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MD-NUMBERS AND ASYMPTOTIC MD-NUMBERS OF
OPERATORS

A. CASTEJÓN, E. CORBACHO, AND V. TARIELADZE

Abstract. First, the basic properties of mean dilatation (MD-) numbers for
linear operators acting from a finite-dimensional Hilbert space are investi-
gated. Among other results, in terms of first and second order MD-numbers,
a characterization of isometries is obtained and a dimension-free estimation
of the p-th order MD-number by means of the first order MD-number is
established. After that asymptotic MD-numbers for a continuous linear ope-
rator acting from an infinite-dimensional Hilbert space are introduced and it
is shown that in the case of an infinite-dimensional domain the asymptotic
p-th order MD-number, rather unexpectedly, is simply the p-th power of the
asymptotic first order MD-number (Theorem 3.1).
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1. Introduction

For a linear operator T from a Hilbert space H with 1 ≤ n = dim H < ∞ to
an arbitrary Hilbert space Y and a natural number p ≤ n, the p-th order mean
dilatation number (briefly, the pMD-number) δp(T ) is defined by the equality

δp(T ) =

(
1

cn,p

∫

S

· · ·
∫

S

G(T1, . . . , Txp)ds(x1) . . . ds(xp)

)1/2

, (1.1)

where S is the unit sphere in H, s is the normalized isometrically invariant
measure on it, G(x1, . . . , xp) is the Grammian of (x1, . . . , xp), and

cn,p =
∫

S

· · ·
∫

S

G(x1, . . . , xp)ds(x1) . . . ds(xp) > 0

is a (natural) normalizing constant.

The definition of pMD-numbers was suggested in [6]. Afterwards they were
considered also in [5].
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For simplicity, the first order MD-number δ1(T ) will be called the MD-number
of T and, for it, (1.1) gives an expression

δ1(T ) =

( ∫

S

‖Tx‖2ds(x)

) 1
2

. (1.2)

Using the equality (1.2), the MD-number δ1(T ) can also be defined when Y is
an arbitrary Banach space and in this case it has already been used as a tool
of the local theory of Banach spaces (see, e.g., [7, p.81]).

In Section 2, after recalling some known facts concerning the Grammian
(Remark 2.1) which motivate the definition of pMD-numbers, their properties
in the finite-dimensional case are analyzed. In particular, a concrete expression
for δp(T ) in terms of the eigenvalues of the operator T ∗T is found (Proposition
2.6) and the following characterization of isometric operators is obtained: T is
an isometry if and only if δ1(T ) = δ2(T ) = 1 (Proposition 2.8). Although the
equality δp(T ) = δp

1(T ) does not hold in general, the validity of the following
“dimension-free” estimate

δp(T ) ≤ p
p−1
2 δp

1(T )

is proved (Lemma 2.10).
Possible infinite-dimensional extensions of pMD-numbers are introduced in

Section 3. According to [6], we use the netM of all finite-dimensional subspaces
of H to associate two quantities

δp(T ) := lim sup
M∈M

δp(T |M), δ
p
(T ) := lim inf

M∈M
δp(T |M)

to a given operator T (acting from H) and a natural number p. We call δp(T )
the asymptotic upper pMD-number of T and δ

p
(T ) the asymptotic lower pMD-

number of T . When they are equal, the operator is called asymptotically pMD-
regular, their common value is denoted by δp(T ) and called the asymptotic
pMD-number. Therefore for an asymptotic pMD-regular operator T we have

δp(T ) := lim
M∈M

δp(T |M).

When p = 1, we shall simply use the term “asymptotically MD-regular”.
The main result of the section is Theorem 3.1, which asserts that, in the

case of an infinite-dimensional domain, we have the following simple relation
between the higher order and the first order asymptotic MD-numbers of a given
operator T :

δp(T ) = (δ1(T ))p, δ
p
(T ) = (δ

1
(T ))p.

This result shows that in the case of the infinite-dimensional domain it is suffi-
cient to study only the numbers δ1(T ), δ

1
(T ) and δ1(T ). Section 3 is concluded

by Proposition 3.2, which implies, in particular, that not any operator is asymp-
totically MD-regular.
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Notice, finally, that the numbers δ1(T ), δ
1
(T ) and δ1(T ) can also be defined

when Y is a general Banach space. The properties of the corresponding quan-
tities in this general setting are investigated in [2].

2. Finite Dimensional Case

Throughout this paper the considered Hilbert spaces is supposed to be defined
over the same field K, real R or complex C numbers. To simplify the notation,
for the scalar product and the norm of different Hilbert spaces we use the same
symbols (·|·) and ‖ · ‖.

For the Hilbert spaces H, Y we denote by L(H, Y ) the set of all continuous
linear operators T : H → Y.

For a given operator T ∈ L(H, Y ) we denote by

– ‖T‖ the ordinary norm of T ;
– T ∗ the (Hilbert) adjoint operator of T ;
– |T | the unique self-adjoint positive square root of T ∗T : H → H.

Moreover, for a Hilbert–Schmidt operator T we denote by ‖T‖HS the Hilbert–
Schmidt norm of T .

Fix a (non-zero) Hilbert space H and a natural number p such that p ≤
dim H. The p-th order Grammian Gp is the scalar-valued function, defined on
Hp, which assigns the determinant of the matrix (xi|xj)

p
i,j=1 to any (x1, . . . , xp) ∈

Hp.
Evidently, G1(x) = ‖x‖2 for each x ∈ H. Some other known properties of

the Grammian are given in the next remark.

Remark 2.1. Fix a natural number p > 1 with p ≤ dim H and a finite se-
quence (x1, . . . , xp) ∈ Hp.

(a) We have Gp(x1, . . . , xp) ≥ 0. Moreover, Gp(x1, . . . , xp) > 0 if and only if
(x1, . . . , xp) is linearly independent.

(b) Gp(x1, . . . , xp) ≤ ‖x1‖2 . . . ‖xp‖2. Moreover, if x1, . . . , xp are nonzero ele-
ments, then we have Gp(x1, . . . , xp) = ‖x1‖2 . . . ‖xp‖2 iff x1, . . . , xp are pairwise
orthogonal.

(c) Let Px1,...,xp :=
{ p∑

i=1
αixi : 0 ≤ αi ≤ 1, i = 1, . . . , p

}
be the parallelepiped

generated by the sequence (x1, . . . , xp). Then G(x1, . . . , xp) = vol2(Px1,...,xp),
where vol(Px1,...,xp) stands for the (p-dimensional) volume of Px1,...,xp (i.e., the
Lebesgue measure of Px1,...,xp in a p-dimensional vector subspace containing

(x1, . . . , xp). For this reason the quantity gp(x1, . . . , xp) := G1/2
p (x1, . . . , xp) is

often simply called “the hypervolume determined by the vectors (x1, . . . , xp).”
(d) Let [x1, . . . , xp−1] be the linear span of {x1, . . . , xp−1}. Then

gp(x1, . . . , xp) = gp−1(x1, . . . , xp−1) · dist(xp, [x1, . . . , xp−1]).

(e) If Y is another Hilbert space and T : H → Y is a continuous linear opera-
tor, then gp(Tx1, . . . , Txp) ≤ ‖T‖pgp(x1, . . . , xp) (this is evident when p = 1, the
rest follows from this and from (d) by induction, as dist(Txp, [Tx1, . . . , Txp−1]) ≤
‖T‖ dist(xp, [x1, . . . , xp−1]).
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(f) In the notation of the previous item suppose that dim H = p. Then
gp(Tx1, . . . , Txp) = det(|T |)gp(x1, . . . , xp). It follows that if dim H = p and
(x′1, . . . , x

′
p), (x1, . . . , xp) are algebraic bases of H, then

gp(Tx′1, . . . , Tx′p)

gp(x′1, . . . , x′p)
=

gp(Tx1, . . . , Txp)

gp(x1, . . . , xp)
,

i.e., the “volume ratio” is independent of a particular choice of basis of H and
equals to det(|T |).

For a Hilbert space with dim H ≥ 1, its unit sphere with center at the origin
is denoted by SH or, simply, by S. When n = dim H < ∞, the uniform
distribution on S, i.e. the unique isometrically invariant probability measure
given on the Borel σ-algebra of S, is denoted by s. The following key equality
follows directly from the isometric invariance of s:

∫

S

(x|h1)(x|h2)ds(x) =
1

n
(h1|h2), ∀h1, h2 ∈ H, (2.1)

where ‘bar’ stands for complex conjugation.
In the rest of this section H will be a finite-dimensional Hilbert space with

dim H = n ≥ 1, I will stand for the identity operator acting in H and Y will
be another Hilbert space (not necessarily finite-dimensional).

Fix a number p ∈ {1, . . . , n} and introduce the functional Dp : L(H, Y ) → R+

defined by the equality

Dp(T ) =
∫

S

· · ·
∫

S

Gp(Tx1, . . . , Txp)ds(x1) . . . ds(xp), T ∈ L(H, Y ). (2.2)

Therefore, for given T the number Dp(T ) can be viewed as the average of the
squares of the volumes of the family of parallelepipeds

{
T (Px1,...,xp) : (x1, . . . , xp) ∈ S × · · · × S}

with respect to the product s× · · · × s of the uniform distributions.1

Evidently, for p = 1 we get

D1(T ) =
∫

S

‖Tx‖2ds(x), ∀T ∈ L(H, Y ). (2.3)

To make easier further references, we formalize some other easy observations in
the next statement.

1The choice of s seems to be natural, since it gives no preference to any of the directions
(x1, . . . , xp) ∈ S× · · ·×S. Formally, the same definition can be given, taking any probability
measure µ on S instead of s, but then the properties of Dp(T ) will depend on (the correlation
operator of) µ.
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Proposition 2.2. Let T ∈ L(H,Y ).

Dp(T ) = Dp(|T |); (2.4)

Dp(T ) = 0 ⇐⇒ dim T (H) < p; (2.5)

Dp(T ) ≤ Dp
1(T ); (2.6)

D2(T ) = D2
1(T )− 1

n
D1(T

∗T ), in particular, D2(I) = 1− 1

n
; (2.7)

D1(T
∗T − I) = D1(T

∗T )− 2D1(T ) + 1. (2.8)

Proof. (2.4) is true since Gp(|T |x1, . . . , |T |xp) = Gp(Tx1, . . . , Txp) for any
(x1, . . . , xp) ∈ Hp .

(2.5) follows from Remark 2.1(a).
(2.6) follows from Remark 2.1(b) and (2.3).
(2.7): since ∀x1, x2 ∈ H

Gp(Tx1, Tx2) = ‖Tx1‖2‖Tx2‖2−|(Tx1|Tx2)|2 = ‖Tx1‖2‖Tx2‖2−|(T ∗Tx1|x2)|2,
and since by (2.1)

∫

S

|(T ∗Tx1|x2)|2ds(x2) =
1

n
‖T ∗Tx1‖2, ∀x1 ∈ H,

from (2.3) (using, of course, Fubini’s theorem) we get (2.7).
(2.8) follows from (2.3) and from the evident equality ‖(T ∗T − I)x‖2 =

‖T ∗Tx‖2 − 2‖Tx‖2 + ‖x‖2, x ∈ H.

Remark 2.3. Fix T ∈ L(H, Y ).
(1) By means of the direct integration of the Grammian it is possible to get

a “coordinate free” expression for Dp(T ) in terms of D1 similar to (2.7) also for
p ≥ 3, e.g. we have

D3(T ) = D3
1(T )− 3

n
D1(T )D1(T

∗T ) +
2

n2
D1(TT ∗T ).

However, the corresponding higher order combinatorial formula looks rather
complicated. For this reason formula (2.12) from Proposition 2.4 is preferable.

(2) If n ≥ 2 and p = 2, then (2.7) shows that in (2.6) we have the equality if
and only if T = 0 (compare with Remark 2.1(b)).

Proposition 2.4. Let dim H = n, p ≤ n, T ∈ L(H, Y ) and (e1, . . . , en) be
any orthonormal basis of H. Then:

D1(T ) =
1

n

(
n∑

k=1

‖Tek‖2

)
=

1

n
‖T‖2

HS, (2.9)

Dp(T ) =
1

np

n∑

j1,...,jp=1

Gp(Tej1 , . . . T ejp), (2.10)

Dp(I) =
n!

(n− p)!np
(2.11)
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and

Dp(T ) =
p!

np

∑

1≤j1<···<jp≤n

λ2
j1

. . . λ2
jp

, (2.12)

where λ1, . . . , λn are the eigenvalues of the operator |T | := (T ∗T )
1
2 listed accord-

ing to their multiplicities.

Proof. Fix x ∈ H. We have x =
n∑

k=1
(x|ek)ek. Then Tx =

n∑
k=1

(x|ek)Tek and

‖Tx‖2 =
n∑

j,k=1

(x|ej)(x|ek)(Tej|Tek).

Integrating this equality over S with respect to s and using (2.1) we get (2.9).
In the proof of (2.10) we will use the standard notation, namely, Sp will

stand for the set of all permutations σ : {1, . . . , p} → {1, . . . , p}, and we
will denote by sgn σ the sign of a fixed permutation σ. Fix finite sequences
(a1, . . . , bp), (b1, . . . , bp) of the elements of H. We have the next “Parseval
equality” for determinants, which follows from [1, p. V. 34, formula (26) and
Prop. 5]:

det((ai|bj)
p
i,j=1) =

∑

1≤j1<···<jp≤n

(
det((ai|ejk

)p
i,k=1)

) (
det((bi|ejk

)p
i,k=1)

)
. (2.13)

Fix now a finite sequence (x1, . . . , xp) of the elements of H. Applying equality
(2.13) to the matrix (T ∗Txi|xj)

p
i,j=1 we get

G(Tx1, . . . , Txp)

=
∑

1≤j1<···<jp≤n

∑

σ,π∈Sp

sgnσ · sgn π
p∏

k=1

(xk|T ∗Tejσ(k)
)(xk|ejπ(k)

). (2.14)

Now integrating both sides of equality (2.14) with respect to the variables
x1, . . . , xp and measure s× · · · × s and using formula (2.1) we obtain

Dp(T ) =
1

np

∑

1≤j1<···<jp≤n

∑

σ,π∈Sp

sgnσ · sgn π
p∏

k=1

(Tejπ(k)
|Tejσ(k)

)

=
p!

np

∑

1≤j1<···<jp≤n

G(Tej1 , . . . , T ejp) =
1

np

n∑

j1,...,jp=1

G(Tej1 , . . . T ejp). (2.15)

The second equality in (2.15) is true since it can be easily seen that the relation

∑

σ,π∈Sp

sgnσ · sgnπ
p∏

k=1

(yσ(k)|yπ(k)) = p!G(y1, . . . , yp)

holds for all finite sequences (y1, . . . , yp) of elements of Y .
Equality (2.11) follows from (2.10).
Equality (2.12) also follows from (2.10) since in (2.10) the elements ek, k =

1, . . . , n can be taken the eigenvectors of T ∗T .
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Remark 2.5. (1) The validity of the important equality (2.10) was pointed out
in [6], while the proof is given in [5, p. 113]; the above-given proof is different
and, in a sense, less “combinatorial”.

(2) Let

|||T |||p,e· :=

(
n∑

j1,...,jp=1

Gp(Tej1 , . . . , T ejp)

)1/2

.

Then from equality (2.10), inequality (2.6) and equality (2.9) we get

|||T |||2p,e· = npDp(T ) ≤ ‖T‖2p
HS.

This relation implies, in particular, that the value of |||T |||p,e· does not depend
on a particular choice of an orthonormal basis e· := (e1, . . . , en) of H (compare
with the next item).

(3) Suppose for a moment that H is an infinite-dimensional separable Hilbert
space, T : H → Y is a continuous linear operator, (en)n∈N is an orthonormal
basis of H and put again

|||T |||p,e· : =

( ∞∑

j1,...,jp=1

Gp(Tej1 , . . . , T ejp)

)1/2

= lim
n→∞

(
n∑

j1,...,jp=1

Gp(Tej1 , . . . T ejp)

)1/2

.

(3a) [3, p. 44, Prop. III.2.2] If T is a Hilbert–Schmidt operator, then

|||T |||p,e· ≤ ‖T‖p
HS (2.16)

and the value of |||T |||p,e· does not depend on a particular choice of an orthonor-
mal basis e· := (en)n∈N of H (note that inequality (2.16) follows from Remark
2.1(b), however the second statement now needs a separate proof).

(3b) [3, p. 42, Prop. III.2.1] If for given T there are a natural number p and
an orthonormal basis e· := (en)n∈N of H such that |||T |||p,e· < ∞, then T is a
Hilbert–Schmidt operator.

Using the functional Dp, the definition of the p-th order mean dilatation
number δp(T ) of an operator T ∈ L(H,Y ), given in the introduction, can be
rewritten as

δp(T ) =

(
Dp(T )

Dp(I)

) 1
2

. (2.17)

Evidently, when p = 1, (2.17) gives

δ1(T ) = D
1/2
1 (T ) =

( ∫

S

‖Tx‖2ds(x)

) 1
2

. (2.18)

The “normalized” version of Proposition 2.4 looks as follows:
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Proposition 2.6. Let dim H = n, p ≤ n, T ∈ L(H, Y ) and (e1, . . . , en) be
any orthonormal basis of H. Then:

δ1(T ) =
1√
n
‖T‖HS =

1√
n

(
n∑

k=1

‖Tek‖2

) 1
2

, (2.19)

δp(T ) =

(
n

p

)− 1
2
( ∑

1≤j1<···<jp≤n

λ2
j1

. . . λ2
jp

) 1
2

, (2.20)

where λ1, . . . , λn are the eigenvalues of the operator |T | := (T ∗T )
1
2 listed accord-

ing to their multiplicities;

δn(T ) = det(|T |). (2.21)

Proof. (2.19) follows from (2.9).
(2.20) follows from (2.12).
(2.21) follows from (2.20) by putting p = n.

Remark 2.7. (a) Equality (2.21) can be derived directly from Remark 2.1(f),
its validity was already noted in [6]. It shows that the normalization through
Dp(I) in the definition of the pMD-number is natural.

(b) Equality (2.19) implies that the functional T → δ1(T ) is a norm on
L(H, Y ) with the following property:

1√
n
‖T‖ ≤ δ1(T ) ≤ ‖T‖, ∀ T ∈ L(H,Y ). (2.22)

(c) Suppose p > 1, then the functional T → δp(T ) is absolutely p-homoge-
neous on L(H, Y ) (this follows, e.g., from (2.20)). Also (2.5) implies that δp(·)
vanishes on the operators with a rank < p.

(d) If for a given operator T ∈ L(H, Y ) we have ‖T‖ ≤ 1 and δ1(T ) = 1, then
T is an isometry (this is easy to see).

The following assertion shows that isometric operators can be characterized
only in terms of δ1 and δ2.

Proposition 2.8. Let H be a finite-dimensional Hilbert space with dim H =
n ≥ 2, Y be any Hilbert space and T : H → Y be a linear operator. The
following statements are equivalent:

(i) T is an isometry.
(ii) δp(T ) = 1 ∀p ≤ n.
(iii) δ1(T ) = δ2(T ) = 1.

Proof. The implications (i) ⇒ (ii) ⇒ (iii) are evident.
First proof of (iii) ⇒ (i). It is sufficient to verify that T ∗T = I. For this it is

enough to show that δ1(T
∗T − I) = 0 (since δ1 is a norm). Equalities (2.7) and

(2.8) imply

δ2
2(T ) =

n

n− 1
δ4
1(T )− 1

n− 1
δ2
1(T

∗T ) (2.23)
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and

δ2
1(T

∗T − I) = δ2
1(T

∗T )− 2δ2
1(T ) + 1. (2.24)

Now it is clear that (iii) and (2.23) imply δ1(T
∗T ) = 1. Thus the equality

δ1(T ) = 1 and (2.24) imply δ1(T
∗T − I) = 0. Consequently, T ∗T = I.

Second proof of (iii) ⇒ (i).2 Let λ1, . . . , λn be the eigenvalues of the operator

|T | := (T ∗T )
1
2 listed according to their multiplicities. Using (iii) and (2.20) we

get
n∑

k=1

λk
2 = nδ1

2(T ) = n,
∑

1≤j1<j2≤n

λ2
j1

λ2
j2

=

(
n

2

)
δ2
2(T ) =

(
n

2

)
.

Then
n∑

k=1

λk
4 =

(
n∑

k=1

λk
2

)2

− 2
∑

1≤j1<j2≤n

λ2
j1

λ2
j2

= n2 − 2

(
n

2

)
= n

and
n∑

k=1

(λk
2 − 1)2 =

n∑

k=1

λk
4 − 2

n∑

k=1

λk
2 + n = 0.

Consequently, λk = 1, k = 1, . . . , n and |T | = I.

Remark 2.9. It is interesting to note that in [6] only the validity of the im-
plication (ii) ⇒ (i) was conjectured. We see that even (iii) implies (i).

The following assertion will be used in the next section.

Lemma 2.10. Let dim H = n, T : H → Y be a linear operator and p ∈
{1, . . . , n}. Put

cn,p := Dp(I) =
n!

(n− p)!np

and

rn(p, T ) := Dp
1(T )−Dp(T ).

Then:

1

pp−1
≤ cn,p ≤ 1, (2.25)

δp(T ) ≤ p
p−1
2 δp

1(T ), (2.26)

0 ≤ rn(p, T ) ≤ p!

n
‖T‖2p, (2.27)

δ2
p(T ) =

1

cn,p

(δ2p
1 (T )− rn(p, T )). (2.28)

2Suggested by the Referee.
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Proof. Relation (2.25) is easy to verify. Inequality (2.26) follows from (2.6) and
(2.25).

(2.27): Let λ1, . . . , λn be the eigenvalues of the operator |T | := (T ∗T )
1
2 listed

according to their multiplicities. Using (2.9), Newton’s (polynomial) formula
and (2.10) we can write:

(D1(T ))p −Dp(T ) =
1

np
(

n∑

k=1

λ2
k)

p − p!

np

∑

1≤j1<···<jp≤n

λ2
j1

. . . λ2
jp

=
p!

np

∑

k1+···+kn=p

1

k1! . . . kn!
λ2k1

1 . . . λ2kn
n

− p!

np

∑

k1+···+kn=p, max ki=1

1

k1! . . . kn!
λ2k1

1 . . . λ2kn
n

=
p!

np

∑

k1+···+kn=p, max ki>1

1

k1! . . . kn!
λ2k1

1 . . . λ2kn
n .

Consequently,

(D1(T ))p −Dp(T ) =
p!

np

∑

k1+···+kn=p, max ki>1

1

k1! . . . kn!
λ2k1

1 . . . λ2kn
n .

From this equality, as λk ≤ ‖T‖, k = 1, . . . , n, and

∑

k1+···+kn=p, max ki>1

1

k1! . . . kn!
≤ np−1,

we obtain (2.27).
(2.28) follows from (2.27).

Remark 2.11. (1) By (2.20 ) it can be seen that for a given operator T the
equality δp(T ) = δp

1(T ) holds if and only if T is a scalar multiplier of an isometry.
In this connection the asymptotic versions behave better (see the next section).

(2) A simple relation between δp(T ) and δp
1(T ), can be written using the no-

tation from the theory of outer products of Hilbert spaces. Namely, let H,Y be
finite-dimensional Hilbert spaces, T ∈ L(H, Y ) and

∧p T be the antisymmetric
outer p-th power of the operator T . Then

δp(T ) =

(
n

p

)− 1
2

‖∧p T‖HS and δp(T ) = δ1(
∧p T ). (2.29)

These formulas follow easily from the following relation, established in [5, p. 112–
113, the proof of Prop. VI.2.2]: ‖∧p T‖2

HS = np

p!
Dp(T ). In [5] it is also shown

that the antisymmetric outer p-th power of a Hilbert–Schmidt (or a nuclear)
operator T acting between infinite-dimensional Hilbert spaces is again a Hilbert–
Schmidt (a nuclear) operator (cf. also [4, Th. 2]).
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3. Infinite-Dimensional Case

In this section H will be an infinite-dimensional Hilbert space and Y will be
another Hilbert space. As before, L(H, Y ) will denote the set of all continuous
linear operators T : H → Y .

Fix a natural number p and consider the collection Mp of all finite-dimensio-
nal vector subspaces M ⊂ H with dim M ≥ p. This collection is a directed set
by set-theoretic inclusion.

Fix an operator T ∈ L(H,Y ). Then for any M ∈ Mp and the restriction
T |M of T to M , the pMD-number δp(T |M) is defined. In this way T generates

with the net (δp(T |M))M∈Mp . Let us denote the upper limit of this net by δp(T )
and call it the asymptotic upper pMD-number of T. In a similar manner, let
us denote the lower limit of this net by δ p(T ) and call it the asymptotic lower
pMD-number of T. Therefore

δp(T ) := lim sup
M∈Mp

δp(T |M) and δ p(T ) := lim inf
M∈Mp

δp(T |M).

By formula (2.26) of Lemma 2.10 we have

δp(T |M) ≤ p
p−1
2 ‖T‖p , ∀ M ∈Mp.

This inequality shows that the net (δp(T |M))M∈Mp is bounded and, conse-
quently, always

δ p(T ) ≤ δp(T ) ≤ p
p−1
2 ‖T‖p < ∞.

In general, the net (δp(T |M))M∈Mp may not be convergent (as we will see
below). In the case of convergence we shall call the operator T asymptotically
pMD-regular. For an asymptotically pMD-regular T we put

δp(T ) = lim
M∈Mp

δp(T |M),

and call δp(T ) the asymptotic pMD-number of T .
An asymptotically 1MD-regular operator T will be called asymptotically MD-

regular and its 1MD-number will be called asymptotic MD-number.
The next result is somewhat unexpected. Its validity was not predicted in [6].

Theorem 3.1. Let H be an infinite-dimensional Hilbert space, Y be a Hilbert
space, T ∈ L(H, Y ) and p > 1 be a natural number. Then

δp(T ) = (δ1(T ))p and δ p(T ) = (δ 1(T ))p; (3.1)

moreover, the operator T is asymptotically pMD-regular if and only if it is
asymptotically MD-regular and in the case of asymptotic MD-regularity the
equality

δp(T ) = (δ1(T ))p (3.2)

holds.
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Proof. Let M ∈Mp. We can write using formula (2.28) of Lemma 2.10:

δ2
p(T |M) =

1

p!

(
dim M

p

)−1

(dim M)p
(
δ2p
1 (T |M)− rdim M(p, T |M)

)
. (3.3)

Evidently,

lim
M∈Mp

1

p!

(
dim M

p

)−1

(dim M)p = 1. (3.4)

Since according to inequality (2.27) of Lemma 2.10

rdim M(p, T |M)| ≤ p!√
dim M

‖T |M‖2p ≤ p!√
dim M

‖T‖2p,

we also have

lim
M∈Mp

rdim M(p, T |M) = 0. (3.5)

From (3.3) via (3.4) and (3.5) the we get (3.1). The “moreover” part now is
clear.

This theorem shows that in the case of an infinite-dimensional domain it is
sufficient to study only the numbers δ1(T ), δ

1
(T ) and δ1(T ).

To simplify the notation, for a given operator T ∈ L(H, Y ) let us denote its

– asymptotic upper 1MD-number δ1(T ) by δ(T ),
– asymptotic lower 1MD-number δ

1
(T ) by δ(T ),

– asymptotic MD-number δ1(T ) by δ(T ).

Using formula (2.19) from Proposition 2.6 the definition of these numbers can
be formulated directly in terms of the Hilbert–Schmidt norm as follows:

δ(T ) = lim sup
M∈M1

1√
dim M

‖T |M‖HS, δ(T ) = lim inf
M∈M1

1√
dim M

‖T |M‖HS.

For an operator T ∈ L(H,Y ) let us put

m(T ) := inf{‖Tx‖ : x ∈ H, ‖x‖ = 1}.
The number m(T ) is sometimes called the lower bound of T .

The next statement implies, in particular, that a given operator T may not
be asymptotically MD-regular.

Proposition 3.2. Let H, Y be infinite-dimensional Hilbert spaces and T :
H → Y be a continuous linear operator. Then:

(a) For any infinite-dimensional closed vector subspace X ⊂ H the inequality

δ(T ) ≥ m(T |X)

holds.
(b) If ker(T ) is infinite-dimensional, then δ(T ) = 0.
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(c) If T is a partial isometry such that ker(T ) and T (H) are both infinite-

dimensional, then δ(T ) = 1, while δ(T ) = 0 and so T is not asymptotically
MD-regular.

Proof. (a) Fix an infinite-dimensional X ⊂ H, a finite-dimensional vector sub-
space M ⊂ H and put

βM := sup{δ1(T |N) : N ∈M1, N ⊃ M}.
Let us show that

βM ≥ m(T |X). (3.6)

To prove (3.6), fix a natural number n and an n-dimensional vector subspace
Xn of X such that Xn ∩ M = {0} (such a choice is possible because M is
finite-dimensional and X is infinite-dimensional). Let also Mn := M + Xn and
let M ′ be the vector subspace of Mn orthogonal to Xn. Using formula (2.19)
from Proposition 2.6 we can write:

δ2
1(T |Mn) =

‖T |M ′‖2
HS + ‖T |Xn‖2

HS

dim(M ′) + n
≥ ‖T |Xn‖2

HS

dim(M ′) + n
≥ n

dim(M ′) + n
m(T |X)2.

As βM ≥ δ1(T |Mn) and dim(M ′) ≤ dim(M), we get

β2
M ≥ n

dim(M) + n
m2(T |X). (3.7)

Since n is arbitrary, from (3.7) we have

β2
M ≥ sup

n

nm2(T |X)

dim(M) + n
≥ lim

n

nm2(T |X)

dim(M) + n
= m2(T |X).

This relation, together with (3.6) and the definition of δ(T ), implies (a).
(b) Let X = ker(T ), fix a finite-dimensional vector subspace M ⊂ H and put

αM := inf{δ1(T |N) : N ∈M1, N ⊃ M}.
Let us show that

αM = 0. (3.8)

To prove (3.8), fix a natural number n and an n-dimensional vector subspace
Xn of X such that Xn∩M = {0} (such a choice is possible because M is finite-
dimensional and X is infinite-dimensional). Let also Mn := M +Xn and M ′ be
the subspace of Mn orthogonal to Xn. Using formula (2.19) from Proposition
2.6 and taking into account that T |Xn = 0 we can write:

δ2
1(TMn) =

‖T |M ′‖2
HS + ‖T |Xn‖2

HS

dim(M ′) + n
=

‖T |M ′‖2
HS

dim(M ′) + n
.

From this we get

α2
M ≤ ‖T |M ′‖2

HS

dim(M ′) + n
.
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Observe now that since dim(M ′) ≤ dim(M) and ‖T |M ′‖HS ≤ ‖T‖
√

dim(M ′),
we have

α2
M ≤ lim

n

‖T |M ′‖2

dim(M ′) + n
= 0.

This relation together with the definition of δ(T ) implies (b).
(c) follows from (a) and (b).

The last proposition motivates the following

Problem. Give a characterization of asymptotically MD-regular operators
in terms of some other known parameters (in terms of the spectrum, in terms
of the diagonal (for the diagonal operators), etc.).

Acknowledgement

We are grateful to the referee for helpful comments and suggestions.
The third author acknowledges support from Xunta de Galicia (D.O.G. do

25-02-00) during his visit to Vigo.

References

1. N. Bourbaki, Espaces vectoriels topologiques. Masson, Paris, 1981.
2. A. Castejón, E. Corbacho, and V. Tarieladze, AMD numbers, compactness, strict

singularity and essential spectrum of operators. Submitted to Georgian Math. J. in 2001.
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36280 Vigo, Galicia, España
E-mail: acaste@dma.uvigo.es

corbacho@uvigo.es
visit01@dma.uvigo.es

The permanent address of V. Tarieladze:
N. Muskhelishvili Institute of Computational Mathematics
Georgian Academy of Sciences
8, Akuri St., Tbilisi 380093, Georgia
E-mail: tar@gw.acnet.ge


