
n∑

k=0

P (k+2)
ϕ (log z)zk+ν , ψn(z) =

n∑

k=0

P
(k+2)
ψ (log z)zk+ν ,

ϕ∗(z) =
p∑

m=1

Rϕ,m(log z)zm/2, ψ∗(z) =
p∑

m=1

Rψ,m(log z)zm/2.

Here P (j)
ϕ , P

(j)
ψ are polynomials of degree j, Rϕ,m, Rψ,m are polynomials of

degree [(m− 1)/2], and p = 2(n + [ν] + 1).

Proof. We are looking for a displacement vector un such that the vector-valued
function gn = g − un on S\{O} belong to C∞(S\{O}) and ∇k(gn)±(z) =
O(xn+ν+3−k) for k = 1, . . . , n+2. We use the method of complex stress functions.
It suffices to take g(z) equal to A±xν(log x)m on S±. As in Theorem 1, we
introduce the potentials

ϕ(z) = βmzν(log z)m and ψ(z) = γmzν(log z)m

for ν 6= m/2, m ∈ Z such that κϕ(z) − zϕ′(z) − ψ(z) on S± is the sum of
2µA±xν(log x)m and terms of the form c±xi(log x)j, admitting the estimate
O(xν(log x)m−1). We substitute the expansions of ϕ and ψ in powers of x along
S± into the equation

1

2µ
(κϕ(z)− zϕ′(z)− ψ(z)) = g(z), z = x + iy ∈ S .

The coefficients βm and γm are found from the system




κβm − νβm − γm = 2µA+

e4iπνκβm − νβm − γm = 2µe2iπνA− .

If ν = m/2 we seek the functions ϕ and ψ in the form

ϕ(z) =
(
βm,1(log z)m+1 + βm,0(log z)m

)
zν ,

ψ(z) =
(
γm,1(log z)m+1 + γm,0(log z)m

)
zν .

In this case βm,1 and γm,1 are found from the system





κβm,1 − νβm,1 − γm,1 = 0 ,

κβm,1 + νβm,1 + γm,1 = iµ
A+ − (−1)mA−

π(m + 1)
.

Finally, we choose βm,0 arbitrarily. Then γm,0 is defined by the equation

κβm,0 − νβm,0 − γm,0 = 2µA+ + (m + 1)βm,1 .
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(ii) Let u(1) be a vector-valued function equal to gn on S\{O} and admitting
the estimates

u(1)(z) = O(|z|n+ν+3) and ∇ku(1)(z) = O(|z|n+ν+2−k), k = 1, . . . , n + 2,

in a neighborhood of the peak. By u(2) = (u
(2)
1 , u

(2)
2 ) we denote the solution of

the Dirichlet problem

4∗u(2) = −4∗u(1) in Ω, u(2) ∈ W̊ 1
2 (Ω) .

Let Λ be the image of Ω under the mapping (r, θ) → (t, θ), where r, θ are polar
coordinates of (x, y) and t = log(1/r). The vector-valued function U (2)(t, θ)
with the components

u
(2)
1 (e−t, θ) cos θ + u

(2)
2 (e−t, θ) sin θ and u

(2)
2 (e−t, θ) cos θ − u

(2)
1 (e−t, θ) sin θ,

is a solution of the equation

4∗U (2) + KU (2) = F (1) in W̊ 1
2 (Λ) ,

where F (1)(t, θ) = O(e−(n+ν+2)t). Here K is the first order differential operator

K =

(
−λ + 2µ −(λ + 3µ)(∂/∂θ)

(λ + 3µ)(∂/∂θ) −µ

)
.

From the local estimate

‖U (2)‖W n+2
2 (Λ∩{`−1<ξ<`+1}) ≤ const

(
‖χF (1)‖W n

2 (Λ) + ‖χU (2)‖L2(Λ)

)
, (11)

where χ belongs to C∞
0 (`− 2, ` + 2) and equals to 1 in (`− 1, ` + 1), it follows

that U (2) ∈ W n+2
2 ∩ W̊ 1

2 (Λ).

By D(∂t, ∂θ) we denote the operator 4∗ + K continuously mapping W̊ 1
2,β ∩

W n+2
2,β (Π) into W n

2,β(Π), where Π = {(t, θ) : 0 < θ < 2π, t ∈ R}. Eigenvalues
of the operator pencil D(ik, ∂θ) are the numbers k = i`/2, where ` ∈ Z, ` 6= 0.
The multiplicity of each eigenvalue is equal to 2 and the maximum length of
the Jordan chain for each eigenvector (multiplicity of eigenvector) is equal to
1. Therefore, the strip 0 < Im z < β, where β ∈ (n + [ν] + 1, n + [ν] + 3/2),
contains p = 2(n + [ν] + 1) eigenvalues of D(ik, ∂θ).

Since F (1) ∈ W n
2,β(Λ), U (2) admits the representation (cf. [5], [8])

U (2) =
p∑

k=1

ckV
(k) + W (1),

where V (k) = (V
(k)
1 , V

(k)
2 ) are linear independent vector-valued functions satis-

fying (4∗ + K)V (k) = 0 in ΛR = Λ ∩ {t > R} and vanishing on ∂Λ ∩ {t > R},
V (k) /∈ W n+2

2,β (ΛR) and W (1) ∈ W n+2
2,β (ΛR). Making the inverse change t = − log r

we obtain

u(2)(r, θ) =
p∑

k=1

ckv
(k)(r, θ) + w(1)(r, θ) ,
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where v(k)(r, θ) = V (k)(log(1/r), θ) · eiθ and ∇`w(1)(r, θ) = O(rn+[ν]+1−`) for
` = 1, . . . , n. Using the method of complex stress functions and repeating the
above-mentioned arguments we find

p∑

k=1

ckv
(k)(z) =

1

2µ

[
κϕ∗(z)− zϕ′∗(z)− ψ∗(z)

]
+ w(2)(z) ,

where ∇`w(2)(z) = O(|z|n+[ν]+1−`−ε) for ` = 1, . . . , n and

ϕ∗(z) = ε1z
1/2 + ε2z + (ε3,0 + ε3,1 log z)z3/2 + · · ·+ Rϕ, p−1(log z)zn+[ν]+1/2,

ψ∗(z) = δ1z
1/2 + δ2z + (δ3,0 + δ3,1 log z)z3/2 + · · ·+ Rψ, p−1(log z)zn+[ν]+1/2.

It follows from (i) and (ii) that the vector-valued function u = un + u(1) + u(2)

is the required solution of the problem D+ with u0 = u(1) + w(1) + w(2).

Corollary 2.1. Let g have the following representations on the arcs S±:

g±(z) =
n+1∑

k=0

(α
(k,1)
± log x + α

(k,0)
± )xk+ν + O(xn+ν+2)

for ν 6= m/2, m ∈ Z, where α
(k,i)
± are real numbers. Then the functions ϕn and

ψn in (10) have the form

ϕn(z) =
n∑

k=0

(β(k,1)log z + β(k,0))zk+ν ,

ψn(z) =
n∑

k=0

(γ(k,1)log z + γ(k,0))zk+ν

with β(k,i), γ(k,i) ∈ C.

2.2. Asymptotic behaviour of solutions to the problem N−. We intro-
duce the weighted space W k,ρ(Ωc) with the inner product

(f1, f2)k,ρ :=
∑

|α|≤k

∫

Ωc

ρ−2k+2|α|Dαf1Dαf2dxdy,

where ρ(z) = (1 + |z|2). By W̊ k,ρ(Ωc) we denote the completion of C∞
0 (Ωc) in

W k,ρ(Ωc).

Theorem 3. Let Ω have an inward peak. Suppose that h is an infinitely dif-
ferentiable vector-valued function on S\{O}, ∫

S h ds = 0 and let the restriction
of h to S± admit the representation

h±(z) =
n−1∑

k=0

H
(k+1)
± (log x)xk+ν + O(xn+ν−ε), ν > −1,
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where H
(j)
± are polynomials of degree j and ε is a small positive number. Let

this representation be differentiable n times. Then the problem N− with the
boundary data h has a solution v bounded at infinity, satisfying the condition

V.P.
∫

S

Tv ds = lim
ε→0

∫

{q∈S, |q|≥ε}
Tv ds = 0 , (12)

and, up to a linear function α + icz with real coefficient c, represented in the
form

v(z) =
1

2µ

[
κϕn(z)− zϕ′n(z)− ψn(z)

]
+ v0(z) . (13)

Here ∇kv0(z) = O(|z|n−2k−1) for k = 1, . . . , n− 1,

ϕn(z) = i




p∑

m=0

β0,m

(
log

zz0

z0 − z

)m



(
zz0

z0 − z

)ν−2

+
n+1∑

k=1

P (k+2)
ϕ

(
log

zz0

z0 − z

) (
zz0

z0 − z

)k+ν−2

,

ψn(z) = i




p∑

m=0

γ0,m

(
log

zz0

z0 − z

)m



(
zz0

z0 − z

)ν−2

+
n+1∑

k=1

P
(k+2)
ψ

(
log

zz0

z0 − z

) (
zz0

z0 − z

)k+ν−2

,

where β0,m and γ0,m are real numbers, p = 1 if ν 6= 0, 1, 2, 3, and p = 2 otherwise,

P (j)
ϕ and P

(j)
ψ are polynomials of degree j.

Proof. (i) We are looking for a displacement vector vn such that the traction
hn = h− Tvn belong to C∞(S\{0}) and admit the estimates

∇k(hn)±(z) = O(xn+ν−k−ε), z = x + iy,

on S± for k = 0, . . . , n. To this end we represent the boundary condition of
the problem N− with the boundary data h in the Muskhelishvili form (see [16],
Ch. II, Sect. 30)

ϕ(z) + zϕ′(z) + ψ(z) = f(z), z ∈ S\{0} . (14)

Here ϕ and ψ are complex stress functions and f has the form

f(z) = −i
∫

(0z)‘

h ds + const, z ∈ S ,

where by (0z)‘ we denote the arc of S connecting 0 and z. As f in (14), it suffices
to consider the function ±ih±xν+1(log x)m on S±. In a small neighborhood of
the peak, we are looking for complex potentials ϕ and ψ in the form

ϕ(z) =
3∑

r=0

( p∑

k=0

m!

(m− k)!
β ′

r,k(log z)p−k
)
zν+r−2
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and

ψ(z) =
3∑

r=0

( p∑

k=0

m!

(m− k)!
γ ′

r,k(log z)p−k
)
zν+r−2 ,

where p = m if ν 6= 0, 1, 2, 3 and p = m + 1 otherwise. As in Theorem 1, we
find coefficients of ϕ and ψ so that the restriction of ϕ(z)+ zϕ′(z)+ψ(z) to S±
is the sum of ±ih±xν+1(log x)m and terms of the form c±xi(log x)j, admitting
the estimate O(xν+1(log x)m−1).

The coefficients β ′
0,k, γ ′

0,k, k = 0, . . . ,m, are defined by the system





β ′
0,k + (ν − 2)β ′

0,k + γ ′
0,k = A0,k ,

β ′
0,k − (ν − 4)β ′

0,k − γ ′
0,k = B0,k ,

where A0,k = B0,k = 0 for k = 0 and A0,k = −β ′
0,k−1, B0,k = β ′

0,k−1 if k =
1, . . . , m. We find

Re β ′
0,k = Re γ ′

0,k = 0, k = 0, . . . , m,

and

(3− ν) Im β ′
0,0 = Im γ ′

0,0 ,

(3− ν) Im β ′
0,k = Im γ ′

0,k + Im β ′
0,k−1, k = 1, . . . ,m .

The coefficients β ′
1,0 and γ ′

1,0 satisfy





β ′
1,0 + (ν − 1)β ′

1,0 + γ ′
1,0 = 0 ,

β ′
1,0 − (ν − 3)β ′

1,0 − γ ′
1,0 =

(ν − 3)(ν − 2)

ν − 1
(κ′′+(0) + κ′′−(0)) Im β ′

0,0 .

Hence it follows that

Re β ′
1,0 =

(ν − 3)(ν − 2)

4(ν − 1)
(κ′′+(0) + κ′′−(0)) Im β ′

0,0,

Re γ ′
1,0 = −ν Re β ′

1,0 and Im γ ′
1,0 = −(ν − 2) Im β ′

1,0.

We set

Im γ ′
1,0 = Im β ′

1,0 = 0.

The coefficients β ′
1,1 and γ ′

1,1 are found from the system





β ′
1,1 + (ν − 1)β ′

1,1 + γ ′
1,1 = −β ′

1,0 ,

β ′
1,1 − (ν − 3)β ′

1,1 − γ ′
1,1 = β ′

1,0

+
(ν − 3)(ν − 2)

ν − 1
(κ′′+(0) + κ′′−(0)) Im β ′

0,1

+
ν2 − 2ν − 1

(ν − 1)2
(κ′′+(0) + κ′′−(0)) Im β ′

0,0 .

(15)
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Summing up these equations we obtain

Re β ′
1,1 =

(ν − 3)(ν − 2)

4(ν − 1)
(κ′′+(0) + κ′′−(0)) Im β ′

0,1

+
ν2 − 2ν − 1

4(ν − 1)2
(κ′′+(0) + κ′′−(0)) Im β ′

0,0,

Re γ ′
1,1 = −ν Re β ′

1,1 − Re β ′
1,0.

From the first equation of system (15) we find

Im γ ′
1,1 = −(ν − 2) Im β ′

1,1 − Im β ′
1,0 .

We set
Im β ′

1,1 = Im γ ′
1,1 = 0 .

The real parts of β ′
1,k and γ ′

1,k, k = 2, . . . , m, are found from the systems




β ′
1,k + (ν − 1)β ′

1,k + γ ′
1,k = A1,k ,

β ′
1,k − (ν − 3)β ′

1,k − γ ′
1,k = B1,k ,

where
A1,k = −β ′

1,k−1,

B1,k = − 1

ν − 1

(
β ′

1,k−1 − 2(ν − 2)β ′
1,k−1 −γ ′

1,k−1 − β ′
1,k−2

)

+
(κ′′+(0) + κ′′−(0))

ν − 1

(
Im β ′

0,k−2 +(2ν − 5) Im β ′
0,k−1

+(ν − 3)(ν − 2) Im β ′
0,k

)
.

Let Im β ′
1,k = 0, k = 2, . . . , m. The coefficients Im β ′

2,0 and Im γ ′
2,0 are calcu-

lated by the system




β ′
2,0 + νβ ′

2,0 + γ ′
2,0 = A2,0 ,

β ′
2,0 − (ν − 2)β ′

2,0 − γ ′
2,0 = B2,0 ,

(16)

where

A2,0 = −1

2
iκ′′+(0)κ′′−(0)(ν − 3)(ν − 2) Im β ′

0,0,

B2,0 = 2
h+ + h−

ν(κ′′+(0)− κ′′−(0))
+

(ν − 2)(ν − 3)

3ν
(κ′′′+(0) + κ′′′−(0)) Im β ′

0,0

− i
(ν − 2)(ν − 3)(ν − 4)

6ν
((κ′′+(0))2 + κ′′+(0)κ′′−(0) + (κ′′−(0))2) Im β ′

0,0

+
(ν − 1)(ν − 2)

ν
(κ′′+(0) + κ′′−(0)) Re β ′

1,0 .

System (16) is solvable if

(ν − 2)(ν − 3)(ν + 2)

3
(κ′′+(0)− κ′′−(0))3 Im β ′

0,0 = −8 Im(h+ + h−). (17)
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We express Im β ′
0,0 from (17). Summing up the equations of system (16) we

find Re β ′
2,0. Then Re γ ′

2,0 is defined from the first equation in (16)

Re γ ′
2,0 = −(ν + 1) Re β ′

2,0.

We choose Im β ′
2,0 arbitrarily and find Im γ ′

2,0 from the equation

(ν − 1) Im β ′
2,0 + Im γ ′

2,0 =
1

2
κ′′+(0)κ′′−(0)(ν − 3)(ν − 2) Im β ′

0,0 .

The coefficients β ′
2,1 and γ ′

2,1 are found by the equation

β ′
2,1 +νβ ′

2,1 +γ ′
2,1 = −1

2
iκ′′+(0)κ′′−(0)

(
(2ν−5) Im β ′

0,0 +(ν−3)(ν−2) Im β ′
0,1

)
.

We set
Im β ′

0,1 = Im γ ′
0,1 = 0 and Re β ′

2,1 = Re γ ′
2,1 = 0.

Let β ′
2,1 be chosen. Then γ ′

2,1 is subject to

−(ν − 1) Im β ′
2,1 − Im γ ′

2,1 =
1

2
κ′′+(0)κ′′−(0)(2ν − 5) Im β ′

0,0 .

Finally, given β ′
2,k arbitrarily, we define γ ′

2,k, k ≥ 2, recursively

β ′
2,k + νβ ′

2,k + γ ′
2,k =

1

2
iκ′′+(0)κ′′−(0)

(
Im β ′

0,k−2 +(2ν − 5) Im β ′
0,k−1

+ (ν − 3)(ν − 2) Im β ′
0,k

)
.

We set

Im β ′
0,k = Im γ ′

0,k = 0 and Re β ′
2,k = Re γ ′

2,k = 0, k ≥ 2 ,

and choose Im β ′
2,k and Im γ ′

2,k to satisfy

−(ν − 1) Im β ′
2,k − Im γ ′

2,k =
1

2
κ′′+(0)κ′′−(0)(Im β ′

0,k−2 + (2ν − 5) Im β ′
0,k−1) .

The exceptional cases ν = 0, 1, 2, 3 can be treated similarly. We set

ϕn(z) =
3∑

r=0




p∑

k=0

βr,k

(
log

zz0

z0 − z

)p−k



(
zz0

z0 − z

)r+ν−2

,

ψn(z) =
3∑

r=0




p∑

k=0

γr,k

(
log

zz0

z0 − z

)p−k



(
zz0

z0 − z

)r+ν−2

, z ∈ Ωc ,

where z0 is a fixed point of Ω. We choose βr,k and γr,k so that in the decompo-
sitions of ϕn and ψn along S± the coefficients in xν−k(log x)m, k = 0, 1, 2, m =
1, . . . , p, coincide with the corresponding coefficients in the decompositions of
ϕ and ψ.

The displacement vector vn is defined by

vn(z) = (2µ)−1
(
κϕn(z)− zϕ ′

n(z)− ψn(z)
)

.

Then ∇vn = O(|z|−2) as |z| → ∞ and satisfies V.P.
∫
S Tvn ds = 0.
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(ii) Let fn,1 and fn,2 denote the components of the vector-valued function fn

on S\{O} defined by

fn(z) = −i
∫

(0z)‘

hn ds + const.

We set

An = − i

2π

∫

S

fn,1dx + fn,2dy

and consider the function

χn(z) = An


log

(
1− z

z0

)
+

n+[ν]+1∑

k=1

ck

(
zz0

z0 − z

)k

 , z ∈ Ωc,

where z0 is a fixed point in Ω and the coefficients ck are chosen so that χn(z) =
O(|z|n+[ν]+2) as z tends to zero. If by v(1)

n we denote the displacement vector
v(1)

n (z) = (1/2µ)χ′(z), then Tv(1)
n = i(∂/∂s)χ′n. For the traction h(1)

n = hn−Tv(1)
n

on S\{O} with the components h
(1)
n1 and h

(1)
n2 the principal vector

∫
S h(1)

n (z)ds

and the principal moment
∫
S

[
(x−x0)h

(1)
n2 (x, y)−(y−y0)h

(1)
n1 (x, y)

]
ds with respect

to z0 = (x0, y0) ∈ Ω are equal to zero.
We need to construct a displacement vector v(2)

n with the given stress h(1)
n on

S. To this end, we represent the boundary conditions of this problem via the
Airy function F (z) biharmonic in Ωc (see [16], Ch. II, Sect. 30). We have F = b
and ∂F/∂n = d on S\{O}, where the functions b and d belong to C∞(S\{O})
and admit the estimates

b(p) = O(|p|n+2+ν−ε), d(p) = O(|p|n+1+ν−ε), p ∈ S\{O} ,

because of their relation with h(1)
n :

F (z) =
∫

(0z)‘

[(xs − x)h
(1)
n1 (xs, ys)− (ys − y)h

(1)
n2 (xs, ys)]ds, z = (x, y) ∈ S\{O},

∂F

∂x
(z) = −

∫

(0z)‘

h
(1)
n2 ds + C1,

∂F

∂y
(z) =

∫

(0z)‘

h
(1)
n1 ds + C2.

(16)

Let F1(z) in Ωc satisfy

F1(p) = b(p), (∂F1/∂n)(p) = d(p) on S\{O},
and admit the estimate

∇kF1(z) = O(|z|n+1+ν−k−ε), k = 0, . . . , n + 2, as z → 0 .

We can assume also that ρ−2∆2F1 ∈ L2(Ω
c). Then the boundary value problem

42F2 = −∆2F1 in Ωc, F2 = ∂F2/∂n = 0 on S,

is uniquely solvable in W̊ 2,ρ(Ωc) (cf. [4]).
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We use the Kelvin transform setting

U(ζ) = |ζ|2F2(1/ζ), ζ = ξ + iη ∈ Λ,

where Λ is the image of Ωc under the inversion ζ = 1/z. We have 42U = H in
Λ, where H(ζ) = O(|ζ|−n−ν−3+ε). As in Theorem 1, we can construct a vector-

valued function U (1)
n ∈ W̊ 2

2 (Λ ∩ {ξ > 2R}) such that ∇kU (1)
n (ξ, η) = O(ξ−n+1),

k = 0, . . . , n, 42U (1)
n = H in Λ∩{ξ > 2R} for large R and U −U (1)

n belongs to

(W̊ 2
2 ∩W n+2

2 )(Λ ∩ {ξ > 2R}).
By U(∂ξ, ∂η) we denote the operator42 continuously mapping W̊ 2

2,β∩W n+2
2,β (Π)

into W n−2
2,β (Π), where Π =

{
(ξ, η) : −κ′′+(x)/2 < η < −κ′′−(x)/2

}
. The eigenval-

ues of the operator pencil U(ik, ∂η) are nonzero roots of the equation

(αk)2 − (sinhαk)2 = 0,

where α = (κ′′+(0) − κ′′−(0))/2. Since the real axis contains no eigenvalues of
U(ik, ∂η), there exists a positive β such that

U − U (1)
n ∈ W n+2

2,β ∩ W̊ 2
2,β (Λ ∩ {ξ > 2R})

(cf. [5], [8]). Hence and from the Sobolev embedding theorem it follows that

U−U (1)
n and its derivatives up to order n have the estimate O

(
exp(−βξ)

)
as ξ →

+∞. Thus U = U (1)
n + (U − U (1)

n ) admits the estimate ∇kU(ξ, η) = O(|ξ|−n+1)
for k = 1, . . . , n. Therefore the Airy function F (z), equal to F1(z) + F2(z), has
the representation

F (z) = O(|z|n−1) and ∇kF (z) = O(|z|n−1−2k), k = 1, . . . , n .

A displacement vector v(2)
n corresponding to F (z) has the form

v(2)
n (z) = α + icz + v

(2)
n0 (z),

where c is a real coefficient and ∇kv
(2)
n0 (z) = O(|z|n−2k−2). Since the gradient

∇v(2)
n of the displacement vector v(2)

n is square summable in a neighborhood of
infinity, we have ∫

|z|=Rn

Tv(2)
n ds → 0

for a certain sequence {Rn}, Rn → ∞. This and the condition
∫
S h ds = 0

imply ∫

S

Tv(2)
n ds = 0.

From the first Kolosov formula

∆F (z) = 4 Re(ϕ(2)
n )′(z)
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(see [3], Sect. 8.4) it follows that Re(ϕ(2)
n )′(z), where ϕ(2)

n is the complex po-
tential corresponding to v(2)

n , is square summable in a neighborhood of infinity.
Therefore

ϕ(2)
n (z) = icz +

0∑

k=−∞
bkz

−k, c ∈ R.

The second Kolosov formula

∂2F

∂x2
(z)− ∂2F

∂y2
(z)− 2i

∂2F

∂x∂y
(z) = 2

[
z(ϕ(2)

n )′′(z) + (ψ(2)
n )′(z)

]

(see [3], Sect. 8.4) implies that the derivative of the second complex potential
ψ(2)

n (z) is also square summable in a neighborhood of infinity. Therefore we
have

ψ(2)
n (z) =

0∑

k=−∞
akz

−k.

Thus the displacement vector v(2)
n admits the representation

v(2)
n (z) =

1

2µ
(κ + 1)icz + O(1).

Hence, up to a rigid displacement equal to (2µ)−1(κ + 1)icz, the constructed
displacement vector v(2)

n is bounded at infinity. We remove this rigid displace-
ment term since it is a solution of the homogeneous problem N−. Thus the
displacement vector v = vn + v(1)

n + v(2)
n is a solution of the problem N−. It has

the required representation (13) and satisfies condition (12).

Corollary 3.1. Let the polynomials H
(1)
± satisfy

Im
(
H

(1)
+ (0) + H

(1)
− (0)

)
= Im

(
(∂H

(1)
+ /∂t)(0) + (∂H

(1)
− /∂t)(0)

)
= 0 .

Then the solution of the problem N− has a finite energy integral and can be
represented in form (13) with

ϕn(z) = i




p+1∑

m=0

β1,m

(
log

zz0

z0 − z

)m



(
zz0

z0 − z

)ν−1

+
n+1∑

k=2

P (k+2)
ϕ

(
log

zz0

z0 − z

) (
zz0

z0 − z

)k+ν−2

,

ψn(z) = i




p+1∑

m=0

γ1,m

(
log

zz0

z0 − z

)m



(
zz0

z0 − z

)ν−1

+
n+1∑

k=2

P
(k+2)
ψ

(
log

zz0

z0 − z

) (
zz0

z0 − z

)k+ν−2

,

where β1,m, γ1,m are real numbers, p = 1 if ν = −1, 0, 1, 2, and p = 2 otherwise,

and P (j)
ϕ , P

(j)
ψ are polynomials of degree j.
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Corollary 3.2. Let h have the representation

h±(z) = h
(1)
± x−1/2 + h

(2)
± x1/2 log x + h

(3)
± x1/2 + . . .

on S±. Then the problem N− with the boundary data h has a solution in the
class M if and only if

Im (h
(1)
+ + h

(1)
− ) = 0, Im (h

(2)
+ + h

(2)
− ) = 0,

Re h
(1)
+ α− + Re h

(1)
− α+ − 1

2
Im (h

(3)
+ + h

(3)
− ) = 0 .

Theorem 4. Let Ω have an outward peak. Suppose that h is a C∞-function
on S\{O} and its restrictions to the arcs S± have the representations

h±(z) =
n−1∑

k=0

H
(k)
± (log x)xν+k + O(xν+n), ν > −2.

Here H
(j)
± are polynomials of degree at most j. Suppose the above representations

can be differentiated n times and

V.P.
∫

S

h ds = 0 .

Then the problem N− with the boundary data h on S has a solution v bounded
at infinity, admitting the representation

v(z) =
1

2µ

[
κ (ϕn(z) + ϕ∗(z))− z(ϕ′n(z) + ϕ′∗(z))

−
(
ψn(z) + ψ∗(z)

) ]
+ v0(z) (18)

up to a linear function α+icz with real coefficient c, and satisfying the condition
∫

S

Tv ds = 0 .

Here ∇kv0(z) = O(|z|n+ν−k), k = 0, . . . , n − 1, the complex potentials ϕn, ψn

have the form

ϕn(z) =
n∑

k=1

P (k+1)
ϕ

(
log

zz0

z0 − z

) (
zz0

z0 − z

)k+ν

,

ψn(z) =
n∑

k=1

P
(k+1)
ψ

(
log

zz0

z0 − z

) (
zz0

z0 − z

)k+ν

,

where P (j)
ϕ and P

(j)
ψ are polynomials of degree j, and

ϕ∗(z) =
m∑

k=1

Rϕ,k

(
log

zz0

z0 − z

) (
zz0

z0 − z

)k/2

,

ψ∗(z) =
m∑

k=1

Rψ,k

(
log

zz0

z0 − z

) (
zz0

z0 − z

)k/2

,
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where Rϕ,k and Rψ,k are polynomials of degree at most [(k− 1)/2] and m is the
largest integer not exceeding 2(n + ν) + 1.

Proof. We choose a displacement vector vn such that hn = h− Tvn belongs to
C∞(S\{O}) and (hn)±(z) = O(xn+ν). To this end, as in Theorem 3, we use
the method of complex stress functions. It is convenient to write the boundary
conditions of the problem N− in the Muskhelishvili form

ϕ(z) + zϕ′(z) + ψ(z) = f(z), z ∈ S .

Here

f(z) = −i
∫

(0z)‘

h ds + const ,

where by (0z)‘ we denote the arc of S connecting 0 and z. It suffices to consider
a function f(z) of the form ±ih±xν+1(log x)m on arcs S±. We set

ϕn(z) = βm

(
zz0

z − z0

)ν+1 (
log

zz0

z − z0

)m

,

ψn(z) = γm

(
zz0

z − z0

)ν+1 (
log

zz0

z − z0

)m

for ν 6= n/2, n ∈ Z, where z0 is a fixed point in Ω.
We show that there exist βm and γm such that the function ϕn(z)+zϕn

′(z)+
ψn(z) on S± is equal to the sum of ±ih±xν+1(log x)m and a linear combination
of the functions c±xi(log x)j, admitting the estimate O(xν+1(log x)m−1).

As in Theorem 2, we decompose ϕn and ψn in powers of x along S±. Coeffi-
cients βm and γm in xν+1(log x)m are found from the system





βm + (ν + 1)βm + γm = ih+

e4iπνβm + (ν + 1)βm + γm = −ih−e2iπν .

In the case ν = n/2, n ∈ Z the functions ϕn and ψn are defined by

ϕn(z) =


βm,1

(
log

zz0

z − z0

)m+1

+ βm,0

(
log

zz0

z − z0

)m



(
zz0

z − z0

)ν+1

,

ψn(z) =


γm,1

(
log

zz0

z − z0

)m+1

+ γm,0

(
log

zz0

z − z0

)m



(
zz0

z − z0

)ν+1

,

where z0 is a fixed point in Ω. The above coefficients βm,1 and γm,1 are found
from the system





βm,1 + (ν + 1)βm,1 + γm,1 = 0 ,

βm,1 − (ν + 1)βm,1 − γm,1 = −h+ + (−1)mh−
2π(m + 1)

.

Given βm,0, we find γm,0 by the equation

βm,0 + (ν + 1)βm,0 + γm,0 = ih+ + (m + 1)βm,1 .
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After the complex stress functions ϕn and ψn have been found, the displacement
vector vn is defined by means of

vn(z) = (2µ)−1
(
κϕn(z)− zϕ ′

n(z)− ψn(z)
)

.

Since V.P.
∫
S h ds = 0, we have H

(0)
+ = −H

(0)
− for −2 < ν ≤ −1. Therefore

lim
ε→0

∫

{q∈Ωc, |q|=ε}
Tvnds = 0 .

Hence we arrive at V.P.
∫
S Tvnds = 0.

(ii) As in Theorem 3, we can construct the displacement vector v(1)
n so that

v(1)
n (z) = O(|z|n+[ν]+1) as z → 0

and v(1)
n vanishes at infinity. Furthermore, the stress function h(1)

n = hn − Tv(1)
n

on S has the zero principal vector and the zero principal moment with respect
to any point z0 ∈ Ω.

We find a displacement vector v(2)
n with given h(1)

n on S. To this end, we
express the boundary condition of this problem via the Airy function F in Ωc.
Let F = b and ∂F/∂n = d on S. Taking into account the relation of b and d
with h(1)

n we have d(z) = O(|z|n+1+ν), b(z) = O(|z|n+2+ν) for z ∈ S\{O}.
We represent the Airy function F (z) as the sum F1(z) + F2(z), where F1(z)

is chosen so that it vanishes at infinity, satisfies the conditions

F1(z) = b(z), ∂F1(z)/∂n = d(z) on S

and admits the estimate ∇kF1(z) = O(|z|n+2+ν−k), k = 0, . . . , n+2, in a neigh-
borhood of the origin. Then F2(z) is a unique solution of problem

42F2 = −42F1 in Ωc, F2 = ∂F2/∂n = 0 on S

in W̊ 2,ρ(Ωc) with ρ(z) = (1 + |z|)2 (see [4]).
We make the change of variable t = log(1/r), r = |z|. Let Λ be the im-

age of the domain Ωc under the mapping (r, θ) → (t, θ), where r, θ are polar
coordinates of (x, y). The function U(t, θ) = F2(e

−t, θ) solves the equation

L(∂t, ∂θ)U(t, θ) =




(
∂

∂t
+ 2

)2

+
∂2

∂θ2




[
∂2

∂t2
+

∂2

∂θ2

]
U(t, θ)

= H(t, θ) in Λ ∩ {t > R}

and satisfies U = ∂U/∂n = 0 on ∂Λ∩{t > R}, where∇kH(t, θ) = O(e−(n+2+ν)t),
k = 0, . . . , n− 2. From the local estimate

‖U‖W n+2
2 (Λ∩{`−1<ξ<`+1}) ≤ const

(
‖χH‖W n−2

2 (Λ) + ‖χU‖L2(Λ)

)
,
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where χ belongs to C∞
0 (`− 2, `+2) and equals 1 in (`− 1, `+1), it follows that

U belongs to W̊ 2
2,1 ∩W n+2

2,1 (Λ ∩ {t > R}). By U(∂t, ∂θ) we denote the operator
of the boundary value problem

U(∂t, ∂θ)U = F in Π = {(t, θ) : 0 < θ < 2π}, U = (∂/∂n)U = 0 on ∂Π

continuously mapping W n+2
2 ∩ W̊ 2

2 (Π) into W n−2
2 (Π). Let β satisfy n + ν +

1 < β < n + ν + 3/2. The operator pencil U(ik, ∂θ) : W n+2
2 ∩ W̊ 2

2 (0, 2π) →
W n−2

2 (0, 2π) has p = 2n+[2ν]+2 eigenvalues of the form k = i`/2, ` ∈ N, in the
strip {k : 0 < Im k < β}. The eigenvalues have multiplicity 2 and multiplicity
of each eigenvector equals 1. Therefore the solution U admits the representation
(cf. [5], [8])

U =
p∑

k=1

ckUk + W.

Here Uk are linearly independent, each Uk satisfies the equation LUk = 0 in the
domain Λ ∩ {t > R}, vanishes on ∂Λ ∩ {t > R} and Uk /∈ W n+2

2,β (Λ ∩ {t > R}),
in addition, W ∈ W n+2

2,β (Λ ∩ {t > R}).
Making the inverse change of variable we obtain

F (r, θ) =
p∑

k=1

ckUk(− log r, θ) + O(rβ)

and this equality can be differentiated n times. By the method of complex stress
functions the displacement vector v(2)

n corresponding to F is given by

v(2)
n (z) =

1

2µ

[
κϕ∗(z)− zϕ′∗(z)− ψ∗(z)

]
+ w(1)(z) ,

where w(1)(z) = α + icz + O(|z|n+ν) with real α and this equality can be differ-
entiated n− 1 times,

ϕ∗(z) =
m∑

k=1

Rϕ,k

(
log

zz0

z0 − z

) (
zz0

z0 − z

)k/2

and

ψ∗(z) =
m∑

k=1

Rψ,k

(
log

zz0

z0 − z

) (
zz0

z0 − z

)k/2

.

Here m is the largest integer not exceeding 2(n + ν) + 1. As in Theorem 3, we
can prove that ∫

S

Tv(2)
n ds = 0.

Hence the displacement vector v = vn +v(1)
n +v(2)

n is a solution of the problem
N− with the boundary data h and admits the required representation.
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Corollary 4.1. Let h have representations

h±(z) =
n−1∑

k=0

h
(k)
± xk+ν + O(xn+ν), x ∈ S±,

for ν > −1, ν 6= `/2, ` ∈ Z. Then the functions ϕn and ψn in (18) have the
form

ϕn(z) =
n∑

k=1

βk

(
zz0

z − z0

)k+ν

, ψn(z) =
n∑

k=1

γk

(
zz0

z − z0

)k+ν

.

2.3. Properties of solutions of the problem D−.

Proposition 1. Let Ω have an outward peak and let a vector-valued function
g satisfy on S± the conditions

∂kg

∂sk
(z) = O(|z|β−k), k = 0, 1, 2.

Then the problem D− with the boundary data g has a solution u bounded at
infinity and subject to

∫

S

|q|
∣∣∣∇u(q)

∣∣∣dsq < +∞, u(z) = O(|z|γ) (19)

if −1 < γ < β ≤ 0, and to
∫

S

|∇u(q)|dsq < +∞, u(z) = O(|z|γ) (20)

if 0 < γ < min{β, 1/2}.
Proof. As in Theorem 2, we can construct a solution u satisfying either (19) or
(20) and such that u belongs to W 1,ρ(|z| > R) and is square summable in a
neighborhood of infinity for sufficiently large R. We check now that u is bounded
at infinity. By the first Kolosov formula Re{ϕ′(z)} is a linear combination
of the components of ∇u. It follows that Re ϕ′(z) is square summable in a
neighborhood of infinity. So, ϕ(z) has the decomposition

ϕ(z) = icz +
0∑

k=−∞
bkz

−k, c ∈ R.

From the equality

u(z) = (2µ)−1(κϕ(z)− zϕ′(z)− ψ(z))

it follows that ψ(z) is also square summable in a neighborhood of infinity. There-
fore ψ(z) can be presented in the form

ψ(z) =
0∑

k=−∞
dkz

−k.

Finally we have
u(z) = i(2µ)−1(κ + 1)cz + O(1).
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Since the function ρ−1u− is square summable in a neighborhood of infinity,
c = 0. Consequently, u is bounded at infinity.

Proposition 2. Let Ω have an inward peak and let g on S± satisfy the con-
ditions

∂kg

∂sk
(z) = O(|z|β−k), k = 0, 1, 2.

Then the problem D− with the boundary data g has a solution u bounded at
infinity and satisfying

∫

S

|u(q)|dsq < +∞,
∫

S

|q||∇u(q)|dsq < +∞. (21)

Proof. Let u(1) be an extension of g onto Ωc equal to zero outside a certain disk
and satisfying ∆∗u(1) = O(|z|β−3) as z → 0. We look for a function u(2) such
that

4∗u(2) = −4∗u(1) in Ωc, u(2) = 0 on S\{O} . (22)

After the change of variables z = 1/ζ (ζ = ξ + iη) the equation in (22) takes
the form

∆∗U + L(∂ξ, ∂η)U = F in Λ, (23)

where U(ξ, η) = u(2)(ξ/|ζ|2, η/|ζ|2), Λ is the image of Ω and L(∂ξ, ∂η) is the sec-
ond order differential operator with coefficients admitting the estimate O(ξ−β−1).
Since F ∈ L2(Λ), problem (23) has a unique solution in the space W 2

2 (Λ). Hence
u = u(1) + u(2) satisfies conditions (21).

3. Integral Equation on the Contour with an Inward Peak

3.1. Integral equation for the problem D+. We shall use the following
lemma.

Lemma 1. Let Ω have an inward peak and let α = max(|κ′′+(0)|, |κ′′−(0)|).
Then, for any σ =

(
σ(1), σ(2)

)
from M,

(
Wσ(1)

)
(z)=∓1

2

(
σ

(1)
+ −σ

(1)
−

)
± µ

2π(λ + 2µ)

δ∫

0

(
σ

(2)
+ −σ

(2)
−

)
(τ)

dτ

x− τ
+O(1),

(
Wσ(2)

)
(z)=∓ 1

2

(
σ

(2)
+ −σ

(2)
−

)
∓ µ

2π(λ + 2µ)

δ∫

0

(
σ

(1)
+ −σ

(1)
−

)
(τ)

dτ

x− τ
+O(1)

with the upper sign if

z ∈ {(x, y) : κ+(x) < y < αx, x ∈ (0, δ)} ,

and with the lower sign if

z ∈
{
(x, y) : −αx2 < y < κ−(x), x ∈ (0, δ)

}
.

For the proof see [9]. Now we state a uniqueness theorem.
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Theorem 5. Let Ω have an inward peak. The boundary integral equation

2−1σ −Wσ + c1A1 + c2A2 + c3A3 = 0 (24)

has only the trivial solution in the Cartesian M×R3.

Proof. Let a pair (σ, c) with σ ∈ M, c ∈ R3, be a solution of equation (24).
Consider the displacement vector

Wσ(z) + c1A1(z) + c2A2(z) + c3A3(z), z ∈ Ω, (25)

with zero boundary value on S\{O}. We show that this vector-valued function
is equal to zero in Ω.

We use the change of the variable t = log 1/r and denote by W1(z), W2(z)
the components of (25). Then U(t, θ) with the components

W1(e
−t, θ) cos θ + W2(e

−t, θ) sin θ, −W1(e
−t, θ) sin θ + W2(e

−t, θ) cos θ

is a solution of the problem

L(∂t, ∂θ)U = (4∗ + K)U = 0 in Λ, U = 0 on ∂Λ,

where r, θ are polar coordinates of (x, y) and Λ is the image of Ω. Here by K
we denote the first order differential operator with constant coefficients

K =

(
−λ + 2µ, −(λ + 3µ)∂/∂θ

(λ + 3µ)∂/∂θ −µ

)
.

Since the potential Wσ(z) grows not faster than a power function as z →
0, there exists β < 0 such that U ∈ L2(Λ). By the local estimate (11) we

obtain that U belongs to W 2
2,β ∩ W̊ 1

2,β(Λ). The eigenvalues of the operator

pencil D(ik, ∂θ) : W 2
2 ∩ W̊ 1

2 (0, 2π) → L2(0, 2π) are the numbers i`/2, where `
is a nonvanishing integer. According to [5], [8], the operator L is invertible if
β 6= i`/2, ` = ±1,±2, . . . . Since U ∈ ker L, from its asymptotic representation
of U (cf. [5]) it follows that either U(t, θ) = O(e−t/2) or U(t, θ) grows faster than
et/(2+ε) (ε > 0) as t → +∞. In the first case the energy integral of (W1,W2) is
finite and therefore it is equal to zero in Ω. Now we shall show that the second
case is impossible.

Let χ be a C∞-function equal to zero outside of a small neighborhood of the
origin and χ = 1 near the origin. The components of χσ will be denoted by
σ(1), σ(2). Since the boundary values of Wσ are bounded on S\{O}, by Lemma
1 we have

− 1

2

(
σ

(1)
+ − σ

(1)
−

)
(x) +

µ

2π(λ + 2µ)

δ∫

0

(
σ

(2)
+ − σ

(2)
−

)
(τ)

dτ

x− τ
= O(1),

− 1

2

(
σ

(2)
+ − σ

(2)
−

)
(x)− µ

2π(λ + 2µ)

δ∫

0

(
σ

(1)
+ − σ

(1)
−

)
(τ)

dτ

x− τ
= O(1).
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These equalities imply that the functions
(
σ

(1)
+ − σ

(1)
−

)
and

(
σ

(2)
+ − σ

(2)
−

)
are p-

summable for any p > 1 in a neighborhood of the origin. Therefore Wσ(z) is
also p-summable for any p > 1 along any ray

{(x, y) : x = αt, y = βt, t > 0}
near the origin with α < 0. Since Aj = O(1), j = 1, 2, 3, our goal is achieved.
Hence we have

Wσ(z) + c1A1(z) + c2A2(z) + c3A3(z) = 0 in Ω.

Let u− be a solution of the problem D− with the boundary data σ. We notice
that

V Tu− −Wu− = u−(∞) in Ω .

Here by V τ(z) we denote the simple-layer potential with a density τ and with
the kernel

Γ(z, q)− Γ(z, 0), q ∈ S\{O}.
Since

Wu− = −
3∑

k=1

ckAk ,

by substituting Wu− into the previous equality, we find

V Tu− +
3∑

k=1

ckAk = u−(∞) in Ω.

The limit relations for the simple-layer potential imply

T

(
V Tu− +

3∑

k=1

ckAk +
1

2
u−

)
= 0 on S\{O}.

Let w−
k be the solution of the problem

4∗w−
k = 0 in Ωc, Tw−

k = TAk on S\{O}
constructed in Theorem 3. Since the boundary function TAk does not satisfy
the conditions of Corollary 3.2, it follows that the solution w−

k does not belong
to M. Then we have

V Tu−(z) = −u−(z)−
3∑

k=1

ckw
−
k (z) + u0(z) in Ωc, (26)

where u0 is the displacement vector satisfying Tu0 = 0 on S\{O}. We
substitute (26) into the identity

Wu− − V Tu− = u− − u−(∞) in Ωc

and obtain

Wσ(z) = u0(z)−
3∑

k=1

ckw
−
k − u−(∞), z ∈ Ωc . (27)
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From the jump formula for Wσ it follows

σ(p) = −u0(z) +
3∑

k=1

ckw
−
k + u−(∞)−

3∑

k=1

ckAk.

Since the density σ belongs to M, according to (27) the function w0, defined
by w0(ζ) = u0(ζ

−1), and ∇w0 grow not faster than a power function in the
image Λ of Ωc. Therefore w0 ∈ W 2

2,β(Λ) with a small negative β. Since∇u0(z) =

O(|z|−2) as z →∞ and Tu0 = 0 on S\{O}, it follows from Betti’s formula that
∫

{κ−(x)<y<κ+(x)}
Tu0 ds = 0 for 0 < x < δ .

We represent the displacement vector u0 via the Airy function U in the domain
Ωδ = Ωc ∩ {|z| < δ}. Since

∂U

∂x
+ i

∂U

∂y
= −i

∫

(0z)‘

Tu0 ds + const ,

where by (0z)‘ we denote the arc of S connecting 0 and z, and since (∂U/∂x)+
i(∂U/∂y) is defined up to a constant term, we assume that

∂U

∂x
+ i

∂U

∂y
= 0 on S±.

Therefore U is equal to the constants c± on S±. We use the Kelvin transform

W (ζ) = |ζ|2U(1/ζ), ζ ∈ Λδ,

where Λδ is the image Ωδ under the mapping ζ = 1/z. The expressions W (ζ)
and ∇kW (ζ), k = 1, 2, grow not faster than a power function. Therefore,
W belongs to W 2

2,β(Λδ) with β < 0, W is biharmonic in Λδ and satisfies the
conditions

W (ζ) = c±|ζ|2, (∂W/∂n) = c±(∂|ζ|2/∂n) on ∂Λδ ∩ {|ζ| > δ−1}.
From the local estimate

‖W‖W 3
2 (Λ1∩{`−1<Reζ<`+1})

≤ const
[
‖χW‖

W
5/2
2 (∂Λδ)

+ ‖χ(∂W/∂n)‖
W

3/2
2 (∂Λδ)

+ ‖χW‖W 2
2 (Λδ)

]
, (28)

where a cut-off C∞ function χ equals 1 on (` − 1, ` + 1) and vanishes outside
(`− 2, ` + 2), it follows that W belongs to W 3

2,β(Λδ).

Since ∇2w0 is represented as a linear combination of derivatives up to the
third order of W with coefficients growing not faster than a power function, we
have w0 ∈ W 3

2,β(Λδ).
Let N (∂ξ, ∂η) denote the operator of the boundary value problem

4∗u = f in Π =
{
(ξ, η) : ξ ∈ R1,−κ′′+(0)/2 < η < −κ′′−(0)/2

}
,

Tu = h on
{
(ξ, η) : η = −κ′′±(0)/2

}
,
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continuously mapping W 2
2,β(Π) into L2,β(Π)×W

1/2
2,β (∂Π). It is well known that

the eigenvalues of the operator pencil N (ik, ∂η): W 2
2 (−κ′′+(0)/2,−κ′′−(0)/2) →

L2(−κ′′+(0)/2,−κ′′−(0)/2)×R2 are found from the equation

k2α2 = (sinh k α)2 ,

where α =
(
κ′′+(0)− κ′′−(0)

)
/2. One can check that the dimension of the space

KerN (0, Dη) equals two. The vector-valued function u
(0)
1 (η) = (0, 1) is the basis

element of multiplicity 4. The second linear independent eigenvector u
(0)
2 (η) =

(1, 0) has multiplicity 2. The generalized eigenvectors corresponding to u
(0)
1 , u

(0)
2

are

u
(1)
1 (η) =

(
−iη − 1

2
i (α+ + α−), 0

)
,

u
(2)
1 (η) =

(
0,−1

2

λ

λ + 2µ
η2 − 1

2

λ

λ + 2µ
(α+ + α−)η

)
,

u
(3)
1 (η) =

(
− i

6

3λ + 4µ

λ + 2µ
η3 − i

4
(α+ + α−)

3λ + 4µ

λ + 2µ
η2 −

− 2i
λ + µ

λ + 2µ
α+α−η, 0

)
,

u
(1)
2 (η) =

(
0,−i

λ

λ + 2µ
η

)
.

The operator pencil N (ik, ∂η) has no other eigenvalues on R.
Therefore u0(z) is represented near the origin in the form

u0(z) =
6∑

k=0

dkZk(z) + u1(z)

(cf. [8]). Here Zk are linearly independent solutions of the equation ∆∗u = 0 in
a vicinity of the pick in Ωc satisfying the boundary condition Tu = 0 near O on
S. The last term u1 and its gradient exponentially vanish as z → 0. Three of the
vector-valued functions Zk, 1 ≤ k ≤ 6, say Z1, Z2, Z3, form rigid displacements.
The others are represented in the form

Z4(z) = x−1 + O(1), Z5(z) = ix−3 + O(x−2),

Z6(z) = ix−4 + O(x−3).

Since the functions w−
1 , w−

2 , w−
3 , Z4, Z5, Z6 have different orders of singularities

and since σ ∈ M, we have

c1 = c2 = c3 = d4 = d5 = d6 = 0.

In particular,

u0(z) = d1Z1(z) + d2Z2(z) + d3Z3(z) + u1(z).
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Hence it follows that u0 and its gradient ∇u0 are bounded as z → 0. On the
other hand, according to (25) we have

u0(z)− u0(∞) = O(|z|−1), ∇u0(z) = O(|z|−2) as z →∞.

By the classical uniqueness theorem (cf. [16], Ch. I, Sect. 20) it follows that
u0(z) = u0(∞), z ∈ Ωc. Thus

σ(p) = −u0(p) + u−(∞) = const on S\{O}.
Since the nonzero constant does not satisfy the homogeneous equation (24), it
follows that σ = 0.

Consider the equation

2−1σ −Wσ − c1A1 − c2A2 − c3A3 = −g (29)

on S with respect to a density σ and a vector (c1, c2, c3). The functions
A1,A2,A3 have been defined in the Introduction.

Theorem 6. Let Ω have an inward peak and let g belong to the class Nν,
ν > 3. Then equation (29) has a unique solution {σ, c1, c2, c3} in M×R3, and
the density σ can be represented in the form

σ(z) =
(
α(log x)2 + β log x + γ

)
x−1/2 + O(x−ε) on S± ,

with small positive ε.

Proof. Let Um,k, m = 1, . . . , 4, and k = 1, 2, denote the solutions of the problem

4∗u = 0 in Ω ∩Br, u = 0 on Br ∩ S\{O}
corresponding to the eigenvalues k = i`/2, ` ∈ Z, ` 6= 0, of the operator pencil
introduced in Theorem 2. Here Br = {|z| < r} with small positive r. We
normalize the functions Um,k in the following way:

U11(z) =
i

2µ

[
2κ Im z1/2 − z−1/2 Im z

]
+

+ i
(κ− 1)(α+ − α−)

8πκµ

[
2κ Im (z3/2 log z)− 3z1/2 log z Im z −

− 2z1/2 Im z
]
− i

(κ− 1)α+

2µ
z3/2 + O(z5/2(log z)2),

U12(z) = − 1

2µ

[
2κ Im z1/2 + z−1/2 Im z

]
−

− (κ + 1)(α+ − α−)

8πκµ

[
2κ Im (z3/2 log z) + 3z1/2 log z Im z +

+ 2z1/2 Im z
]

+
(κ + 1)α+

2µ
z3/2 + O(z5/2(log z)2),
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U21(z) = i
κ− 1

µ
Im z + i

(κ− 1)(α+ − α−)

4πµκ

[
2κ Im (z2 log z)−

− 4z log z Im z − 2z Im z
]
− i

(κ− 1)α+

µ
z2 + O(z3 log2 z),

U22(z) = −κ + 1

µ
Im z − (α+ − α−)(κ + 1)

4πµκ

[
2κ Im (z2 log z) +

+ 4z log z Im z + 2z Im z
]

+
(κ + 1)α+

µ
z2 + O(z3(log z)2),

U31(z) =
i

2µ

[
2κ Im z3/2 − 3z1/2 Im z

]
+ O(z5/2 log z),

U32(z) = − 1

2µ

[
2κ Im z3/2 + 3z1/2 Im z

]
+ O(z5/2 log z),

U41(z) =
i

µ

[
κ Im z2 − 2z Im z

]
+ O(z3 log z),

U42(z) = − 1

µ

[
κ Im z2 + 2z Im z

]
+ O(z3 log z),

where α± = κ′′±(0)/2. According to Theorem 2, the solution of the problem D+

with the boundary data g admits the representation

u+(z) =
4∑

m=1

2∑

k=1

dmkUmk(z) + W (z)

(cf. [5], [8]), where coefficients dm,k are defined uniquely and

W (z) = O(|z|2+ε), ε > 0.

We set

c1 = d11, c2 = (Qd12 + d31)/(Q
2 + 1), c3 = d22.

Then the displacement vector

u+(z)−
3∑

k=1

ckAk(z)

is the sum of a linear combination of the functions

U12(z)−QU31(z), U21(z), U32(z), U41(z), U42(z)

and the function W1(z) admitting the estimate O(|z|2+ε). According to Theo-
rem 3 (see also Corollaries 3.1 and 3.2), the problem N− with the boundary
data

T

(
u+ −

3∑

k=1

ckAk

)

has a solution whose trace on S\{O} is in the class M.
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Now, when the vector c = (c1, c2, c3) is chosen, by U+ and U− we denote
solutions of the problems D+ and D− with the data

g −
3∑

k=1

ckAk on S\{O}.

Then TU+ admits the estimate O
(
x−1/2

)
on S\{O}. According to Proposition

2 the displacement vector U−(z) is bounded at infinity and
∫

S

∣∣∣TU−(p)
∣∣∣|p|dsp < +∞ .

Hence (cf. [7], Ch. 5, Sect. 1) we obtain

g(p)−
3∑

k=1

ckAk(p) = V
(
TU+ − TU−)

(p) + U e(∞), p ∈ S\{O}.

Let V − be a solution of the problem N−:

V − = 0 in Ωc, TV − = TU+ on S\{O}, V −(∞) = 0 .

Applying Betti’s formula to w = V − − U− + U−(∞) in Ωc and using the jump
relation for Ww we obtain

w(p)− 2Ww(p) =− 2V
(
TU+ − TU−)

=

= −2g(p) + 2
3∑

k=1

ckAk(p) + 2U−(∞), p ∈ S\{O}.

Hence the function

σ(p) = w(p)− U−(∞) = V −(p)− g(p) +
3∑

k=1

ckAk(p), p ∈ S\{O}

with chosen c1, c2, c3 is a solution of equation (29) in the class M. According to
Theorems 2 and 3 σ has the required asymptotics and according to Theorem 5
the obtained solution (σ, c) is unique.

3.2. Integral equation for the problem N−. We say that a function v(z),

z ∈ Ω, belongs to the space W̊ 1
2 outside the peak if for any C∞

0 -function κ such

that O /∈ supp κ one has κv ∈ W̊ 1
2 (Ω).

Lemma 2. Let Ω have an outward peak. If a vector-valued function v(z), z ∈
Ω, belongs to W̊ 1

2 outside the peak, satisfies 4∗v = 0 in a vicinity of the peak,
and v(z) and ∇v(z) grow not faster than a power function, then there exists

β < 0 such that v(z) and ∇v(z) admit the estimate O
(

exp(β Re 1
z
)
)

as z → 0.
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Proof. The function w defined by w(ζ) = (κv)(ζ−1) satisfies (4∗ + L)w = 0 in
Λ = {ζ : ζ−1 ∈ Ω} and w = 0 on ∂Λ. Here κ belongs to C∞

0 (R2) and is equal to 1
in a neighborhood of the peak and L is a second order differential operator with
coefficients vanishing as ζ → ∞. For small negative β we have w ∈ W̊ 1

2,β(Λ).

Hence and by the local estimate (9) it follows that w ∈ W 3
2,β ∩W 1

2,β(Λ).
The operator D(∂ξ, ∂η) of the boundary value problem

4∗u = f in Π =
{
(ξ, η) : −κ′′+(0)/2 < η < −κ′′−(0)/2

}
, u = 0 on ∂Π

continuously maps W 2
2,β∩W̊ 1

2,β(Π) into L2,β(Π). The eigenvalues of the operator
pencil

D(ik, ∂η) : W 2
2 ∩ W̊ 1

2 (−κ′′+(0)/2,−κ′′−(0)/2) → L2(−κ′′+(0)/2,−κ′′−(0)/2) .

are nonzero solutions of the equation

α2k2 = κ (sinh k α)2

where α = (κ′′+(0)− κ′′−(0))/2 and κ = (λ + 3µ)/(λ + µ). We assume that there
are no eigenvalues in the strip {k : β < Im k < −β}. Therefore w belongs to

W 3
2,−β ∩ W̊ 1

2,−β(Λ) (cf. [5], [8]). The Sobolev embedding theorem implies that w

and ∇w admit the estimate O
(

exp(βξ)
)

as ξ →∞.

Theorem 7. Let Ω have an inward peak. Then the homogeneous integral
equation

−2−1τ + TV τ = 0 (30)

has only the trivial solution in the class M.

Proof. Let τ ∈ M satisfy (30). Integrating this equation over S we obtain
∫

S

τ ds = 0.

Hence the potential v(z) = V τ(z) is a solution of the problem N+ with the
boundary data τ , that is

Tv(p) = τ(p), p ∈ S\{O}.
By the Betti integral representation for v we obtain Wv = 0 in Ω. Therefore
the density v of this double-layer potential is a solution of the homogeneous
integral equation of the problem D+

(1− 2W ) v(p) = 0, p ∈ S\{O}.
Since the restriction of v to S\{O} belongs to M, it follows by Theorem 5

that
v(p) = 0 for p ∈ S\{O}.

Since v(z) and ∇v(z) vanish at infinity and grow not faster than a power func-

tion as z → 0, Lemma 2 implies that v(z) = O
(

exp(β Re 1
z
)
)

with negative β.

According to the classical uniqueness theorem we have v = 0 in Ωc (cf. [16]).
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We make the change of the variable t = log 1/r and denote by v(1)(z), v(2)(z)
the components of the displacement vector v(z), z ∈ Ω. Then the vector-valued
function U(t, θ) = v(e−t, θ)e−it, where r, θ are the polar coordinates of (x, y), is
a solution of the equation (4∗ + K)U = 0 in the image Λ of Ω satisfying U = 0
at ∂Λ. Here K is the first order differential operator

K =

(
−λ + 2µ, −(λ + 3µ)∂/∂θ

(λ + 3µ)∂/∂θ −µ

)
.

The vector-valued function v belongs to W̊ 1
2,β(Λ) with negative β. From the

local estimate (11) it follows that v is an element of W 2
2,β(Λ). Consider the

operator D(∂t, ∂θ) : W 2
2,β ∩ W̊ 1

2,β(Π) → L2,β(Π) of the boundary value problem

(4∗ + K)U = F in Π = {(t, θ) : 0 < θ < 2π, t ∈ R}, U = 0 on ∂Π,

and introduce the operator pencil D(ik, ∂θ) : k ∈ C, continuously mapping

W 2
2 ∩W̊ 1

2 (0, 2π) into L2(0, 2π) and considered in Theorem 2. Then the displace-
ment vector v(z) is represented as a linear combination of linearly independent
nonzero solutions of the homogeneous problem D+ (cf. [8]). Since the displace-
ment vector v(z), z ∈ Ω, admits the estimate O(|z|β), β > −1, one has

v(z) = d1ζ1(z) + d2ζ2(z),

where ζ1 and ζ2 are solutions of the homogeneous problem D+ admitting the
estimate O(|z|−1/2).

From the limit relations for V τ it follows

τ(p) = d1Tζ1(p) + d2Tζ2, p ∈ S\{O}.
Since the stresses Tζk, k = 1, 2, do not belong to M and are of different order
and since τ ∈ M, the coefficients d1 and d2 are zero.

Theorem 8. Let Ω have an inward peak and let h belong to Nν , ν > 3, and
satisfy ∫

S

hds = 0.

Then the integral equation

−2−1τ + TV τ = h

has a unique solution in the class M. The solution τ can be represented as

τ(z) = α±x−1/2 + O(1).

Proof. Let v− denote a solution of the problem N− with the boundary data h
on S, vanishing at infinity. According to Theorem 3, v− has the representation

v−(z) = (α(0) + α(1) log x)xν−2 + O(xν−1−ε) on S.

By Theorem 2 the displacement vector u+, equal to v− on S\{O}, is given by

u+(z) =
1

2µ

[
κϕ(z)− zϕ′(z)− ψ(z)

]
,
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where ϕ(z) and ψ(z) admit the representations

ϕ(z) = βz1/2 + O(z), ψ(z) = γz1/2 + O(z).

Therefore we have

Tui(z) = α±x−1/2 + O(1) on S\{O}.
Hence

v− = V (Tu+ − h) on S\{O}.
Let us show that the same equality is valid in Ωc. We put

v(z) = v−(z)− V (Tu+ − h)(z), z ∈ Ωc.

As in Theorem 2, we can prove that ∇v(z) admits the estimate O(|z|−2) at

infinity. Hence and by Lemma 2 it follows that v belongs to W̊ 1,ρ(Ωc) with

ρ(z) = (1 + |z|)2. Since the problem D− is uniquely solvable in W̊ 1,ρ(Ωc) (cf.
[4]), v vanishes in Ωc. So the density

τ = Tu+ − h

satisfies the integral equation of the problem N−. According to Theorem 7 the
solution in the class M is unique.

4. Integral Equations on the Contour with an Outward Peak

4.1. Integral equation for the problem D+.

Theorem 9. Let Ω have an outward peak. The homogeneous integral equa-
tion (1) has a two-dimensional space of solutions in M.

Proof. By Theorem 4 the homogeneous problem N− in the class of functions

admitting the estimate O
(
|z|β

)
, β > −1, has a nonzero solution vanishing at

infinity and satisfying

ζ(z) = cz−1/2 + O(1).

Furthermore, the function ζ span a two-dimensional real linear space. From the
integral representation

ζ(z) = (Wζ)(z)− (V Tζ)(z), z ∈ Ωc,

by the jump formula for Wζ we get

ζ(p)− 2(Wζ)(p) = −2(V Tζ)(p) = 0, p ∈ S\{O}.
Thus, ζ(p) is a solution of the homogeneous integral equation

(1− 2W ) σ = 0 (31)

for the problem D+.
Now, let σ ∈ M be a non-trivial solution of equation (31). The potential

Wσ and ∇Wσ in Ω have a power growth as z → 0. According to Lemma 2,

Wσ(z) = O
(

exp(β Re 1
z
)
)

with negative β and therefore Wσ ∈ W̊ 1
2 (Ω). Since
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the homogeneous problem D+ has only the trivial solution in W̊ 1
2 (Ω), we obtain

that Wσ vanishes in Ω.
Let u− denote the solution of the problem D− with the boundary function σ.

We have

V Tu− −Wu− = u−(∞) in Ω.

Here, by V τ(z) we denote the simple-layer potential with the kernel

Γ(z, q)− Γ(z, 0), q ∈ S\{O}.
Since Wu− vanishes in Ω, we have V Tu−(z) = u−(∞), z ∈ Ω. The limit
relations for the simple-layer potential imply

T
(
V Tu− +

1

2
u−

)
(p) = 0, p ∈ S\{O}.

So one has

V Tu−(z) = −u−(z) + u0(z) in Ωc, (32)

where u0 is a displacement vector satisfying the boundary condition

Tu0(p) = 0 on S\{O}.
From the integral representation of u− and (32) it follows

Wu−(z) = u0(z)− u−(∞), z ∈ Ωc.

Since the potential Wu− vanishes at infinity, we have

u0(∞) = u−(∞).

The jump formula for Wu− implies

σ(p) = u−(p) = u0(p)− u0(∞), p ∈ S\{O}.
Since σ belongs to the class M, from (32) it follows that u0 and its gradient ∇u0

grow not faster than a power function as z → 0. For any function ρ ∈ C∞
0 (R2),

satisfying O /∈ supp ρ, we have that ρu0 belongs to W 1
2 (Ωc).

From the estimate∇u0(z) = O(|z|−2) (z →∞) and Betti’s formula we obtain
∫

{z∈Ωc, |z|=r}
Tu0(z)ds = 0 , 0 < r < δ .

We assume that the Airy function U generated by the displacement vector u0

in the domain Ωδ = Ωc ∩ {|z| < δ} satisfies

∂U

∂x
+ i

∂U

∂y
= 0 on S±.

In particular, U is constant on S+ and S−.
We make the change of the variable t = log(1/r), r = |z|. Let Λ be the image

of Ωδ under the mapping (r, θ) → (t, θ), where r, θ are polar coordinates of
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(x, y). By Γ+, Γ− we denote the images of S+ and S−. Then W (t, θ), equal to
U(e−t, θ), is a solution of the equation




(
∂

∂t
+ 2

)2

+
∂2

∂θ2




[
∂2

∂t2
+

∂2

∂θ2

]
W (t, θ) = 0 in Λ

and satisfies W = c±, ∂W/∂n = 0 on Γ±. Moreover, the function W belongs
to W 2

2,γ(Λ) with negative γ. From the local estimate (28) it follows that W

belongs to W 3
2,γ(Λ). Taking into account the relation between u0 and U in Ωδ

we conclude that W0(t, θ) = (ρu0)(e
−t, θ) ·e−iθ belongs to W 2

2,β(Λ) with negative
β.

Let D(∂t, ∂θ) denote the operator of the boundary value problem

(4∗ + K)U = F in Π = {(t, θ) : 0 < θ < 2π, t ∈ R}, TU = f on ∂Π,

continuously mapping W 2
2,β(Π) into L2,β(Π)×W

1/2
2,β (∂Π). Here K has the form

K =

(
−λ + 2µ −(λ + 3µ)(∂/∂θ)

(λ + 3µ)(∂/∂θ) −µ

)
.

The eigenvalues of the operator pencil D(ik, ∂θ) : W 2
2 (0, 2π) → L2(0, 2π)×R2

are numbers of the form k = i`/2, ` ∈ Z, and they have multiplicity two.
Therefore W0 admits the representation

W0 =
p∑

k=1

ckVk + V0

(cf. [8], Theorem 6.2), where p is the largest integer not exceeding 2β, Vk are
linear independent vector-valued functions satisfying the equation (4∗+K)U =
0 in ΛR = Λ ∩ {t > R} and the boundary condition TU = 0 on ∂Λ ∩ {t > R}.
Moreover, we have Vk /∈ W 2

2,γ(ΛR) and V0 ∈ W 2
2,γ(ΛR) for γ ∈ (−1/2, 0). Making

the inverse change of the variable r = e−t we obtain

u0(z) = (2µ)−1(κϕ∗(z)− zϕ ′∗(z)− ψ∗(z)) + O(|z|−ε),

where ε > −1/2, and

ϕ∗(z) =
p∑

k=1

R(k)
ϕ

(
log

zz0

z0 − z

)(
zz0

z0 − z

)(k−p−1)/2

,

ψ∗(z) =
p∑

k=1

R
(k)
ψ

(
log

zz0

z0 − z

)(
zz0

z0 − z

)(k−p−1)/2

.

Here R(k)
ϕ and R

(k)
ψ are polynomials of degree [(k− 1)/2], and z0 is a fixed point

in Ω. Since σ ∈ M, we have u0(z) = O
(
|z|−1/2

)
. Thus, σ is the restriction to

S\{O} of a solution of the homogeneous problem N−.
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Theorem 10. Let Ω have an outward peak and let g belong to Nν , ν > 0.
Then equation (1) is solvable in the class M and the homogeneous equation has
a two dimensional space of solutions. Among solutions of (1) there exists only
one with the representation

σ(x) = β±xν−1 + O(1)

if ν 6= 1/2, and
σ(x) = β±x−1/2 log x + O(1)

if ν = 1/2.

Proof. Let V σ be a simple-layer potential with the kernel Γ(z, q). Let u+, u−

be solutions of the problems D+ and D−. Theorem 1 implies that

Tu+(z) = ±β0x
ν−2 + O(xν−1), z = x + iy ∈ Ω.

According to Theorem 2, Tu− is integrable on S and the displacement vector
u−(z) is bounded at infinity. Then

g(p) = V
(
Tu+ − Tu−

)
(p) + u−(∞), p ∈ S\{O}.

Here the integral is understood in the sense of the principal value.
Let v− denote the solution of the problem N− with the boundary data Tu+.

According to Theorem 4, we have

v−(z) = O(xν−1) for ν 6= 1/2,

v−(z) = O(x−1/2 log x) for ν = 1/2, z ∈ S\{O}.
Using the integral representation for w = v−−u− + u−(∞) in Ωc and the jump
formula for Ww we obtain that

w − 2Ww = −2V
(
Tu+ − Tu−

)
= −2g + 2u−(∞) on S\{O}.

Thus the displacement vector σ = w−u−(∞) = v−−g is a solution of equation
(1).

By Theorem 9 the restrictions of solutions of the homogeneous problem N−

to S\{O} (and only such functions) satisfy the homogeneous integral equation
of the problem D+. The space of such solutions in M is two-dimensional. We
choose two linear independent solutions ζR and ζI such that

ζR(z) = ∓κ + 1

µ
x−1/2 + O(1),

ζI(z) = ∓κ + 1

µ
i x−1/2 + O(1), z = x + iy ∈ S\{O}.

Therefore solutions of equation (1) in M have the form

σ = v− − g − ( Re c)ζR + (Im c)ζI .

The complex constant c can be chosen so that σ has the required asymp-
totics.
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4.2. Integral equation for the problem N−.

Theorem 11. Let Ω have an outward peak. Then the homogeneous equation

−2−1τ + TV τ + t1T%1 + t2T%2 = 0 (33)

has only the trivial solution in the Cartesian product M×R2.

Proof. Let τ be a solution of (33). We define the displacement vector v(z) as
follows:

v(z) = V τ(z) + t1%1(z) + t2%2(z), z ∈ Ωc.

By integrating (33) over the boundary S we find
∫

S

τ(p)dsp = 0.

Therefore the potential V τ(z) takes the form

V τ(z) =
∫
{Γ(z, q)− Γ(z, 0)} τ(q)dsq .

Hence we have v(z) = O(|z|−1), ∇v(z) = O(|z|−2), as |z| → ∞. Therefore v(z)
is a solution of the problem N− with zero boundary data and

∇v(z) = O(|z|β), β > −1, as z → 0.

The classical uniqueness theorem implies that

v(z) = const, z ∈ Ωc.

Since v(z) vanishes at infinity, it follows that

V τ(z) = −t1%1(z)− t2%2(z), z ∈ Ωc.

We extend the functions %k(z), z ∈ S, k = 1, 2, onto Ω as solutions of the
homogeneous Lamé system. Let %+

1 (z) and %+
2 (z) denote these extensions. The

vector-valued function

%0(z) = V τ(z) + t1%
+
1 (z) + t2%

+
2 (z), z ∈ S\{O}

is bounded in Ω, vanishes on S\{O} and its gradient ∇%0 grows slower
than a power function. According to Lemma 2, ρ0(z) admits the estimate

O
(

exp(β Re 1
z
)
)

with negative β as z → 0. We have

V τ(z) = −
2∑

1

tk%
+
k (z) + %0(z).

The jump formula for the simple-layer potential entails

τ(z) = −
2∑

1

tkT%+
k (z) +

2∑

1

tkT%k(z) + T%0(z), z ∈ S.

We have T%k(z) = O(|z|−1/2), k = 0, 1, and T%+
1 (z), T%+

2 (z) have order −3/2.
Since the components of these functions have different singularity, t1 and t2
vanish. Thus, V τ(z) = 0 in Ωc. By Lemma 2 applied to V τ in Ω, and by the
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classical uniqueness theorem we can conclude that V τ(z) = 0, z ∈ Ω. So the
density τ given by

τ(z) = T (V τ)−(z)− T (V τ)+(z), z ∈ S\{O},
vanishes on S.

Let ζR and ζI be solutions of the homogeneous problem N− introduced in
Theorem 10.

Theorem 12. Let Ω have an outward peak, let h belong to Nν , ν > 0, and
satisfy ∫

S

hds = 0.

Then the integral equation (6) has a unique solution in the direct product M×R2

and this solution can be represented as follows:

σ(z) = β±xν−1 + O(x−1/2) for 0 < ν < 1/2,

σ(z) =
(
γ± log x + β±

)
x−1/2 + O(log x) for ν = 1/2,

σ(z) = γ±x−1/2 + β±xν−1 + O(log x) for 1/2 < ν < 1,

where z = x + iy ∈ S\{O}.
Proof. We consider only one of the statements of the theorem in detail. Let
v− denote a solution of the problem N− with the boundary data h such that
v−(∞) = 0.

We assume that 0 < ν < 1/2. From Theorem 4 it follows that v− has the
form

v−(z) =
1

2µ

[
κϕ(z)− zϕ′(z)− ψ(z)

]
+ O(z3/2 log z),

where

ψ(z) = δ0,0 + δ1,0

(
zz0

z − z0

)1/2

+ δ2,0
zz0

z − z0

+ β0

(
zz0

z − z0

)1+ν

,

ψ(z) = ε0,0 + ε1,0

(
zz0

z − z0

)1/2

+ ε2,0
zz0

z − z0

+ γ0

(
zz0

z − z0

)1+ν

, z0 ∈ Ω.

Thus v− admits the representation

ve(z) = c0 ± c1x
1/2 + c2x + d±x1+ν + O(x3/2 log x) on S,

where

c1 = (1 + κ)δ1,0/2µ, c2 = (1 + κ)δ2,0/2µ.

We apply Betti’s formula to v− and first to ζR and then to ζI in Ωε = Ωc\{|z| <
ε}. Taking the limit as ε → 0 we obtain

Re c1 =
1

4π

∫

S

hζR ds, Im c1 =
1

4π

∫

S

hζI ds.
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We set

t1 =
µ

1 + κ

1

2π

∫

S

h ζRds, t2 =
µ

1 + κ

1

2π

∫

S

h ζIds.

Then the problem N− with the boundary data h− t1T%1− t2T%2 has a solution
on S± of the form

v(z) = c0 + c2x + d±x1+ν + O(x3/2 log x).

The solution of the problem D+ with the given displacement c2z on S admits
the estimate O(z) and this estimate can be differentiated at least once. Hence
and by Theorem 1 it follows that the solution u+ of the the problem

4u+ = 0 in Ω, u+ = v− on S,

admits the representation

u+(z) =
1

2µ

[
κϕ(z)− zϕ′(z)− ψ(z)

]
+ O(z log z).

differentiable at least once. Here

ϕ(z) = β0z
ν + β1z

1/2, ψ(z) = γ0z
ν + γ1z

1/2.

Therefore the stress Tu+ has the following representation on S±:

Tu+(z) = β±xν−1 + O(x−1/2), z = x + iy.

On S, we have

v = V
(
Tu+ − h + t1T%1 + t2T%2

)
. (34)

The simple-layer potential V Tu+ is bounded in a neighborhood of the origin and
its gradient admits the estimate O(|z|ν−1). Hence and by a classical uniqueness
theorem we obtain that (34) remains valid in Ωc. Consequently, the density

τ = Tu+ − h + t1T%1 + t2T%2

satisfies the integral equation of the problem N− and has the required asymp-
totics. Theorem 11 implies that the constructed solution of equation (6) is
unique.

The cases ν = 1/2 and 1/2 < ν < 1 can be studied in a similar way.

Applying Theorems 11 and 12, we obtain the following result.

Theorem 13. Let Ω have an outward peak. Furthermore, let h belong to
Nν , ν > 0, and satisfy

∫

S

hds,
∫

S

hζRds = 0 and
∫

S

hζIds = 0.

Then equation (2) is uniquely solvable in M.
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