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BOUNDARY VARIATIONAL INEQUALITY APPROACH IN
THE ANISOTROPIC ELASTICITY FOR THE SIGNORINI

PROBLEM

A. GACHECHILADZE AND D. NATROSHVILI

Abstract. The purpose of the paper is reducing the three-dimensional Sig-
norini problem to a variational inequality which occurs on the two-dimen-
sional boundary of a domain occupied by an elastic anisotropic body. The
uniqueness and existence theorems for the solution of the boundary varia-
tional inequality are proved and a boundary element procedure together with
an abstract error estimate is described for the Galerkin numerical approxi-
mation.
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1. Introduction

Signorini type problems in the elasticity theory are well studied (see [11], [12],
[21], [7], [19], and the references therein). The main tool to investigate these
problems is the theory of spatial variational inequalities. By this method the
uniqueness and existence theorems are proved and the regularity properties of
solutions are established in various functional spaces.

The purpose of the present paper is reducing of the three-dimensional Sig-
norini problem to a variational inequality which occurs on the two-dimensional
boundary of a domain occupied by the elastic anisotropic body under consid-
eration. We will show that the spatial variational inequality (SVI) is equivalent
to the boundary variational inequality (BVI) obtained. The uniqueness and ex-
istence theorems for the solution of BVI are proved, and a boundary element
procedure together with an abstract error estimate is described for the Galerkin
numerical approximation.

A similar approach in the isotropic case is considered in [16], [17], [15], where
the Signorini problem is reduced to a system consisting of a BVI and a boundary
singular integral equation (for related problems see also [9], [8] and the references
therein).

2. Classical and Spatial Variational Inequality Formulations of
the Signorini Problem

2.1. Let an elastic homogeneous anisotropic body in the natural configuration
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occupies a bounded region Ω+ of the three-dimensional space R3: Ω+ = Ω+∪S,
S = ∂Ω+. For simplicity, we assume that the boundary S = ∂Ω+ is C∞-smooth.
Further, let Ω− = R3\Ω+. The elastic coefficients Ckjpq satisfy the symmetry
conditions

Ckjpq = Cpqkj = Cjkpq.

The stress tensor {σkj} and the strain tensor {εkj} are related by Hooke’s law

σkj(u) = Ckjpqεpq(u), εkj(u) =
1

2
(∂kuj + ∂juk) ,

∂ = (∂1, ∂2, ∂3) , ∂k :=
∂

∂xk

,

where u = (u1, u2, u3)
> is the displacement vector; here and in what follows

the summation over the repeated indices is meant from 1 to 3 unless stated
otherwise; the subscript > denotes transposition.

Define the symmetric bilinear forms:

E(u, v) = σkj(u)εkj(v) = Ckjpqεpq(u)εkj(v) = E(v, u), (2.1)

a(u, v) =
∫

Ω+

E(u, v)dx = a(v, u) =
∫

Ω+

Ckjpq ∂kuj ∂pvq dx. (2.2)

As usual, the quadratic form corresponding to the potential energy is sup-
posed to be positive definite in the symmetric variables εkj = εjk (see, e.g.,
[12])

E(u, u) = σkj(u)εkj(u) = Ckjpqεkj(u)εpq(u)

≥ δ1 εkj(u) εkj(u), δ1 = const > 0. (2.3)

Let the boundary S be divided into three disjoint open subsurfaces S1, S2,
and S3, where Sk ∩ Sj = ∅ for k 6= j, S2 6= ∅, S3 6= ∅, S1 ∪ S2 ∪ S3 = S,
Sk = Sk ∪ ∂Sk; for simplicity, we assume ∂Sk, k = 1, 2, 3, to be C∞-smooth
curves.

By T (∂, n)u we denote the stress vector acting on a surface element with the
unit normal vector n = (n1, n2, n3):

[ T (∂x, n(x))u(x) ] k = σkj(u)nj(x) = Ckjpqnj(x)∂qup(x), k = 1, 2, 3. (2.4)

We note that throughout the paper we will use the following notation (when
it causes no confusion):

(a) if all elements of a vector v = (v1, . . . , vm)> (a matrix N = [Nkj]m×n)
belong to one and the same space X, we will write v ∈ X (N ∈ X) instead of
v ∈ Xm (N ∈ Xm×n);

(b) if K : X1×X2×· · ·×Xm → Y1×Y2×· · ·×Yn and X1 = X2 = · · · = Xm,
Y1 = Y2 = · · · = Yn, we will write K : X → Y instead of K : Xm → Y n;

(c) if a, b ∈ Rm, then a · b :=
∑m

k=1 akbk denotes the usual scalar product in
Rm;
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(d) by ‖u; X‖ we denote the norm of the element u in the space X.

As usual, Hα(Ω+), Hα
loc(Ω

−) and Hα(S) denote the Sobolev-Slobodetski
(Bessel potential) spaces; here α is a real number (see, e.g., [22], [31], [32]).

By H̃α(Sk) we denote the subspace of Hα(S):

H̃α(Sk) = {ω : ω ∈ Hα(S), supp ω ⊂ Sk},
while Hα(Sk) denotes the space of restriction on Sk of functionals from Hα(S)

Hα(Sk) = {rSk
f : f ∈ Hα(S)},

where rSk
denotes the restriction operator on Sk.

2.2. The mathematical formulation of the typical Signorini problem reads
as follows: Find the displacement vector u = (u1, u2, u3)

> ∈ H1(Ω+) by the
following conditions:

A(∂)u(x) = 0 in Ω+, (2.5)

[ T (∂x, n(x))u(x) ] + = g on S1, (2.6)

[ u(x) ] + = 0 on S2, (2.7)

[ T (∂, n)u(x) ] + − n [ T (∂, n)u(x) · n ] + = 0,

− [ u(x) · n ] + ≥ 0,

− [ T (∂, n)u(x) · n ] + ≥ 0,

[ T (∂, n)u(x) · n ] + [ u(x) · n ] + = 0,





on S3, (2.8)

where A(∂) is a matrix differential operator of elastostatics

A(∂) = [ Akp(∂) ] 3×3, Akp(∂) = Ckjpq∂j∂q,

the symbols [ · ] ±( [ · ] ±S ) denote limits (traces) on S from Ω±, n = n(x) is the
unit outward normal vector to S at the point x ∈ S.

Equation (2.5) corresponds to the equilibrium state of the elastic body in
question (with bulk forces equal to zero). Condition (2.6) describes that the
body is subjected to assigned surface forces on S1, while (2.7) shows that the
body is fixed along the subsurface S2. The unilateral Signorini conditions (“am-
biguous boundary conditions” – due to the original terminology of Signorini
[11]) mean that the body remains on or “above” the portion S3 of the boundary
∂Ω+ = S (the “upper” direction on S is defined by the outward normal n).

The first equality in (2.8) means that tangent stresses vanish on S3 (i.e., we
have contact without friction with a rigid support along the S3). The mechanical
meaning of the last three conditions in (2.8) are described in detail, e.g., in [12],
Part 2, Section 10.

We assume that the vector-function g in condition (2.6) belongs to the space
L2(S1) = H0(S1).
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Note that if u ∈ H1(Ω+) and A(∂)u ∈ L2(Ω
+), then, in general, the limit

[ T (∂, n)u ] +
S is defined as a functional of the class H− 1

2 (S) defined by the duality
relation (see, e.g., [22]),

〈 [ T (∂, n)u(x) ] +
S , [v]+S 〉S :=

∫

Ω+

A(∂)u · v dx +
∫

Ω+

E(u, v) dx, (2.9)

where v = (v1, v2, v3)
> ∈ H1(Ω+); here 〈·, ·〉S is the duality between the spaces

H
1
2 (S) and H− 1

2 (S), which coincides with the usual [ L2(S) ] 3 scalar product for
regular (in general, complex valued) vector-functions, i.e., if f, h ∈ [ L2(S) ] 3,
then

〈f, h〉S =
∫

S

fkhk dS =: (f, h)L2(S),

where the over-bar denotes complex conjugation.
Equation (2.9) can be interpreted as a Green formula for the operator A(∂).
Due to the regularity results obtained in [19] if, in addition, g = [G]+S1

, where
G ∈ H1(Ω+), then all conditions in (2.8) can be understood in the usual classical
sense (see also [12], Part 2, Section 10).

2.3. The above-formulated Signorini problem is equivalent to the following
spatial variational inequality (see [12], [19]): Find u ∈ K such that

a(u, v − u) ≥ P (v − u), ∀v ∈ K, (2.10)

where the bilinear form a(u, v) is given by (2.2),

K =
{
u = (u1, u2, u3)

> ∈ H1(Ω+) : [n(x) · u(x)]+ ≤ 0 on S3

and [u(x)]+ = 0 on S2

}
, (2.11)

and the linear functional P is defined by the equation

P (v) = 〈g, [v]+〉S1 =
∫

S1

g · [v]+dS (2.12)

with g ∈ L2(S1).
In turn, the variational inequality (2.10) is equivalent to the minimization

problem for the energy functional (see [12])

E(v) = 2−1 a(u, v)− 〈g, [v]+〉S1 , ∀v ∈ K. (2.13)

Observe that the bilinear form a(·, ·) is coercive on the space

H1(Ω+; S2) :=
{
v ∈ H1(Ω) : [v]+ = 0 on S2

}
(2.14)

since the measure of the subsurface S2 is positive (see, e.g., [29], [7]). Thus
there exists a positive constant c0 such that

a(u, u) ≥ c0 ‖u; H1(Ω+)‖2, ∀u ∈ H1(Ω+; S2).
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Therefore the variational inequality (2.10) together with problem (2.5)–(2.8)
and the minimization problem for functional (2.13) is uniquely solvable (see,
e.g., [12], [7], [19], [13]).

In the subsequent sections, on the basis of the potential theory, we will equiv-
alently reduce the spatial variational inequality (2.10) to a boundary variational
inequality.

First we expose the mapping and coercive properties of the integral (pseu-
dodifferential) operators.

3. Properties of Boundary Integral (Pseudodifferential)
Operators

3.1. Single- and double-layer potentials and their properties. Let
Γ(·) be the fundamental matrix of the operator A(∂)

A(∂)Γ(x) = δ(x)I,

where δ(·) is the Dirac distribution and I = [δkj]3×3 is the unit matrix (δkj is
the Kronecker symbol). This matrix reads [Na1]

Γ(x) = F−1
ξ→x [ A−1(−iξ) ] = − 1

8π|x|
2π∫

0

A−1(aη)dϕ, (3.1)

where A−1(−iξ) is the matrix inverse to A(−iξ), ξ ∈ R3\{0}, x ∈ R3\{0},
a = [akj]3×3 is an orthogonal matrix with the property a>x = (0, 0, |x|)>, η =
(cos ϕ, sin ϕ, 0)>; F−1

ξ→x denotes the generalized inverse Fourier transform.
Further, let us introduce the single- and double-layer potentials

V (g)(x) =
∫

S

Γ(x− y) g(y) dSy, (3.2)

W (g)(x) =
∫

S

[T (∂y, n(y))Γ(x− y)]> g(y) dSy, (3.3)

where g = (g1, g2, g3)
> is a density vector and x ∈ R3\ S.

The properties of these potentials and the corresponding boundary integral
(pseudodifferential) operators in the Hölder (Ck+α), Bessel potential (Hs

p) and
Besov (Bs

p,q) spaces are studied in [20], [25], [2], [26], [27], [5], [6], [28] (see
also [18], [3], [24], where the coerciveness of boundary operators and Lipschitz
domains are considered).

In the sequel we need some results obtained in the above-cited papers and
we recall them here for convenience.

Theorem 3.1 ([25], [2], [26]). Let k ≥ 0 be an integer and 0 < γ < 1. Then
the operators

V : Ck+γ(S) → Ck+1+γ(Ω±),

W : Ck+γ(S) → Ck+γ(Ω±),
(3.4)
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are bounded.
For any g ∈ Ck+γ(S) and any x ∈ S

[V (g)(x)]± = V (g)(x) = H g(x),

[T (∂x, n(x))V (g)(x)]± = [∓2−1I +K ] g(x) (3.5)

[W (g)(x)]± = [±2−1I +K∗] g(x),

[T (∂x, n(x))W (g)(x)]+ = [T (∂x, n(x))W (g)(x)]− = L g(x), k ≥ 1,

where

H g(x) :=
∫

S

Γ(x− y) g(y) dSy, (3.6)

K g(x) :=
∫

S

T (∂x, n(x))Γ(y − x) g(y) dSy, (3.7)

K∗ g(x) :=
∫

S

[T (∂y, n(y))Γ(x− y)]> g(y) dSy, (3.8)

L g(x) := lim
Ω±3z→x∈S

T (∂z, n(x))
∫

S

[T (∂y, n(y))Γ(y − z)]> g(y) dSy. (3.9)

Theorem 3.2 ([5]). Operators (3.4) can be extended by continuity to the
bounded mappings

V : Hs(S) → Hs+1+ 1
2 (Ω+) [Hs(S) → H

s+1+ 1
2

loc (Ω−)],

W : Hs(S) → Hs+ 1
2 (Ω+) [Hs(S) → H

s+ 1
2

loc (Ω−)],

with s ∈ R. The jump relations (3.5) on S remain valid for the extended
operators in the corresponding functional spaces.

Theorem 3.3 ([25], [5]). Let k ≥ 0 be an integer, 0 < γ < 1, and s ∈ R.
Then the operators

H : Ck+γ(S) → Ck+1+γ(S),

: Hs(S) → Hs+1(S), (3.10)

±2−1I +K, ±2−1I +K∗ : Ck+γ(S) → Ck+γ(S),

: Hs(S) → Hs(S), (3.11)

L : Ck+1+γ(S) → Ck+γ(S),

: Hs+1(S) → Hs(S) (3.12)

are bounded.
Moreover,
(i) the operators ±2−1I + K and ±2−1I + K∗ are mutually adjoint singular

integral operators of normal type with the index equal to zero. The operators H,
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2−1I +K and 2−1I +K∗ are invertible. The inverse of H
H−1 : Ck+1+γ(S) → Ck+γ(S) [Hs+1(S) → Hs(S)]

is a singular integro-differential operator;
(ii) the L is a singular integro-differential operator and the following equalities

hold in appropriate functional spaces:

K∗H = HK, LK∗ = KL, HL = −4−1I + (K∗)2, LH = −4−1I +K2; (3.13)

(iii) The operators −H and L are self-adjoint and non-negative elliptic pseu-
dodifferential operators with the index equal to zero:

〈−Hh, h〉S ≥ 0, 〈Lg, g〉S ≥ 0, (3.14)

∀h ∈ Cγ(S), ∀g ∈ C1+γ(S), [∀h ∈ H− 1
2 (S), ∀g ∈ H

1
2 (S) ] ,

with equality only for h = 0 and for

g = [a× x] + b, (3.15)

respectively; here a, b ∈ R3 are arbitrary constant vectors and [· × ·] denotes the
cross product of two vectors;

(iv) a general solution of the homogeneous equations [−2−1I +K∗]g = 0 and
Lg = 0 is given by (3.15), i.e.,

kerL = ker
(
−2−1I +K∗

)
and

dim kerL = dim cokerL = dim ker
(
−2−1I +K∗

)

= dim coker
(
−2−1I +K∗

)
= 6.

Theorem 3.4 ([5], citeNa1). Let u be a solution of the homogeneous equa-
tion A(D)u = 0 in Ω±. Then

W
(

[ u ] ±
)
− V

(
[ Tu ] ±

)
=

{ ±u(x), x ∈ Ω±,

0, x ∈ Ω∓,

where either u ∈ Ck+γ(Ω±) with k ≥ 1, 0 < γ < 1, or u ∈ H1(Ω+) [ H1
loc(Ω

−),
u(x) → 0 as |x| → +∞ ] .

We also need some additional properties of the above-introduced operators,
which will be proved below.

Theorem 3.5. Let f ∈ H
1
2 (S) and h ∈ H− 1

2 (S) satisfy the condition
(
−2−1I +K∗

)
f = Hh, i.e., h = H−1

(
−2−1I +K∗

)
f. (3.16)

Then there exists a unique vector-function u ∈ H1 (Ω+) such that

A (∂) u(x) = 0 in Ω+,

[ u ] + = f and [ Tu ] + = h on S = ∂Ω+.
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Moreover,

Lf =
(
2−1I +K

)
h, i.e., h =

(
2−1I +K

)−1 Lf. (3.17)

Proof. We put
u (x) = W (f)(x)− V (h) (x) , x ∈ Ω±.

Clearly, u ∈ H1(Ω+)∩H1
loc(Ω

−) and A (∂) u(x) = 0 in Ω+. Due to Theorem 3.2
and equality (3.16) we have

[ u ] − =
(
−2−1I +K∗

)
f −Hh = 0.

Therefore, with the help of the uniqueness theorem for the exterior Dirichlet
boundary value problem (in Ω−) for the operator A(∂), we conclude that u(x) =
0 in Ω−. Thus

W (g)(x)− V (h)(x) =

{
u(x) for x ∈ Ω+,

0 for x ∈ Ω−.

Whence, applying again Theorem3.2, we get

[ u ] + − [ u ] − = f and [ Tu ] + − [ Tu ] − = h on S,

i.e.,
[ u ] + = f and [ Tu ] + = h.

The uniqueness of u can be easily shown by the uniqueness theorem for the
Dirichlet problem.

To complete the proof we note that (3.16) and Theorem3.3, (ii) imply

HLf =
(
2−1I +K∗

) (
−2−1I +K∗

)
f =

(
2−1I +K∗

)
Hh = H

(
2−1I +K

)
h,

from which (3.17) follows since H is an invertible operator.

Further, we discuss in detail the coercive properties of the bilinear forms in
(3.14) and the operators related to them. Note that similar problems for the
isotropic case and the Laplace equation are studied in [18], [3], [24], Ch.10, [4],
Ch. XI, § 4 with the help of Korn’s inequalities. Here we treat the general
anisotropic case and prove the coerciveness of the corresponding operators by
means of different arguments.

3.2. Coercive properties of the boundary bilinear forms. We start
by the following simple lemma.

Lemma 3.6. Let 〈·, ·〉S be the bracket of duality (bilinear form) between the
dual pair Hr(S) and H−r(S), ∀r ∈ R, and (·, ·)H−r(S) denote a scalar product
in H−r(S).

There exists a linear bounded bijective operator

P2r : Hr(S) → H−r(S) (3.18)

and positive constants C1 and C2, such that

〈f, g〉S = (P2rf , g)H−r(S) , ∀f ∈ Hr(S), ∀g ∈ H−r(S), (3.19)
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and

C1 ‖f ; Hr(S)‖ ≤ ‖P2rf ; H−r(S)‖ ≤ C2 ‖f ; Hr(S)‖, ∀f ∈ Hr(S). (3.20)

Moreover,

〈f, P2rf〉S ≥ 0, ∀f ∈ Hr(S), (3.21)

with the equality only for f = 0.

Proof. First we consider the case of real functions. Let f ∈ Hr(S). Then

|〈f, g〉S| ≤ C‖f ; Hr(S)‖ ‖g; H−r(S)‖, ∀g ∈ H−r(S),

where C is independent of f and g, i.e., 〈f, ·〉S is the linear bounded functional on
H−r(S) and due to the Riesz theorem there exists a unique element F ∈ H−r(S)
such that

〈f, g〉S = (F, g)H−r(S) , ∀g ∈ H−r(S). (3.22)

We put F = P2rf. It is evident that the mapping P2r : Hr(S) → H−r(S)
is linear and injective. Now we show that it is surjective, i.e., for arbitrary
F ∈ H−r(S) there exists unique f ∈ H−r(S) such that equality (3.22) holds.

Let Λr be an equivalent lifting (i.e., order reducing) pseudodifferential oper-
ator of order −r (see, e.g., [22], [10], [14], [1]):

Λr : H0(S) → Hr(S).

This mapping is an isomorphism. Then the adjoint operator (with respect to
the duality bracket) Λ∗r is also an equivalent lifting operator

Λ∗r : [ Hr(S) ] ∗ → [ H0(S) ] ∗, i.e., Λ∗r : H−r(S) → H0(S).

Obviously, there exist positive constants a1, a2, b1, and b2 such that

a1 ‖f ; H0(S)‖ ≤ ‖Λrf ; Hr(S)‖ ≤ a2 ‖f ; H0(S)‖, ∀f ∈ H0(S),

b1 ‖g; H−r(S)‖ ≤ ‖Λ∗rg; H0(S)‖ ≤ b2 ‖g; H−r(S)‖, ∀g ∈ H−r(S).

Here aj and bj do not depend on f and g, respectively. Note that

B(f̃ , g) := 〈ΛrΛ
∗
r f̃ , g〉S

is a bilinear form on H−r(S)×H−r(S).
Consider the equation

B(f̃ , g) = (F, g)H−r(S) , ∀g ∈ H−r(S), (3.23)

where F ∈ H−r(S) is some given element and f̃ ∈ H−r(S) is the sought for
element. Obviously, the linear functional in the right-hand side of (3.23) is
bounded on H−r(S).

It is also evident that B(·, ·) is continuous:

|B(f̃ , g)| = |〈ΛrΛ
∗
r f̃ , g〉S| ≤ C ‖ΛrΛ

∗
r f̃ ; Hr(S)‖ ‖g; H−r(S)‖

≤ c a2 b2 ‖f̃ ; H−r(S)‖ ‖g; H−r(S)‖.
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Moreover, B(·, ·) is coercive:

B(f̃ , f̃) = 〈ΛrΛ
∗
r f̃ , f̃〉S = 〈Λ∗r f̃ , Λ∗r f̃〉S =

(
Λ∗r f̃ , Λ∗r f̃

)
H0(S)

= ‖Λ∗rf ; H0(S)‖2 ≥ b2
1 ‖f̃ ; H−r(S)‖2.

Due to the Lax–Milgram theorem then there exists a unique solution f̃ ∈
H−r(S) of equation (3.23), i.e.,

〈ΛrΛ
∗
r f̃ , g〉S = (F, g)H−r(S) , g ∈ H−r(S),

which proves the surjectivity of the operator P2r since ΛrΛ
∗
r f̃ ∈ H−r(S). Thus

mapping (3.18) is bijective. Inequality (3.20) then follows from the Banach
theorem on inverse operators.

Now let f = f1 + if2 and g = g1 + ig2, where fj ∈ Hr(S) and gj ∈ H−r(S)
are real functions.

Due to the results just proven we have

〈f, g〉S = 〈f1 + if2, g1 − ig2〉S = 〈f1, g1〉S + i〈f2, g1〉S − i〈f1, g2〉S
−i2〈f2, g2〉S = (P2rf1, g1)H−r(S) + i (P2rf2, g1)H−r(S)

−i (P2rf1, g2)H−r(S) − i2 (P2rf2, g2)H−r(S) = (P2rf, g)H−r(S) ,

whence (3.20) and (3.21) follow.

Lemma 3.7. There exists a positive constant C3 such that

〈−Hϕ, ϕ〉S ≥ C3 ‖ϕ; H− 1
2 (S)‖2, ∀ϕ ∈ H− 1

2 (S).

Proof. Due to Lemma 3.6

〈−Hϕ, ϕ〉S = (−P1Hϕ, ϕ)
H− 1

2 (S)
, ∀ϕ ∈ H− 1

2 (S).

Moreover, the mapping

−P1H : H− 1
2 (S) → H− 1

2 (S)

is an isomorphism and

(−P1Hϕ, ϕ)
H− 1

2 (S)
= 〈−Hϕ, ϕ〉S ≥ 0

for an arbitrary (complex-valued) function ϕ ∈ H− 1
2 (S). Evidently, −P1H is a

self-adjoint positive operator (see, e.g., [30], Theorem 12.32).
By the square root theorem (see, e.g., [30], Theorem 12.33, [23], Ch.7, §3,

Theorem 2) we conclude that there exists a unique positive linear bounded
bijective operator

Q : H− 1
2 (S) → H− 1

2 (S)

such that Q2 = −P1H. Consequently, Q is self-adjoint and invertible, and

e1 ‖ϕ; H− 1
2 (S)‖ ≤ ‖Qϕ; H− 1

2 (S)‖ ≤ e2 ‖ϕ; H− 1
2 (S)‖
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with some positive constants e1 and e2. Therefore

〈−Hϕ, ϕ〉S = (−P1Hϕ, ϕ)
H− 1

2 (S)

=
(
Q2ϕ, ϕ

)
H− 1

2 (S)
= ‖Qϕ; H− 1

2 (S)‖2 ≥ e2
1 ‖ϕ; H− 1

2 (S)‖2,

which completes the proof.

We denote by X(Ω+) the space of rigid displacements in Ω+, and by X(S) =
X(∂Ω+) the space of their restrictions on S = ∂Ω+ (see (3.15)). Note that
dimX(Ω+) =dimX(S) = 6. Let Ψ(S) = {χj}6

j=1 be the orthonormal (in the

H0(S)-sense) basis in X(S):
(
χj, χk

)
H0(S)

= 〈χj, χk〉S = δkj,

where δkj is Kronecker’s symbol. Clearly, the system {χj}6
j=1 can be obtained

by the orthonormalization (in the H0(S)-sense) procedure of the following basis
of X(S):

ν(1) = (1, 0, 0), ν(2) = (0, 1, 0), ν(3) = (0, 0, 1),

ν(4) = (x3, 0,−x1), ν(5) = (−x2, x3, 0), ν(6) = (0,−x3, x2).

Further, let r ∈ R and

Hr
∗(S) := {ϕ : ϕ ∈ Hr(S), 〈ϕ, χj〉S = 0, j = 1, 6}. (3.24)

It is evident that Hr
∗(S) is a Hilbert space with the scalar product induced by

(·, ·)Hr(S).

Lemma 3.8. L(H
1
2 (S)) = H

− 1
2∗ (S), where the operator L is given by (3.9).

Proof. The Green identity
∫

Ω+

[ Au · v − u · Av ] dx =
∫

S

{
[ Tu ] + · [ v ] + − [ u ] + · [ Tv ] +

}
dS

with u = W (ϕ) and ∀v ∈ X(Ω+) yields
∫

S

Lϕ · χjdS = 〈Lϕ, χj〉S = 0, ∀ϕ ∈ H
1
2 (S), j = 1, 6.

Therefore

L : H
1
2 (S) → H

− 1
2∗ (S), i.e., L(H

1
2 (S)) ⊂ H

− 1
2∗ (S).

On the other hand, the equation

Lϕ = f, f ∈ H
− 1

2∗ (S), (3.25)

is solvable, and a solution ϕ ∈ H
1
2 (S) can be represented in the form ([25], [5])

ϕ = ϕ0 +
6∑

j=1

cjχ
j, ϕ0 ∈ H

1
2 (S),
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where ϕ0 is some particular solution of the above non-homogeneous equation

and cj are arbitrary constants. In addition, if we require that ϕ ∈ H
1
2∗ (S), then

(3.25) is uniquely solvable and the solution reads

ϕ = ϕ0 −
6∑

j=1

〈ϕ0, χ
j〉S χj. (3.26)

It can be easily shown that the right-hand side in (3.26) does not depend on the
choice of the particular solution ϕ0 since the homogeneous version of equation

(3.25) (with f = 0) possesses only the trivial solution in the space H
1
2∗ (S).

Corollary 3.9. The operator

L : H
1
2∗ (S) → H

− 1
2∗ (S)

is an isomorphism, and the inequality

c∗1 ‖ϕ; H
1
2 (S)‖ ≤ ‖Lϕ; H− 1

2 (S)‖ ≤ c∗2 ‖ϕ; H
1
2 (S)‖, (3.27)

holds for all ϕ ∈ H
1
2∗ (S) with some positive constants c∗1 and c∗2 independent

of ϕ.

Lemma 3.10. There exists a positive constant c∗3 such that

〈Lϕ, ϕ〉S ≥ c∗3 ‖ϕ; H
1
2 (S)‖2, ∀ϕ ∈ H

1
2∗ (S).

Proof. Let

L̃ϕ := Lϕ +
6∑

j=1

〈ϕ, χj〉Sχj.

Note that L̃ϕ = Lϕ if and only if ϕ ∈ H
1
2∗ (S).

Evidently,

〈L̃ϕ, ϕ〉S = 〈Lϕ, ϕ〉S +
6∑

j=1

|〈ϕ, χj〉S|2, ∀ϕ ∈ H
1
2 (S),

and 〈L̃ϕ, ϕ〉S = 0 implies ϕ = 0, due to Theorem 3.3, (iii) and (iv). This also
shows that the homogeneous equation

L̃ϕ = 0, ϕ ∈ H
1
2 (S),

possesses only the trivial solution, and since Ind L̃ = IndL = 0, we conclude
that the mapping

L̃ : H
1
2 (S) → H− 1

2 (S)

is an isomorphism.
Let Λ 1

2
be an equivalent lifting operator

Λ 1
2

: H0(S) → H
1
2 (S),
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and construct the operator Λ∗1
2

L̃Λ 1
2
, where Λ∗1

2

is the operator adjoint to Λ 1
2

with

respect to the duality bracket. Therefore the isomorphism Λ∗1
2

: H− 1
2 (S) →

H0(S) is also an equivalent lifting operator.
It is obvious that the mapping

Λ∗1
2

L̃Λ 1
2

: H0(S) → H0(S) (3.28)

is an isomorphism. Moreover,

〈Λ∗1
2

L̃Λ 1
2
ϕ, ϕ〉S = 〈L̃Λ 1

2
ϕ, Λ 1

2
ϕ〉S ≥ 0, ∀ϕ ∈ L2(S) = H0(S),

with equality only for ϕ = 0. Thus (3.28) defines a positive invertible operator.
Further, due to the square root theorem, there exists a positive (self-adjoint)

invertible operator Q̃ : H0(S) → H0(S) such that

Λ∗1
2

L̃Λ 1
2

= Q̃2.

Therefore, with the help of the self-adjointness of the operator Q̃ and invoking
the Banach theorem on inverse operator, we get

〈Λ∗1
2

L̃Λ 1
2
ϕ, ϕ〉S = 〈Q̃2ϕ, ϕ〉S =

(
Q̃2ϕ, ϕ

)
H0(S)

= ‖Q̃ϕ; H0(S)‖2 ≥ c4‖ϕ; H0(S)‖2, ∀ϕ ∈ H0(S). (3.29)

Note that for arbitrary ψ ∈ H
1
2 (S) there exists unique ϕ ∈ H0(S) such that

Λ 1
2
ϕ = ψ, i.e., ψ = Λ−1

1
2

ϕ and ‖ϕ; H0(S)‖ ≥ c5‖ψ; H
1
2 (S)‖, where c5 is a positive

constant independent of ϕ and ψ. Consequently, by virtue of (3.29) we derive

〈L̃ψ, ψ〉S = 〈L̃Λ 1
2
ϕ, Λ 1

2
ϕ〉S = 〈Λ∗1

2

L̃Λ 1
2
ϕ, ϕ〉S

≥ c4 ‖ϕ; H0(S)‖2 ≥ c4c
2
5 ‖ψ; H

1
2 (S)‖2,

which completes the proof since L̃ψ = Lψ, ∀ψ ∈ H
1
2∗ (S).

Below we need some mapping and coercive properties of the operator

M := L −
(
−2−1I +K

)
H−1

(
−2−1I +K∗

)
. (3.30)

Applying equalities (3.13) we easily transform (3.30) to obtain

M = H−1
(
−2−1I +K∗

)
=

(
−2−1I +K

)
H−1. (3.31)

Corollary 3.11. The operator

M : H
1
2 (S) → H− 1

2 (S)

is a bounded, positive, formally self-adjoint (with respect to the duality bracket),
elliptic pseudodifferential operator of order 1, and

kerM = kerL = ker
(
−2−1I +K∗

)
, IndM = 0.
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Moreover,

M
(
H

1
2 (S)

)
= H

− 1
2∗ (S).

The mapping

M : H
1
2∗ (S) → H

− 1
2∗ (S)

is an isomorphism, and the inequalities

c′1 ‖ϕ; H
1
2 (S)‖ ≤ ‖Mϕ; H− 1

2 (S)‖ ≤ c′2 ‖ϕ; H
1
2 (S)‖, ∀ϕ ∈ H

1
2∗ (S),

〈Mϕ, ϕ〉S ≥ c′3 ‖ϕ; H
1
2 (S)‖2, ∀ϕ ∈ H

1
2∗ (S),

hold with some positive constants c′1, c
′
2, and c′3 independent of ϕ.

Proof. It is a ready consequence of (3.30), (3.31), Theorem 3.3, Corollary 3.9,
and Lemma 3.10.

4. Reduction to BVI. Existence and Uniqueness Results

Let u ∈ K be the unique solution of the SVI (2.10). Due to Theorems 3.4
and 3.1 we have the following Steklov-Poincaré relations connecting the Dirichlet
and Neumann boundary data on S = ∂Ω+ of the vector u:

L[u]+ =
(
2−1I +K

)
[Tu]+,

(
−2−1I +K∗

)
[u]+ = H[Tu]+. (4.1)

These equalities imply

[Tu]+ = L[u]+ −
(
−2−1I +K

)
[Tu]+

= L[u]+ −
(
−2−1I +K

)
H−1

(
−2−1I +K∗

)
[u]+ = M[u]+, (4.2)

where M is defined by (3.30).
The Green formula (2.9) with the vector u and arbitrary v ∈ H1(Ω+) can be

rewritten as
∫

Ω+

E(u, v)dx = 〈 [ T (∂, n)u(x) ] +, [v]+〉S = 〈M[u]+, [v]+〉S, (4.3)

whence by virtue of (2.2)

a(u, v) = 〈M[u]+, [v]+〉S. (4.4)

Substituting (4.4) into (2.10) leads to the BVI: Find ϕ ∈ K̃(S) such that

〈Mϕ, ψ − ϕ〉S ≥
∫

S1

g · (ψ − ϕ)dS, ∀ψ ∈ K̃(S), (4.5)

where, in our case, g ∈ L2(S1) is a given function (see(2.6)),

ϕ = [u]+, ψ = [v]+, (4.6)

K̃(S) :=
{
f : f ∈ H

1
2 (S), n · f ≤ 0 on S3, f = 0 on S2

}
. (4.7)
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Obviously, the closed convex cone K̃(S) coincides with the space of traces (on
S) of functions from K (see (2.11)).

In what follows we show that the BVI (4.5) is equivalent to the SVI (2.10)
in the following sense. If u is a solution of the SVI (2.10), then [u]+ = ϕ solves
the BVI (4.5) which has just been proved.

Vice versa, if ϕ is a solution of the BVI (4.5), then the vector-function

u(x) = W (ϕ) (x)− V (h) (x), x ∈ Ω+, (4.8)

where (see (3.31))

h = H−1
(
−2−1I +K∗

)
ϕ =

(
−2−1I +K

)
H−1ϕ = Mϕ (4.9)

solves the SVI (2.10). To prove this, we show that the vector-function (4.8)

meets conditions (2.5)–(2.8). Since ϕ ∈ H
1
2 (S) and h ∈ H− 1

2 (S), it is evident
that u ∈ H1(Ω+) by Theorem 3.2 and A(∂)u = 0 in Ω+. In accord with Theorem
3.5 (see the proof of Theorem 3.5) we have ϕ = [u]+S and h = [Tu]+S = Mϕ.

Obviously, condition (2.7) holds since ϕ ∈ K̃.

If in (4.5) we put ψ = ϕ ± ψ̃ ∈ K̃, where ψ̃ ∈ H̃
1
2 (S1), we arrive at the

equation

〈Mϕ, ψ̃〉S = 〈g, ψ̃〉S1 ∀ψ̃ ∈ H̃
1
2 (S1),

whence Mϕ = g on S1 follows, i.e., condition (2.6) holds as well.

Further, if in (4.5) we put ψ = ϕ± ω ∈ K̃, where ω ∈ H̃
1
2 (S3) and ω · n = 0,

we get

〈Mϕ, ω〉S = 〈g, ω〉S3 , ∀ω ∈ H̃
1
2 (S3), ω · n = 0,

which implies Mϕ − n(n · Mϕ) = 0 on S3. Thus, the first condition in (2.8)

holds automatically due to the inclusion ϕ ∈ K̃.
Let us set ψ = ϕ−n ν, where n is the outward normal vector and ν ∈ H̃

1
2 (S3)

is a non-negative scalar function .
From (4.5) then it follows

〈Mϕ,−nν〉S ≥ 0, i.e., 〈−n · Mϕ, ν〉S ≥ 0, ∀ν ∈ H̃
1
2 (S3), ν ≥ 0.

This shows that the third inequality in (2.10) holds.
Now, let h be a scalar function with the properties

0 ≤ h(x) ≤ 1, h ∈ C1(S), supp h ⊂ S3,

and put ψ = [1 + t h(x)]ϕ ∈ K̃ with t ∈ (−1, 1). From inequality (4.5) then we
get

〈Mϕ, h(x)ϕ〉S = 0,

which can be rewritten as

〈n · Mϕ, h(n · ϕ)〉S = 0 (4.10)

due to the equation Mϕ = n (n · Mϕ) on S3.
Since h is an arbitrary function with the above-mentioned properties, from

(4.10) we conclude that the fourth condition in (2.8) also holds. The above
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arguments prove that the vector u defined by (4.8) meets conditions (2.5)–(2.8)
and therefore it solves the SVI (2.10).

Thus, there holds

Lemma 4.1. The SVI (2.10) is equivalent (in the above-mentioned sense)

to the following BVI: Find ϕ ∈ K̃ such that

〈Mϕ, ψ − ϕ〉S ≥
∫

S1

g · (ψ − ϕ)dS, ∀ψ ∈ K̃(S), (4.11)

with given g ∈ L2(S1).

From the existence and uniqueness theorems for the SVI (2.10) it follows
that BVI (4.11) is also uniquely solvable. Observe that to develop the Galerkin
method for approximation of solutions by means of the boundary element pro-
cedure and to obtain the corresponding abstract error estimate we need the
coercive property of the pseudodifferential operator M on the cone K̃(S). This
property is also sine–qua–non to study the well–posedness of the BVI (4.11)
independently (without invoking the mentioned SVI) on the basis of the theory
of abstract variational inequalities in Hilbert spaces.

Note that Corollary 3.11 proves the coercivity of the operatorM on the space

H
1
2∗ (S). But, in general, the K̃(S) is not a subset of H

1
2∗ (S). However, there

holds

Lemma 4.2. The bilinear form 〈Mϕ, ψ〉S is bounded and coercive on the

space H̃
1
2∗ (S\S2)× H̃

1
2∗ (S\S2):

〈Mϕ, ψ〉S ≤ κ1 ‖ϕ; H
1
2 (S)‖ ‖ψ; H

1
2 (S)‖,

〈Mϕ, ϕ〉S ≥ κ2 ‖ϕ; H
1
2 (S)‖2

with positive κ1 and κ2 independent of ϕ and ψ.

Proof. Step 1. It is evident that for any vector-function ϕ ∈ H
1
2 (S) we have the

unique representation

ϕ(x) = ϕ(1)(x) + ϕ(0)(x), (4.12)

where

ϕ(1)(x) = ϕ(x)−
6∑

j=1

cj(ϕ)χ(j)(x), cj(ϕ) = 〈ϕ, χ(j)〉S, (4.13)

ϕ(0)(x) =
6∑

j=1

cj(ϕ)χ(j)(x); (4.14)

here
{
χ(j)

}6

j=1
is the above-introduced H0(S)-orthogonal basis in the six-di-

mensional space X(S) (traces on S of rigid displacements, i.e., vectors of type
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(3.15)). Clearly,

ϕ(1) ∈ H
1
2∗ (S), ϕ(0) ∈ X(S) = ker M⊂ H

1
2 (S). (4.15)

Note that

|cj(ϕ)| = |〈ϕ, χ(j)〉S| ≤ κj ‖ϕ; H
1
2 (S)‖, j = 1, 6, ϕ ∈ H

1
2 (S), (4.16)

with the constant κj independent of ϕ.
We put

lj(ϕ) =
∫

S2

ϕ · χ(j)dS. (4.17)

It is easy to see that if ϕ ∈ X(S), i.e., ϕ(x) =
6∑

j=1
cj(ϕ)χ(j)(x), and lk(ϕ) =

0, k = 1, 6, then ϕ(x) = 0. Indeed, from these conditions we derive

0 =
6∑

k=1

ck(ϕ)lk(ϕ) =
∫

S2

ϕ · ϕdS =
∫

S2

|ϕ|2dS,

whence ϕ = 0 on S2 and, consequently, ϕ = 0 on S (if a vector of rigid displace-
ments vanishes at three points which do not belong to the same straight line,
then it is identically zero in R3, that is, the vectors a and b in (3.15) vanish).
This implies cj(ϕ) = 0, j = 1, 6.

Step 2. Let us introduce a new norm in H
1
2 (S):

|||ϕ||| = ‖ϕ‖∗ + ‖ϕ‖∗∗, ‖ϕ‖∗ = ‖ϕ(1); H
1
2 (S)‖, ‖ϕ‖∗∗ =

6∑

j=1

|lj(ϕ)|, (4.18)

where ϕ(1) and lj(ϕ) are given by (4.13) and (4.17),

Note that ‖ · ‖∗ and ‖ · ‖∗∗ represent semi-norms in H
1
2 (S), which admits the

following estimates:

‖ϕ‖∗ = ‖ϕ(1); H
1
2 (S)‖ = ‖ϕ−

6∑

j=1

cj(ϕ)χ(j); H
1
2 (S)‖

≤ ‖ϕ; H
1
2 (S)‖+

6∑

j=1

cj(ϕ)‖χ(j); H
1
2 (S)‖

≤ M1‖ϕ; H
1
2 (S)‖, (4.19)

M1 = 1 +
6∑

j=1

κj‖χ(j); H
1
2 (S)‖, ∀ϕ ∈ H

1
2 (S),

‖ϕ‖∗∗ =
6∑

j=1

∣∣∣∣∣∣∣

∫

S2

ϕ · χ(j)dS

∣∣∣∣∣∣∣
≤

6∑

j=1

‖ϕ; H0(S)‖ ‖χ(j); H0(S)‖

= 6 ‖ϕ; H0(S)‖ ≤ 6 ‖ϕ; H
1
2 (S)‖, ∀ϕ ∈ H

1
2 (S), (4.20)



486 A. GACHECHILADZE AND D. NATROSHVILI

where the positive constant M1 does not depend on ϕ (see (4.16)).
Further, we show that the seminorm ‖ · ‖∗∗ is a norm in X(S), i.e., if ϕ(x) =

6∑
k=1

ckχ
(k)(x) and ‖ϕ‖∗∗ = 0, then ϕ = 0 on S. Indeed, these conditions yield

‖ϕ‖∗∗ =
6∑

j=1

∣∣∣∣∣∣∣

∫

S2

6∑

k=1

ckχ
(k)(x) · χ(j)(x)dS

∣∣∣∣∣∣∣
= 0,

i.e.,
∫

S2

6∑

k=1

ckχ
(k)(x) · χ(j)(x)dS = 0.

Hence
∫

S2

(
6∑

k=1

ck χ(k)

)
·



6∑

j=1

cj χ(j)


 dS =

∫

S2

|ϕ|2dS = 0,

and, consequently, ϕ = 0 on S (that is, ck = 0, k = 1, 6). This proves that
‖ · ‖∗∗ is a norm in X(S).

Since X(S) is a six-dimensional space, we have the estimate

m0 ‖ϕ; H
1
2 (S)‖ ≤ ‖ϕ‖∗∗, ∀ϕ ∈ X(S), (4.21)

with some constant m0 > 0 independent of ϕ, due to the equivalence of all
norms in finite-dimensional spaces.

Step 3. Here we show the equivalence of the norms ||| · ||| and ‖ · ; H 1
2 (S)‖ in

H
1
2 (S). On the one hand, by virtue of (4.18), (4.19), and (4.20)

|||ϕ||| ≤ M ‖ϕ; H
1
2 (S)‖, ϕ ∈ H

1
2 (S)

with M = 6 + M1.
On the other hand, with the help of (4.18), (4.20) and (4.21) we derive

|||ϕ||| = ‖ϕ‖∗ + ‖ϕ‖∗∗ ≥ ‖ϕ(1); H
1
2 (S)‖+

1

12
‖ϕ(1) + ϕ(0)‖∗∗

≥ ‖ϕ(1); H
1
2 (S)‖+

1

12
‖ϕ(0)‖∗∗ − 1

12
‖ϕ(1)‖∗∗ ≥ 1

2
‖ϕ(1); H

1
2 (S)‖

+
m0

12
‖ϕ(0); H

1
2 (S)‖ ≥ m

{
‖ϕ(1); H

1
2 (S)‖+ ‖ϕ(0); H

1
2 (S)‖

}

= m ‖ϕ; H
1
2 (S)‖, ∀ϕ ∈ H

1
2 (S),

where the constant m =min
{

1
2
, m0

12

}
> 0 is independent of ϕ.

Thus there exists positive constants m and M such that

m ‖ϕ; H
1
2 (S)‖ ≤ |||ϕ||| ≤ M‖ϕ; H

1
2 (S)‖, ∀ϕ ∈ H

1
2 (S). (4.22)

Step 4. Here we complete the proof of the lemma.
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Let ∀ϕ ∈ H̃
1
2 (S\S2) ⊂ H

1
2 (S). Applying the self-adjointness of the operator

M together with Corollary 3.11 and relations (4.15) and (4.22) we proceed as
follows:

〈Mϕ, ϕ〉S = 〈M
(
ϕ(1) + ϕ(0)

)
, ϕ(1) + ϕ(0)〉S = 〈Mϕ(1), ϕ(1) + ϕ(0)〉S

= 〈Mϕ(1), ϕ(1)〉S + 〈Mϕ(1), ϕ(0)〉S = 〈Mϕ(1), ϕ(1)〉S + 〈ϕ(1),Mϕ(0)〉S
= 〈Mϕ(1), ϕ(1)〉S ≥ c′3 ‖ϕ(1); H

1
2 (S)‖2 = c′3

{
‖ϕ(1)‖∗ + ‖ϕ‖∗∗

}2

= c′3 |||ϕ|||2 ≥ κ2 ‖ϕ; H
1
2 (S)‖2, κ2 = c′3m

2,

with the constant κ2 > 0 independent of ϕ.
The boundedness of the bilinear form 〈Mϕ, ψ〉S is a trivial consequence of

Corollary 3.11.

Now, let us recall the well-known theorem concerning an abstract variational
inequality in a Hilbert space (see, e.g., [13], Ch.1, Theorems 2.1 and 2.2).

Theorem 4.3. Let V0 be a closed convex subset of a Hilbert space V , F be a
linear bounded functional on V , and B(·, ·) be a coercive bilinear form on V ×V .
Then the problem: Find u ∈ V0 such that

B(u, v − u) ≥ F (v − u), ∀v ∈ V0,

possesses a unique solution.

From this theorem along with Lemma 4.2 we get the following assertion.

Theorem 4.4. The BVI (4.11) possesses a unique solution ϕ satisfying the
estimate

‖ϕ; H
1
2 (S)‖ ≤ κ−1

2 ‖g; L2(S1)‖ (4.23)

with the same κ2 as in Lemma 4.2.

Proof. The first part of the theorem immediately follows from Theorem 4.3,

since the cone K̃(S) is a closed convex set of the Hilbert space H
1
2∗ (S\S2) and the

linear functional defined by the right-hand side expression in (4.23) is bounded

on H̃
1
2∗ (S\S2):

∣∣∣∣∣∣∣

∫

S1

g · ψ dS

∣∣∣∣∣∣∣
≤ ‖g; L2(S1)‖ ‖ψ; H

1
2 (S1)‖

≤ ‖g; L2(S1)‖ ‖ψ; H
1
2 (S)‖ ∀ψ ∈ H

1
2∗ (S\S2). (4.24)

To prove (4.23), we proceed as follows. We put ψ = 2ϕ and ψ = 0 in (4.11)
to obtain the equality

〈Mϕ, ϕ〉S =
∫

S1

g · ϕdS.
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Further, applying the coercivity of the operatorM (see Lemma 4.2) and relation
(4.24) we arrive at inequality (4.23).

Remark 4.5. Note that we can extend the domain of the definition of the
linear functional in the right-hand side of (4.11) with respect to g. In fact,
instead of (4.11) we can consider the variational inequality

〈Mϕ, ψ − ϕ〉S ≥ 〈g, ψ − ϕ〉S1 , ∀ψ ∈ K̃(S), (4.25)

where 〈·, ·〉S1 is the duality pairing between either the spaces H− 1
2 (S1) and

H̃
1
2 (S1) if ∂S1 ∩ ∂S3 = ∅, or H̃− 1

2 (S1) and H
1
2 (S1) if ∂S1 ∩ ∂S3 6= ∅.

In this case a theorem similar to Theorem 4.4 holds with the corresponding
estimate (instead of (4.23))

‖ϕ; H
1
2 (S)‖ ≤





κ3‖g; H− 1
2 (S1)‖ for g ∈ H− 1

2 (S1),

κ3‖g; H̃− 1
2 (S1)‖ for g ∈ H̃− 1

2 (S1),

where κ3 is a positive constant independent of ϕ and g.

5. Galerkin Approximation of the BVI

In this section we treat the problem of numerical approximation of a solution
to the BVI (4.11) by Galerkin’s method.

Suppose that H̃
1
2

(h)(S\S2) is a finite dimensional subspace of H̃
1
2 (S\S2) and

let

K̃h(S) = {ψh ∈ H̃
1
2

(h)(S\S2) : ψh · n ≤ 0 on S3} (5.1)

be a convex closed nonempty subset of H̃
1
2 (S\S2). Clearly, K̃h(S) ⊂ K̃(S).

An element ϕh ∈ K̃h(S) is said to be an approximate solution of the BVI
(4.11) if

〈Mϕh, ψh − ϕh〉S ≥
∫

S1

g · (ψh − ϕh) dS ∀ψh ∈ K̃h(S). (5.2)

The existence and uniqueness theorems for the solution of the BVI (5.2) follow
immediately from Theorem 4.3. Furthermore, we have

Theorem 5.1. Let ϕh ∈ K̃h(S) be a solution of BVI (4.11) and ϕh ∈ K̃h(S)
be an approximate solution of the BVI (5.2).

Then the following abstract error estimate holds:

‖ϕ− ϕh; H
1
2 (S)‖2 ≤ c∗ inf

ψh∈K̃h(S)

{
‖ϕ− ψh; H

1
2 (S)‖2

+

∣∣∣∣∣〈Mϕ, ψh − ϕ〉S −
∫

S1

g · (ψh − ϕ)dS

∣∣∣∣∣

}
(5.3)

with some positive constant c∗ independent of g, f, and ϕh.
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Proof. Due to the coerciveness and boundedness of the operator M (see Lemma
4.2) we derive

‖ϕ− ϕh; H
1
2 (S)‖2 ≤ 1

κ2

〈M(ϕ− ϕh), ϕ− ϕh〉S

=
1

κ2

{〈M(ϕ− ϕh), ϕ− ψh〉S + 〈M(ϕ− ϕh), ψh − ϕh〉S}

≤ κ1

κ2

‖ϕ− ϕh; H
1
2 (S)‖ ‖ϕ− ψh; H

1
2 (S)‖+

1

κ2

{〈Mϕ, ψh − ϕh〉S

− 〈Mϕh, ψh − ϕh〉S} ≤ 1

2
‖ϕ− ϕh; H

1
2 (S)‖2

+
κ2

1

2κ2
2

‖ϕ− ψh; H
1
2 (S)‖2 +

1

κ2

{〈Mϕ, ψh − ϕ〉S
−〈Mϕ, ϕh − ϕ〉S − 〈Mϕh, ψh − ϕh〉S} ,

where ψh ∈ K̃h(S), and κ1 and κ2 are as in Lemma 4.2.
By virtue of (4.11) and (5.2) we conclude that

‖ϕ− ϕh; H
1
2 (S)‖2 ≤ κ2

1

κ2
2

‖ϕ− ψh; H
1
2 (S)‖2

+
2

κ2




〈Mϕ, ψh − ϕ〉S −

∫

S1

g · (ϕh − ϕ)dS −
∫

S1

g · (ψh − ϕh)dS





=
κ2

1

κ2
2

‖ϕ− ψh; H
1
2 (S)‖2 +

2

κ2




〈Mϕ, ψh − ϕ〉S −

∫

S1

g · (ψh − ϕ) dS





for all ψh ∈ K̃h(S), whence (5.3) follows with c∗ =max

{
2

κ2

,
κ2

1

κ2
2

}
.

Remark 5.2. Note that

|〈Mϕ, ψh − ϕ〉S| ≤ κ1 ‖ϕ; H
1
2 (S)‖ ‖ψh − ϕ; H

1
2 (S)‖,

∣∣∣∣∣∣∣

∫

S1

g · (ψh − ϕ) dS

∣∣∣∣∣∣∣
≤ ‖g; L2(S1)‖ ‖ψh − ϕ; L2(S1)‖,

where κ1 is independent of ϕ and ψh. Therefore (5.3) implies the inequality

‖ϕ− ϕh; H
1
2 (S)‖2 ≤ c∗∗ inf

ψh∈K̃h(S)

{
‖ϕ− ψh; H

1
2 (S)‖2

+ ‖ϕ; H
1
2 (S)‖ ‖ψh − ϕ; H

1
2 (S)‖+ ‖g; L2(S1)‖ ‖ψh − ϕ; L2(S1)‖

}

with c∗∗ = max

{
2

κ2

,
κ2

1

κ2
2

,
2κ1

κ2

}
.
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Remark 5.3. Observe that the expression under modulus in the second term
in the right-hand side of (5.3) is, actually, supported on the sub-manifold S3

since Mϕ = g on S1, and ψh and ϕh vanish on S2.
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Paris, 1972.

8. C. Eck and W. L. Wendland, A residual-based error estimator for BEM-discretizations
of contact problems. (To appear)

9. C. Eck, O. Steinbach, and W. L. Wendland, A symmetric boundary element method
for contact problems with friction. Math. Comp. Simulation 50(1999), 1–4, 43–61.

10. G. Eskin, Boundary value problems for elliptic pseudodifferential equations. Translation
of Math. Monographs, Amer. Math. Soc. 52, Providence, Rhode Island, 1981.

11. G. Fichera, Problemi elastostatici con vincoli unilaterali: il problema di Signorini com
ambigue condicioni al contorno. Accad. Naz. Lincei 8(1963–1964), 91–140.

12. G. Fichera, Existence theorems in elasticity. Handb. der Physik, Bd. 6/2, Springer-
Verlag, Heidelberg, 1973.

13. R. Glowinski, J. L. Lions, and R. Tremolieres, Numerical analysis of variational
inequalities. North–Holand, Amsterdam, 1981.

14. G. Grubb, Pseudodifferential boundary problems in Lp–spaces. Comm. Part. Diff. Equa-
tions 15(1990), 289–340.

15. H. Han and G. C. Hsiao, The boundary element method for a contact problem. Theory
and Applications of Boundary Element Methods, Proc. 2nd China–Jap. Symp., Beijing
1988, 33–38, 1990.

16. H. Han, A boundary element method for Signorini problem in linear elasticity. Numer.
Math. J. Chinese Univ. 1(1992), No. 1, 66–74.

17. H. Han, A boundary element procedure for the Signorini problem in three–dimensional
elasticity. Numer. Math. J. Chinese Univ. 3(1994), No. 1, 104–117.

18. G. C. Hsiao and W. L. Wendland, A finite element method for some integral equa-
tions of the first kind. J. Math. Anal. Appl. 58(1977), 449–481.



BOUNDARY VARIATIONAL INEQUALITY APPROACH 491

19. D. Kinderlehrer, Remarks about Signorini’s problem in linear elasticity. Ann. Scuola
Norm. Sup. Pisa, Cl. Sci. (4) vol. VIII, 4(1981), 605–645.

20. V. D. Kupradze, T. G. Gegelia, M. O. Basheleishvili, and T. V. Burchuladze,
Three-dimensional problems of the mathematical theory of elasticity and thermoelasticity.
(Russian) Nauka, Moscow, 1976; English translation: North-Holland Series in Applied
Mathematics and Mechanics 25, North-Holland Publishing Company, Amsterdam-New
York-Oxford, 1979.

21. J. L. Lions and G. Stampacchia, Variational inequalities. Comm. Pure Appl. Math.
20(1976), 493–519.
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