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PLURIREGULAR, PLURIGENERALIZED REGULAR
EQUATIONS IN CLIFFORD ANALYSIS


E. OBOLASHVILI


Abstract. Problems for pluriregular equations in Clifford analysis are solved
effectively. They are related to the equations called polyharmonic, poly-
wave, polyheat, harmonic-heat, harmonic-wave, wave-heat and harmonic-
wave-heat equations which are considered here for the first time.
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§ 1. Elliptic and Plurielliptic Equations in Clifford Analysis


Equations, for which the boundary value problems (b.v.p.) and initial value
problems are considered in what follows, can be obtained by the Dirac operator
in Clifford analysis. That is why first some basic notions and definitions of
Clifford algebra and Clifford analysis will be given (see, e.g., [1, 4]).


Let R(n), R(n,n−1) and R0
(n) (n ≥ 1) be Clifford algebras. These are associative


algebras with generators e0, e1, . . . , en and relations


e2
0 = e0, e2


j = −e0 for j = 1, . . . , n− 1,


ejek + ekej = 0 for j, k = 1, . . . , n and j 6= k,


e2
n =







−e0 in the case of R(n),


e0 in the case of R(n,n−1),


0 in the case of R0
(n),


where e0 is the identity element. The relations imply the existence of a ba-
sis {eA}, A ⊆ {1, . . . , n}, of the form eA = eα1 · · · eαk


for A = {α1, . . . , αk},
1 ≤ α1 < · · · < αk ≤ n, e? = e0. These algebras are 2n-dimensional and
noncommutative (for n ≥ 2), and any element can be represented as


u =
∑


A⊆{1,...,n}
uAeA, u? = u0.


An element u is called vectorial if


u =
n∑


k=0


ukek.
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For every u two conjugates are defined:


ū =
∑


A


uAēA, ũ =
∑


A


uAẽA,


where ē0 = e0, ēj = ẽj = −ej, j = 1, . . . , n, and


ēA = ēαk
· · · ēα1 = (−1)k(k+1)/2eA, ẽA = ēα1 · · · ēαk


= (−1)keA.


R(1) is the space of complex numbers, R(1,0) is called the space of double
numbers, R0


(1) is the space of dual numbers.


Consider a modification of the Dirac operator [1],


∂ =
n∑


k=0


∂


∂xk


ek =
∂


∂x0


e0 + D, ∂ =
∂


∂x0


e0 −D, x =
n∑


k=0


xkek,


where D is the Dirac operator. In R(n), R(n,n−1) and R0
(n), one has respectively


∂∂ = ∂∂ = ∆(n), ∂∂ = ∆(n−1) − ∂2


∂x2
n


, ∂∂ = ∆(n−1),


where ∆(k) (k = n, n− 1) is the Laplace operator with respect to the variables
x0, . . . , xk. From these equalities it follows that the equations


∂u = 0, ∂u + ũh = 0, h = const, (1.1)


are elliptic in R(n) and hyperbolic in R(n,n−1).
Pluriregular and plurigeneralized regular equations in R(n) and R(n,n−1) are


written as


∂mu = 0, (1.2)


Pmu = 0, Pu = ∂u + ũh. (1.3)


If u(x) is a solution of (1.2) or (1.3), then it is a solution of the polyharmonic or
the polyHelmholtz equation in R(n) and the polywave equation or the polyKlein–
Gordon equation in R(n,n−1):


∆mu = 0,


(∆− |h|2)mu = 0, u = u(x), x = (x0, . . . , xn),


and


(
∆− ∂2


∂t2


)m


u(x) = 0,


(
∆− h2 − ∂2


∂t2


)m


u(x) = 0, xn ≡ t.
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1.1. B.V.P. for pluriregular and plurigeneralized regular functions in
elliptic case. Let u(x) be a regular function or generalized regular function,
i.e., a solution of the equation defined by (1.1) in the space R(n). Then u(x),
x = (x0, . . . , xn) is also a solution of the equation


∆u = 0, or (1.4)


∆u− |h|2u = 0, (1.5)


where h is assumed to be a vectorial constant h =
n∑


k=0
hkek.


Solutions of Dirichlet and Neumann problems for equation (1.4) in the half-
space xn > 0 can accordingly be represented as


u(x) =
2xn


ωn


∫


Rn


u(ξ) dξ


(r2 + x2
n)


n+1
2


, (1.6)


u(x) =
1


(n− 1)ωn


∫


Rn


ϕ(ξ) dξ


(r2 + x2
n)


n−1
2


, (1.7)


where r2 = (x0 − ξ0)
2 + · · ·+ (xn−1 − ξn−1)


2,


∂u


∂ξn


= ϕ(ξ) for ξn = 0.


Here and below the boundary data are supposed to be sufficiently smooth and
vanishing at infinity for the case of a half-space as a boundary.


Solutions of Dirichlet and Neumann problems for equation (1.4) in the ball
|x| < 1 can respectively be represented as


u(x) =
1


ωn


∫


|ξ|=1


(1− |x|2)u(ξ) dSξ


|ξ − x|(n+1)
, (1.8)


u(x) = − 1


4π


∫


|ξ|=1


f(ξ)
{


ln[1− r cos(xξ) + |x− ξ|]− 2


|x− ξ|
}
dSξ. (1.9)


Dirichlet and Neumann problems for the Helmholtz equation. Let
Rn+1


+ be the half-space xn > 0, x = (x0, . . . , xn−1), and let u(x, xn) be a real
function. In this space the solution of (1.5), vanishing at infinity and satisfying
on the boundary xn = 0 the conditions


u(x, 0) = f(x) for the Dirichlet problem, (1.10)


∂u


∂xn


= ϕ(x) for the Neumann problem, (1.11)
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can respectively be represented as


u(x, xn) =
(−1)m+1


πmh


∂


∂xn


∂m


∂(x2
n)m


∫


Rn


f(y)e−|h|rdy for n=2m,


u(x, xn) =
(−1)m+1i


2πm


∂


∂xn


∂m


∂(x2
n)m


∫


Rn


f(y)H
(1)
0 (i|h|r)dy for n=2m + 1,


(1.12)


and in the case of (1.11) as


u(x, xn) =
(−1)m+1


πmh


∂m


∂(x2
n)m


∫


Rn


ϕ(y)e−|h|rdy for n = 2m,


u(x, xn) =
(−1)m+1i


2πm


∂m


∂(x2
n)m


∫


Rn


ϕ(y)H
(1)
0 (i|h|r)dy for n = 2m + 1,


where r2 = |x− y|2 + x2
n. For formulas (1.6)–(1.9) and (1.12) see, e.g., [4], H


(1)
0


is the Hankel function of zero order.
From these representations remarkable properties follow: if the given func-


tions f , ϕ are odd with respect to some fixed variable xk (0 ≤ k ≤ n − 1),
then


u(x, xn) = 0 for xk = 0, xn > 0,


and if they are even, then


∂u


∂xk


= 0, xk = 0, xn > 0.


The problems solved above for harmonic functions can be used to solve the
corresponding problems for the regular equation (1.1).


Let u(x) be a pluriregular function in R(n), i.e., a solution of the pluriregular
equation


∂mu = 0, m ≥ 2. (1.13)


Then u(x) is also a solution of the polyharmonic equation


∆mu = 0, (1.14)


where ∆ is the Laplace operator with respect to x0, x1, . . . , xn.
To consider a b.v.p. for (1.13), first of all we will consider a b.v.p. for (1.14).


A solution of (1.14) can be represented as


u(x) =
m−1∑


0


xk
nuk(x) (1.15)


or


u(x) =
m−1∑


0


(r2 − 1)kuk(x), r2 = |x|2, (1.16)


where uk(x) are harmonic functions.
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Problem. Define the solution of (1.14) in the half-space xn > 0 which
vanishes at infinity and satisfies the conditions


∂ku


∂xk
n


= fk(x0, . . . , xn−1), k = 0, 1, . . . , m− 1, for xn = 0. (1.17)


Solution. By these conditions, using (1.15), we will obtain the boundary
conditions for uk:


u0(x0, . . . , xn−1, 0) = f0,


u1(x0, . . . , xn−1, 0) +
∂u0


∂xn


= f1,


2u2 + 2
∂u1


∂xn


+
∂2u0


∂x2
n


= f2,


and so on. Then as the left-hand sides in (1.17) are the boundary data for
harmonic functions, by (1.6) one can determine all of them. For instance, if
m = 2, we obtain


u(x) =
2(n + 1)x3


n


ωn+1


∫


Rn


f0(ξ) dξ


rn+3
+


2x2
n


ωn+1


∫


Rn


f1(ξ) dξ


rn+1
.


For any m ≥ 2 u(x) can be represented as


u(x) =
m−1∑


k=0


2


ωn+1k!
xk


n


k∑


l=0


(−1)lC l
k


dl


dxl
n


xn


∫


Rn


fk−l(ξ)
dξ


rn+1
;


here r2 = (x0 − ξ0)
2 + · · ·+ (xn−1 − ξn−1)


2 + x2
n. These representations are also


obtained in [4] by using the Fourier integral transform.
For the ball |x| ≤ 1, formula (1.16) will be used.
Problem. Define a polyharmonic function u(x) in the ball |x| < 1 with the


boundary conditions


∂ku


∂rk


∣∣∣∣
r=1


= fk(x), k = 0, 1, . . . , m− 1.


Solution. By force of (1.16) for harmonic functions uk(x), k = 0, . . . , m− 1,
we have the conditions:


u0(x) = f0(x), |x| = 1,


∂u


∂r
= 2u1 +


∂u0


∂r
= f1 for r = 1,


∂2u


∂r2
= 8u2 + 2u1 + 4


∂u1


∂r
+


∂2u0


∂r2
= f2 and so on.


(1.18)


First we prove that if ϕ is a harmonic function, then r ∂ϕ
∂r


is harmonic too.
Indeed,


r
∂ϕ


∂r
=


n∑


0


∂ϕ


∂xk


xk
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and


∆
(
r


∂ϕ


∂r


)
= 2


n∑


0


∂2ϕ


∂x2
k


= 0.


Now by the induction method one can prove that if rk−1 ∂k−1ϕ
∂rk−1 is harmonic, then


rk ∂kϕ
∂rk is harmonic too, as


rk ∂kϕ


∂rk
= r


∂


∂r


(
rk−1 ∂k−1ϕ


∂rk


)
− (k − 1)rk−1∂k−1ϕ


∂rk−1
.


For this reason (1.18) are boundary conditions for the harmonic functions


u0(x), 2u1 + r
∂u0


∂r
, 8u2 + 2u1 + 4r


∂u1


∂r
+ r2 ∂2u0


∂r2
, and so on.


Hence these harmonic functions are defined by (1.8), and u0, u1, u2, . . . are de-
fined gradually and correspondingly, by (1.16) u is represented in quadratures.
For instance, for a biharmonic function we have


u(x) =
1


2
(r2 − 1)Pf1 − 1


2
(r2 − 1)r


∂


∂r
Pf0 + Pf0,


where


Pf ≡ 1− r2


ωn


∫


|ξ|=1


f(ξ) dξ


|ξ − x|n+1
, x ∈ Rn+1.


Problem. Consider equation (1.13) for m = 2 and n = 2, u = u0e0− u1e1−
u2e2 − u12e1e2. Find its solution in the half-space x2 > 0 vanishing at infinity
and satisfying the conditions


u0(x0, x1, 0) = f0(x0, x1),
∂u2


∂x2


∣∣∣∣
x2=0


= f1(x0, x1),


u1(x0, x1, 0) = ϕ0(x0, x1),
∂u12


∂x2


∣∣∣∣
x2=0


= ϕ1(x0, x1).


Solution. Equation (1.13) can be rewritten as


∂u = F, ∂F = 0, F = F0e0 − F1e1 − F2e2 − F12e1e2.


It is clear that


F1 =
∂u0


∂x0


+
∂u1


∂x1


+
∂u2


∂x2


, F2 =
∂u12


∂x2


− ∂u0


∂x1


+
∂u1


∂x0


.


Thus by the given conditions, F1, F2 are given for x2 = 0. Then F , as a
solution of ∂F = 0, is defined in the half-space x2 > 0 and u is defined from
the nonhomogeneous equation ∂u = F with the conditions u0 = f0, u1 = f1 for
x2 = 0.


Thus for the equation ∂2u = 0 it is sufficient to have four conditions, i.e., for
this equation one can solve all the above problems solved for the ball.


Now consider the plurigeneralized regular equation of mth order


Pmu = 0, (1.19)
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where


Pu = ∂u + ũh, h =
n∑


0


hkek.


For m = 2 we have the bigeneralized regular equation.
As the solution of the equation ∂u+ ũh = 0 with constant h is also a solution


of the Helmholtz equation, from (1.19) one can obtain that u is also a solution
of the polyHelmholtz equation:


(∆− |h|2)mu = 0 (1.20)


which, for m = 2, is called the biHelmholtz equation.
Note that if uk (k=0, 1, . . . , m−1) are solutions of the equation ∆uk−|h|2uk =


0, then


u =
m−1∑


k=0


xk
nuk(x)


is a solution of equation (1.20).
Hence the b.v.p. with the conditions


∂ku


∂xk
n


= fk(x0, . . . , xn−1), xn = 0, k = 0, 1, . . . , m− 1,


in the half-space xn > 0 can be reduced to the Dirichlet problem for uk (k =
0, . . . , m−1) whose solution is represented in quadratures by (1.12). If we have
the boundary conditions (Riquie)


∆ku = fk(x0, . . . , xn−1), k = 0, . . . , m− 1, xn = 0, (1.21)


then equation (1.20) is represented in the form


(∆− |h|2)m−1u = F, (1.22)


∆F − |h|2F = 0. (1.23)


By conditions (1.21) one can define F for xn = 0. Thus F is defined by (1.12).
Then u is defined from (1.22) gradually.


It is interesting to consider the equation


∆(∆− |h|2)u = 0, u(x), x = (x0, . . . , xn), (1.24)


which can be called harmonic-Helmholtz equation.
Dirichlet Problem. Define a regular solution of (1.24) for xn > 0, vanishing


at infinity, by the conditions


u(x0, . . . , xn−1, 0) = ϕ(x0, . . . , xn−1),
∂2u


∂x2
n


= ψ(x0, . . . , xn−1), xn =0. (1.25)


Solution. Let


∆u = F (x), (1.26)


∆F − |h|2F = 0, xn > 0. (1.27)
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Then by force of (1.25), (1.26) we get


F (x0, . . . , xn−1, 0) = ∆ϕ(x0, . . . , xn−1) + ψ(x0, . . . , xn−1) ≡ f(x0, . . . , xn−1).


Thus with this condition F is defined as the solution of (1.27) by (1.12). Now
with the condition u(x0, . . . , xn−1, 0) = ϕ(x0, . . . , xn−1), u can be defined effec-
tively by (1.26).


As we see, all problems which are solved for the Helmholtz equation can be
solved for equations (1.20), (1.24).


§ 2. Hyperbolic and Plurihyperbolic Equations in Clifford
Analysis


First, consider the wave equation


∆u =
∂2u


∂t2
, xn ≡ t, u = u(x, t), t > 0, x ∈ Rn, n ≥ 1. (2.1)


Cauchy Problem. Find a solution u(x, t), a function of the class C2(t >
0) ∩ C1(t ≥ 0), by the initial conditions


u(x, 0) = ϕ(x),
∂u


∂t


∣∣∣∣
t=0


= ψ(x), x = (x0, x1, . . . , xn−1), (2.2)


where ϕ, ψ ∈ L(Rn), i.e., are absolutely integrable.
Solution. Without loss of generality one can consider u(x, 0) = 0. Indeed,


let u1(x, t), u2(x, t) be a solution of (2.1) with the conditions


u1(x, 0) = 0,
∂u1


∂t


∣∣∣∣
t=0


= ψ(x), x ∈ Rn,


u2(x, 0) = 0,
∂u2


∂t


∣∣∣∣
t=0


= ϕ(x).


(2.3)


Then it is easy to see that the function


u(x, t) = u1(x, t) +
∂u2


∂t
(2.4)


is a solution of the problem with conditions (2.2) because by the condition


u2(x, 0) = 0 and (2.1) one has
∂2u2


∂t2


∣∣∣∣
t=0


= 0. Thus we can consider equation


(2.1) with conditions (2.3).
Using the Fourier integral transform with respect to the variables x0, x1, . . . ,


xn−1 of equation (2.1) and conditions (2.3) one can obtain [2, 4]


u(x, t) =
1


2πm


dm−1


d(t2)m−1


[
tn−1


∫


|y|≤1


ψ(x− ty)√
1− |y|2


dy


]
for n = 2m, (2.5)


u(x, t) =
1


4πm


dm−1


d(t2)m−1


[
tn−2


∫


|y|=1


ψ(x− ty)dsy


]
for n = 2m + 1. (2.6)
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For the above representations for u(x, t) to be a regular solution one can
suppose that ψ(x) is a function with continuous partial derivatives of order up
to (n + 1)/2 when n is odd and of order up to (n + 2)/2 when n is even.


Cauchy problem for the Klein–Gordon equation. Find a regular solu-
tion of the equation


∆u− h2u =
∂2u


∂t2
, x ∈ Rn, t > 0, (2.7)


by the conditions


u(x, 0) = 0,
∂u


∂t
= ψ(x) for t = 0. (2.8)


For equation (2.7) the problem with conditions (2.2) can be solved as for (2.4)
if we know its solution with conditions (2.8).


The solution can be represented as


u(x, t) =
1


2πm


dm−1


d(t2)m−1


∫


|y|≤t


ψ(x− y)
cos h


√
t2 − ρ2


√
t2 − ρ2


dy, n = 2m, (2.9)


u(x, t) =
1


2πm


dm


d(t2)m


∫


|y|≤t


ψ(x− y)J0


(
h(


√
t2 − |y|2 )


)
dy, n = 2m + 1 (2.10)


(see [3], [5]), where J0 is the Bessel function of zero order.
Let u(x, t) : Rn+1 → R(n,n−1) be a solution of the equation


∂u = 0. (2.11)


Cauchy Problem. Find a regular solution u(x, t) of (2.11), with values in
R(n,n−1) for x = (x0, . . . , xn−1) ∈ Rn and xn ≡ t ≥ 0, subject to the condition


u(x, 0) = ϕ(x), (2.12)


where the given function ϕ(x) with values in R(n,n−1) has continuous partial
derivatives of required order.


Solution. Condition (2.12) gives that


∂u


∂xk


=
∂ϕ


∂xk


for t = 0, k = 0, 1, . . . , n− 1.


By equation (2.11) we can derive


∂u


∂t
= −en


n−1∑


k=0


ek
∂u


∂xk


for t = 0. (2.13)


As u is also a solution of the wave equation, due the given Cauchy conditions
(2.12), (2.13) it can be represented explicitly in quadratures by (2.5), (2.6).


Consider the hyperbolic h-regular equation


∂u + ũh = 0, (2.14)
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where h is a vectorial constant. Then u(x) is also a solution of the Klein–Gordon
equation


∆u− |h|2u =
∂2u


∂x2
n


, n ≥ 1, xn ≡ t ≥ 0. (2.15)


Cauchy initial value problem. Define a regular solution u(x, t) of (2.14)
with values in R(n,n−1) for x ∈ Rn subject to the condition


u(x, 0) = ϕ(x), x = (x0, . . . , xn−1). (2.16)


Solution. By (2.16) the following quantities are given:


∂u


∂xk


=
∂ϕ


∂xk


for t = 0, k = 0, 1, . . . , n− 1.


Then from (2.14) it follows that


en
∂u


∂t
= −


n−1∑


k=0


ek
∂ϕ


∂xk


− ϕ̃h for t = 0. (2.17)


As u is at the same time a solution of (2.15), by (2.16), (2.17) it is represented
explicitly in form (2.9), (2.10).


If we consider the nonhomogeneous equation


∂u + ũh = f(x, t),


with the condition
u(x, 0) = 0,


then the solution can be defined by the representation


u(x, t) =


t∫


0


v(x, t, τ) dτ,


where v(x, t, τ), t > τ , is a solution of (2.14) with the condition


v(x, τ, τ) = enf(x, τ).


For some hyperbolic systems the solvability of Cauchy problem was studied in
[5].


2.1. Boundary-initial value problems for pluriregular, plurigeneral-
ized regular hyperbolic systems, polywave and polyKlein–Gordon
equations. Let u(x, t) : Rn+1 → R(n,n−1) and consider a higher order equa-
tion


∂mu = 0, m ≥ 1. (2.18)


It is clear that u(x, t) is also a solution of the polywave equation
(
∆− ∂2


∂t2


)m


u = 0 (2.19)


called the plurihyperbolic equation.
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(2.18) for m = 2 is called the biregular system and (2.19) the biwave equation.
Consider the biwave equation of another form


(
∆− a2 ∂2


∂t2


)(
∆− b2 ∂2


∂t2


)
u = 0. (2.20)


This equation has application in the theory of elasticity. Indeed, consider the
moving equations of an isotropic elastic body in displacement coordinates [3]:


(λ + µ)
∂θ


∂xk


+ µ∆uk = ρ
∂2uk


∂t2
, k = 0, 1, 2,


θ =
∂u0


∂x0


+
∂u1


∂x1


+
∂u2


∂x2


;


(2.21)


then from (2.21) follows


∆θ =
ρ


λ + 2µ


∂2θ


∂t2
,


(λ + µ)
∂∆θ


∂xk


+ µ∆∆uk − ρ
∂2∆uk


∂t2
= 0,


(λ + µ)
∂3θ


∂xk∂t2
+ µ


∂2∆uk


∂t2
= ρ


∂4uk


∂t4
,


i.e., one has


∆∆uk − ρ


µ


λ + 3µ


λ + 2µ


∂2∆uk


∂t2
+


ρ2


µ(λ + 2µ)


∂4uk


∂t4
= 0


which can be rewritten as
(
∆− a2 ∂2


∂t2


)(
∆− b2 ∂2


∂t2


)
u = 0,


where a2 = ρ
µ
, b2 = ρ


λ+2µ
.


Cauchy problem for (2.20). Define a regular solution u(x, t) of equation
(2.20) for x = (x0, . . . , xn−1) ∈ Rn, t ≡ xn ≥ 0, with the conditions


u(x, 0) = f0(x),
∂u


∂t


∣∣∣∣
t=0


= f1(x),
∂2u


∂t2


∣∣∣∣
t=0


= f2(x),
∂3u


∂t3


∣∣∣∣
t=0


= f3(x). (2.22)


Solution. By these conditions, for t = 0 we can define


v(x, t) ≡ ∆u− b2 ∂2u


∂t2
and


∂v


∂t
=


∂∆u


∂t
− b2 ∂3u


∂t3
.


Thus for the equation


∆v − a2 ∂2v


∂t2
= 0


we have the Cauchy problem whose solution is given as (2.5), (2.6). Then for
the equation


∆u− b2 ∂2u


∂t2
= v(x, t)
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we have the Cauchy problem and its solution is again represented in quadra-
tures.


In such a way the Cauchy problem can be solved for the equation
(
∆− a2


1


∂2


∂t2


)
· · ·


(
∆− a2


m


∂2


∂t2


)
u = 0


with the conditions


u(x, 0) = f0(x),
∂u


∂t
= f1(x), . . . ,


∂2m−1u


∂t2m−1
= f2m−1 for t = 0. (2.23)


Now consider (2.18) in the case m = 2.
Cauchy problem for (2.18). Let u(x, t) : Rn+1 → R(n,n−1). Define regular


solution of (2.18) with the conditions


u(x, 0) = f0(x),
∂u


∂t
= f1(x) for t = 0. (2.24)


Solution. By these conditions one can define ∂u for t = 0; thus we have the
Cauchy problem (2.12) for equation (2.11) which is already solved. Then we
obtain a nonhomogeneous equation with the condition u(x, 0) = f0(x). Repre-
senting the solution in the form


u(x, t) =
1
u(x, t) +


2
u(x, t),


where
1
u(x, t) is a solution of the homogeneous equation (2.11) with the nonho-


mogeneous condition
1
u(x, 0) = f0(x), and


2
u(x, t) is a solution of the nonhomo-


geneous equation with the homogeneous condition
2
u(x, 0) = 0, hence both


1
u,


2
u


can be defined in quadratures.
Now consider the plurigeneralized regular equation of mth order:


Pmu = 0, Pu = ∂u + ũh, h =
n∑


0


hkek.


In the particular case, for m = 2 we have a bigeneralized regular equation which
can be written as


∂(∂u + ũh) + (∂ũ + uh̄)h = 0. (2.25)


u(x, t) will also be a solution of the biKlein–Gordon equation:
(
∆− |h|2 − ∂2


∂t2


)2


u = 0.


If m > 2, one can obtain the polyKlein–Gordon equation
(
∆− |h|2 − ∂2


∂t2


)m


u = 0.


The Cauchy problem for these equations is posed as (2.22) and (2.23) and using
(2.9), (2.10) the solution is represented in quadratures. The Cauchy problem
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for equation (2.25) with conditions (2.24) is also solved as (2.24) for equation
(2.18). For any m one can solve the Cauchy problem in the same way.


2.2. Plurielliptic-hyperbolic equation. Consider the equation


∂m
(
∂ +


∂


∂t
en


)m


u(x, t) = 0, m ≥ 1, (2.26)


where


∂ =
n−1∑


0


∂


∂xk


ek, e2
k = −e0, k = 1, . . . , n− 1, e2


n = e0.


This equation is called the plurielliptic-hyperbolic equation. It is clear that
u(x, t) is at the same time a solution of the equation


∆m
(
∆− ∂2


∂t2


)m


u(x, t) = 0,


which can be called the polyharmonic-wave equation.
Like of biharmonic, biwave equations it is interesting to consider m = 1, i.e.,


∆
(
∆− ∂2


∂t2


)
u(x, t) = 0, x = (x0, . . . , xn−1). (2.27)


called harmonic-wave equation. The following problems are correctly posed and
are solved in quadratures.


Dirichlet–Cauchy problem. Define a regular solution of (2.27) for t > 0,
xn−1 > 0, vanishing at infinity, by the conditions


u(x, 0) = ϕ1(x),
∂u


∂t
= ϕ2(x), t = 0, (2.28)


u(x, t) = ϕ(x0, . . . , xn−2, t), xn−1 = 0, t > 0. (2.29)


Solution. Let


∆u(x, t) = F (x, t), (2.30)


∆F − ∂2F


∂t2
= 0, (2.31)


then by force of (2.28), (2.30) the unknown function F satisfies


F (x, 0) = ∆ϕ1(x) ≡ f1(x),
∂F


∂t
= ∆ϕ2(x) ≡ f2(x), t = 0,


i.e., to determine F we have the Cauchy initial value problem for the wave
equation and it is represented in quadratures as above.


To define u(x, t) we have the Dirichlet problem for the nonhomogeneous equa-
tion (2.30) with condition (2.29). The solution is given above too.


Neumann–Cauchy problem. Find a solution of (2.27) for t > 0, xn−1 > 0,
vanishing at infinity and satisfying conditions (2.28) and


∂u


∂xn−1


= ϕ(x0, . . . , xn−2, t), xn−1 = 0, t > 0. (2.32)
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The solution can be reduced to the Neumann problem for equation (2.30)
and is represented in quadratures.


It is obvious that all problems which are considered for harmonic functions
can be considered here in a similar manner.


In the same way, the harmonic-Klein–Gordon equation


∆
(
∆− k2 − ∂2


∂t2


)
u(x, t) = 0


can be considered, for which problems (2.28), (2.29) or (2.30) can be solved.
It is clear that this equation is connected with the elliptic regular and hyper-


bolic generalized regular equation


∂
(
∂u + en


∂u


∂t
+ ũh


)
= 0.


Moreover, we can consider the Helmholtz-wave equation or the Helmholtz–
Klein–Gordon equation


(∆− k2
1)


(
∆− ∂2


∂t2


)
u(x, t) = 0,


(∆− k2
1)


(
∆− k2


2 −
∂2


∂t2


)
u(x, t) = 0.


For such equations problems (2.28), (2.29) or (2.32) are correctly posed and can
be solved in quadratures too.


For equation (2.26), boundary-initial value problems can be considered simi-
larly, for instance, in the case m = 1


∂
(
∂ +


∂


∂t
en


)
u(x, t) = 0,


which can be rewritten as


∂u = F (x, t), (2.33)
(
∂ +


∂


∂t
en


)
F = 0. (2.34)


It is clear that the corresponding problems for (2.33) and (2.34) will be correctly
posed and solved in quadratures.


The boundary-initial value problems for nonhomogeneous equations corre-
sponding to the above homogeneous equations will be solved too. In this case
the boundary-initial conditions can be supposed homogeneous. We will consider
only one of them since others can be solved in the same way.


Problem. Define a solution of the equation


∆
(
∆− ∂2


∂t2


)
u(x, t) = F (x, t),


x = (x0, . . . , xn−1) ∈ Rn, t > 0, xn−1 > 0,
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which vanishes at infinity and satisfies the conditions:


u(x, 0) = 0,
∂u


∂t
= 0, t = 0, (2.35)


u(x, t) = 0, xn−1 = 0, t > 0. (2.36)


Solution. Let


∆u = F1(x, t), (2.37)


∆F1 − ∂2F1


∂t2
= F (x, t), (2.38)


then by force of (2.35) for F1(x, t) one has Cauchy homogeneous conditions for
the nonhomogeneous wave equation (2.38), thus the solution will be given in
quadratures. Hence u(x, t) is a solution of (2.37) with condition (2.36).


§ 3. Pluriparabolic Equations in Clifford Analysis


Systems of parabolic equations are related to heat and polyheat equations.
First consider the heat equation


∆u =
∂u


∂t
, u = u(x, t), xn ≡ t, t > 0, x ∈ Rn, n ≥ 1, (3.1)


where ∆ is the Laplace operator with respect to x0, . . . , xn−1, x = (x0, . . . , xn−1).


Cauchy problem. The solution of (3.1) with the condition


u(x, 0) = ϕ(x)


can be represented in the form


u(x, t) =
1


(2
√


πt)n


∫


Rn


ϕ(y) exp
[
− |x− y|2


4t


]
dy. (3.2)


It is known as Poisson’s formula.
Now the Cauchy problem for the nonhomogeneous equation


∂u


∂t
= ∆u + f(x, t) (3.3)


can be solved easily. Indeed, if v(x, t, τ) is a solution of the homogeneous equa-
tion (3.1) for t > τ , x ∈ Rn, with the condition


v(x, τ, τ) = f(x, τ)


then the solution of (3.3) with the condition


u(x, 0) = 0


can be defined as


u(x, t) =


t∫


0


v(x, t, τ)dτ
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i.e., by force of (3.2) it is represented as


u(x, t) =
1


(2
√


π)n


t∫


0


dτ


(t− τ)n/2


∫


Rn


f(y, τ) exp
[
− |x− y|2


4(t− τ)


]
dy. (3.4)


Consider Clifford algebras R0
(n) (n ≥ 1) and the equation [4]


∂u− Pnu = 0, u(x) = u(x0, x1, . . . , xn), xn ≡ t, (3.5)


where the linear operator Pn is defined by the relation


∂Pnu =
∂u


∂t
, (3.6)


i.e., the solution of (3.5) is a solution of the heat equation (3.1) too. u(x) can
be represented in the form


u(x) =
∑


A⊆{1,...,n−1}
uAeA +


∑


A⊆{1,...,n−1}
uA∪{n}eAen. (3.7)


Let u(x) : Rn+1 → R0
(n) be a solution of equation (3.5), where


Pnu = − ∑


A⊆{1,...,n−1}
(−1)|A|uA∪{n}eA (3.8)


and |A| stands for the cardinality of a set A. Then (3.6) takes place. Moreover,
by (3.6) Pnu is defined uniquely.


Equation (3.5) with (3.7), (3.8) can be rewritten as


n−1∑


j=0
A⊆{1,...,n−1}


∂uA


∂xj


ejeA +
∑


A⊆{1,...,n−1}
(−1)|A|uA∪{n}eA = 0, (3.9)


∑


A⊆{1,...,n−1}


∂uA


∂xn


eA +
∑


A⊆{1,...,n−1}
(−1)|A|


∂uA∪{n}
∂x0


eA


−
n−1∑


j=1
A⊆{1,...,n−1}


(−1)|A|
∂uA∪{n}


∂xj


ejeA = 0. (3.10)


Let u satisfy (3.9) and each of uA, A ⊆ {1, . . . , n − 1}, be a solution of the
heat equation (3.1), then u is a solution of (3.10) too (cf. [4]).


Cauchy problem. Find a regular solution of (3.5) for x = (x0, . . . , xn−1) ∈
Rn, t > 0 with 2n−1 initial conditions


uA(x, 0) = ϕA(x), A ⊆ {1, . . . , n− 1}. (3.11)


Solution. As each uA is at the same time a solution of the heat equation, by
conditions (3.11) all uA, A ⊆ {1, . . . , n−1}, are defined by (3.2). The remaining
2n−1 unknowns uA∪{n}, A ⊆ {1, . . . , n − 1}, are defined from equation (3.9).
Then uA, uA∪{n} satisfy (3.10) too.
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If conditions (3.11) are replaced by


uA∪{n}(x, 0) = ϕA(x), A ⊆ {1, . . . , n− 1}, for x ∈ Rn, (3.12)


then uA∪{n}(x, t), t > 0, A ⊆ {1, . . . , n − 1}, is represented by (3.2). Then by


equation (3.10) the derivatives
∂uA


∂t
are defined for each A ⊆ {1, . . . , n − 1},


i.e., all uA, A ⊆ {1, . . . , n− 1}, can be represented as


uA(x, t) = fA(x, t) + u′A(x), A ⊆ {1, . . . , n− 1},
where fA(x, t) are known and u′A(x), x ∈ Rn, must be defined by equation (3.9).
By putting uA and uA∪{n} into equation (3.9) one will obtain, for u′A(x), x ∈ Rn,
an elliptic equation in R(n−1)


∂u′ = 0, u′ =
∑


A⊆{1,...,n−1}
u′AeA. (3.13)


To obtain this equation we have used the fact that fA(x, t) are defined from
(3.10) by integration with respect to t. Then taking into consideration that
uA∪{n} are solutions of the heat equation we have


n−1∑


j=0
A⊆{1,...,n−1}


∂fA


∂xj


ejeA = − ∑


A⊆{1,...,n−1}
(−1)|A|uA∪{n}eA.


Thus u′(x) with values in R(n−1) is a solution of the regular elliptic equation
(3.13) in all Rn, and so by Liouville’s theorem it is zero. Hence uA, uA∪{n} are
uniquely defined by (3.12).


Let u(x, t) be a solution of the nonhomogeneous equation in R0
(n)


∂u− Pnu = f(x, t), (3.14)


where


f(x, t) =
∑


A⊆{1,...,n−1}
fA(x, t)eA (3.15)


or


f(x, t) =
∑


A⊆{1,...,n−1}
fA∪{n}(x, t)eAen.


In this case, u(x, t) is at the same time a solution of the nonhomogenous heat
equation


∆(n)u− ∂u


∂t
= ∂f, ∂f =


∑


A⊆{1,...,n−1}
FAeA. (3.16)


Problem. Define a regular solution of (3.14) subject to the 2n−1 conditions


uA(x, 0) = 0, A ⊆ {1, . . . , n− 1}, x = (x0, . . . , xn−1). (3.17)
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Since by (3.16) uA is a solution of the equation


∆(n)uA − ∂uA


∂t
= FA, A ⊆ {1, . . . , n− 1},


by condition (3.17) uA can be represented by (3.4), where f(x, t) is the right-
hand side of the last equation. Then the remaining unknowns uA∪{n} are defined
by equation (3.9) with the right-hand side of (3.15). Hence, the solution of the
problem will be defined completely.


3.1. Pluriparabolic systems and polyheat equations. Let u(x, t) :Rn+1→
R0


(n) and consider high order equations


(∂ − Pn)mu = 0, m ≥ 1. (3.18)


By force of (3.5), (3.6), u(x, t) is also a solution of the polyheat equation
(
∆− ∂


∂t


)m


u = 0, x = (x0, . . . , xn−1). (3.19)


In the case m = 2 it will be called the biheat equation. The Cauchy problem
for (3.19) will be formulated as follows:


Define a solution u(x, t) of (3.19), t > 0, by the conditions


u(x, 0) = ϕ0(x),
∂u


∂t
= ϕ1(x), . . . ,


∂m−1u


∂tm−1
= ϕm−1(x), t = 0.


First solve this problem for m = 2, i.e., for the equation
(
∆− ∂


∂t


)2


u = 0, (3.20)


with


u(x, 0) = ϕ0(x),
∂u


∂t
= ϕ1(x), t = 0. (3.21)


Solution. From (3.20) follows


∆u− ∂u


∂t
= F (x, t), (3.22)


∆F − ∂F


∂t
= 0, (3.23)


where F is defined for t = 0 from (3.21), (3.22). Thus F (x, t) is represented as
(3.2). Then the solution of (3.22) is represented as


u(x, t) = u1(x, t) + u2(x, t),


where u1, u2 are solutions of the equations


∆u1 − ∂u1


∂t
= 0, with the condition u1(x, 0) = ϕ0(x),


∆u2 − ∂u2


∂t
= F (x, t), with the condition u2(x, 0) = 0.
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Thus u1(x, t) is represented as (3.2), and u2 is defined by (3.4). Then for any
m ≥ 2 the problem can be solved by the induction method.


Now for equation (3.18) in the case m = 2 consider


Cauchy problem. Define a solution of (3.18) for t > 0 by the conditions


uA(x, 0) = ϕA(x), uA∪{n}(x, 0) = ψA(x), A ⊆ {1, . . . , n− 1}, (3.24)


i.e., all components of u are given.


Solution. Let


∂u− Pnu = F, (3.25)


∂F − PnF = 0. (3.26)


In this case the right-hand side of (3.9) is FA which by force of (3.24) is defined
for t = 0. Thus by force of (3.26) it will be represented as a solution of (3.18) in
quadratures. Then by the first conditions (3.24) the solution of (3.25) is defined
as one of corresponding problems for a nonhomogeneous equation.


3.2. Elliptic-parabolic, hyperbolic-parabolic and elliptic-hyperbolic-
parabolic equations. Consider the equations


∂(∂u + Pnu) = 0, (3.27)
(
∂ + en−1


∂


∂xn−1


)
(∂u + Pnu) = 0, (3.28)


∂
(
∂ + en−1


∂


∂xn−1


)
(∂u + Pnu) = 0, (3.29)


where in (3.27)


∂ =
n∑


k=0


∂


∂xk


ek, e2
k = −e0, k = 1, . . . , n− 1, e2


n = 0, (3.30)


while in (3.28) and (3.29)


∂ =
n−2∑


0


∂


∂xk


ek +
∂


∂xn


en,


e2
n = 0, e2


k = −e0, k = 1, . . . , n− 2, e2
n−1 = e0.


(3.31)


It is obvious that ∂∂ = ∆ where ∆ is the Laplace operator with respect to
variables x0, . . . , xn−1 in case of (3.30) and to variables x0, . . . , xn−2 in case of
(3.31), Pnu is defined by (3.6). Then one can see that the solutions of (3.27),
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(3.28), (3.29) are also the solutions of the equations correspondingly


∆
(
∆− ∂


∂t


)
u(x, t) = 0, x = (x0, . . . , xn−1), xn ≡ t > 0, (3.32)


(
∆− ∂2


∂τ 2


)(
∆− ∂


∂t


)
u(x, τ, t) = 0,


x = (x0, . . . , xn−2), xn−1 ≡ τ, xn ≡ t > 0,
(3.33)


∆
(
∆− ∂2


∂τ 2


)(
∆− ∂


∂t


)
u(x, τ, t) = 0, (3.34)


respectively. Equations (3.32), (3.33), (3.34) are called harmonic-heat, wave-
heat and harmonic-wave-heat equations, respectively.


First we will consider the boundary-initial value problems for (3.32).
Dirichlet–Cauchy and Neumann–Cauchy problems. Define a regular


solution of (3.32) for xn−1 > 0, t > 0, (x0, x1, . . . , xn−2) ∈ Rn−1, vanishing at
infinity, by the conditions


u(x, 0) = ϕ(x), xn−1 > 0, x = (x0, . . . , xn−1), (3.35)


u(x, t) = ψ(x0, x1, . . . , xn−2, t), xn−1 = 0, t > 0, (3.36)


or (3.35) and


∂u


∂xn−1


= ψ(x0, . . . , xn−2, t), xn−1 = 0, t > 0. (3.37)


Solution. Let


∆u(x, t) = F (x, t), (3.38)


∆F − ∂F


∂t
= 0, (3.39)


then by force of (3.35) the unknown function F (x, t) satisfies


F (x, 0) = ∆ϕ(x) ≡ f(x)


and for (3.39) one has the Cauchy initial value problem which is represented by
(3.2). To define u(x, t), we have the Dirichlet problem (3.36) or the Neumann
problem (3.37) for equation (3.38), and thus solutions are given above. It is
clear that all problems which are solved for harmonic functions can be solved
correspondingly for equation (3.32).


Cauchy problem for equation (3.33).
Define solutions of equation (3.33) for t > 0, τ > 0, x ∈ Rn−1, by the


conditions


u(x, 0, t) = ϕ1(x, t),
∂u


∂τ
= ϕ2(x, t), τ = 0, (3.40)


u(x, τ, 0) = ψ(x, τ). (3.41)
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Solution. Let


∆u− ∂u


∂t
= F (x, τ, t), (3.42)


∆F − ∂2F


∂τ 2
= 0. (3.43)


Then by force of (3.40) the unknown function F (x, τ, t) satisfies


F (x, 0, t) = ∆ϕ1(x, t)− ∂ϕ1(x, t)


∂t
≡ f1(x, t), τ = 0,


∂F


∂τ
= ∆ϕ2(x, t)− ∂ϕ2(x, t)


∂t
≡ f2(x, t), τ = 0.


Thus for the wave equation (3.43) we have the Cauchy problem whose solution
is given above. After defining u(x, τ, t), we have the Cauchy problem for the
nonhomogeneous heat equation (3.42) with condition (3.41). The solution is
represented in the form


u(x, τ, t) = u1(x, τ, t) + u2(x, τ, t),


where u1(x, τ, t) is a solution of the homogeneous heat equation with the condi-
tion u1(x, τ, 0) = ψ1(x, τ) and u2(x, τ, t) is a solution of (3.42) with the condition
u2(x, τ, 0) = 0. Thus using (3.2) and (3.4) the solution can be represented in
quadratures.


It is obvious that one can consider the heat-Klein–Gordon equation
(
∆− ∂


∂t


)(
∆− k2 − ∂2


∂τ 2


)
u(x, τ, t) = 0


with conditions (3.40), (3.41) and the solution will be represented in quadra-
tures.


In the same way one can consider the Helmholtz-heat equation


(∆− k2)
(
∆− ∂


∂t


)
u(x, t) = 0


with conditions (3.35), (3.36) or (3.35), (3.37). The solutions can be represented
in quadratures too.


Now consider the problem for the harmonic-wave-heat equation (3.34) for
t > 0, τ > 0, xn−2 > 0 with the conditions:


u(x, 0, t) = f1(x, t),
∂u


∂τ
= f2(x, t), τ = 0, (3.44)


u(x, τ, 0) = ϕ(x, τ), (3.45)


u(x, τ, t) = ψ(x0, . . . , xn−3, τ, t), xn−2 = 0. (3.46)


Solution. Let


∆u = F (x, τ, t), (3.47)
(
∆− ∂2


∂τ 2


)(
∆− ∂


∂t


)
F = 0, (3.48)
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then by force of (3.44), (3.45) F satisfis conditions (3.40), (3.41), i.e., F as a
solution of (3.48) is constructed effectively. Hence u as a solution of (3.47), by
condition (3.46) or the condition of the Neumann problem can be represented
in quadratures too.


Note that if we consider the problem for the equation


(
∆− ∂2


∂t2


)(
∆− ∂


∂t


)
u(x, t) = 0, t > 0, x = (x0, . . . , xn−1), (3.49)


with the conditions


u(x, 0) = f1(x),
∂u


∂t
= f2(x),


∂2u


∂t2
= f3(x), t = 0,


u(x, t) = f(x0, . . . , xn−2, t), xn−1 = 0,


the solution is defined in an analoguus way to the equation (3.33) with condi-
tions (3.40), (3.41).


We think equations (3.33), (3.34) are more interesting than (3.49) because
first of all they are related to equations (3.28), (3.29), i.e., they are suggested by
Clifford analysis, and, secondly, it is natural that the time in wave processes and
the time in heat processes are different. That is why equations (3.27), (3.28),
(3.29), (3.32), (3.33), (3.34) may have important applications in physics.


Now it is clear that to formulate the boundary-initial value problems for
equations (3.27), (3.28), (3.29) all conditions considered for each multiplier op-
erator, must be given. Thus using a solution of each problem one can obtain
the corresponding solutions in quadratures.


The boundary-initial value problems for nonhomogeneous equations which
correspond to the above considered homogenous equations will be solved too.
It is obvious that in this case the boundary-initial conditions can be supposed
homogeneous. We will consider only one of them as others can be solved in the
same way.


Problem. Define a solution of the equation


∆
(
∆− ∂2


∂τ 2


)(
∆− ∂


∂t


)
u(x, τ, t) = F (x, τ, t),


x = (x0, . . . , xn−2) ∈ Rn−1, τ > 0, t > 0, xn−2 > 0,


which vanishes at infinity, and satisfies the conditions:


u(x, 0, t) = 0,
∂u


∂τ
= 0, τ = 0, (3.50)


u(x, τ, 0) = 0, (3.51)


u(x, τ, t) = 0, xn−2 = 0. (3.52)
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Solution. Let


∆u = F1(x, τ, t),


∆F1 − ∂2F1


∂τ 2
= F2(x, τ, t),


∆F2 − ∂F2


∂τ
= F (x, τ, t),


(3.53)


then by force of (3.50), (3.51) for F1, F2 one has the Cauchy homogeneous
conditions for nonhomogeneous wave and heat equations, thus the solution are
given in quadratures.


Hence u(x, τ, t) is defined as a solution of (3.53) with condition (3.52).


It seems to me that these equations are beautiful and, as Paul Dirac said
about beautiful formulas, their success in applications is ensured.
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