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ON VECTOR SUMS OF MEASURE ZERO SETS

A. KHARAZISHVILI

Abstract. We consider the behaviour of measure zero subsets of a vector
space under the operation of vector sum. The question whether the vec-
tor sum of such sets can be nonmeasurable is discussed in connection with
the measure extension problem, and a certain generalization of the classical
Sierpiński result [3] is presented.
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It is a well-known fact that some nice descriptive properties of subsets of a
topological vector space are not preserved under the operation of vector sum.
The following two examples are typical in this respect.

Example 1. There exist two Borel subsets X and Y of the real line R, such
that X + Y is not Borel (obviously, X + Y is an analytic subset of R).

Example 2. There exist two sets X ⊂ R and Y ⊂ R, both of Lebesgue
measure zero, such that X + Y is not Lebesgue measurable.

In connection with Example 1, see, e.g., [1] or [2], Example 2 is due to
Sierpiński (see his early paper [3]). He gave this example starting with a simple
observation that there are two Lebesgue measure zero sets A ⊂ R and B ⊂ R
for which A + B = R, and utilizing some properties of Hamel bases in R.

This paper is devoted primarily to some generalizations of Example 2 for
nonzero σ-finite quasi-invariant measures in vector spaces. In particular, we
shall demonstrate that, for certain extensions of quasi-invariant measures, the
phenomenon described in Example 2 can always be realized.

As a rule, the measures considered below are assumed to be defined on some
σ-algebras of subsets of a given uncountable vector space E (over the field Q
of all rationals) and are supposed to be quasi-invariant under the group of all
nondegenerate rational homotheties of this space. More precisely, we shall say
that a mapping h : E → E is a nondegenerate rational homothety of E if h can
be represented as

h(x) = qx + x0 (x ∈ E),

where q is a fixed nonzero rational number and x0 is a fixed element of E. The
family of all above-mentioned homotheties forms a group with respect to the
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usual composition operation. We denote this group by the symbol HE (notice
that HE is not commutative).

If µ is a measure on E, then we put:
dom(µ) = the domain of µ;
I(µ) = the σ-ideal of all µ-measure zero subsets of E.
We shall say that µ is HE-quasi-invariant if both classes of sets dom(µ) and

I(µ) are invariant under all transformations from the group HE.
Let µ be a nonzero σ-finite HE-quasi-invariant measure on E. Motivated

by Example 2, we may pose the following question: do there exist two sets
X ∈ I(µ) and Y ∈ I(µ) for which X + Y 6∈ dom(µ)? It can easily be shown
that, in general, the answer to this question is negative. Moreover, various
examples of a situation where

(∀X ∈ I(µ))(∀Y ∈ I(µ))(X + Y ∈ I(µ))

can be constructed without any difficulties (see, e.g., [4]). Also, as demonstrated
in the same monograph [4], the question posed above can be reduced to another
much easier problem. More precisely, we have the following statement.

Theorem 1. Let E be an uncountable vector space (over Q). Then, for
any nonzero σ-finite HE-quasi-invariant measure µ on E, the following eight
assertions are equivalent:

1) there exist two sets X ∈ I(µ) and Y ∈ I(µ) such that X + Y 6∈ I(µ);
2) there exists a set X ∈ I(µ) such that X + X 6∈ I(µ);
3) there exists a set X ∈ I(µ) such that linQ(X) 6∈ I(µ) where linQ(X) stands

for the linear hull (over Q) of X;
4) there exists a linearly independent (over Q) set X ∈ I(µ) such that

linQ(X) 6∈ I(µ);
5) there exist two sets X ∈ I(µ) and Y ∈ I(µ) such that X + Y 6∈ dom(µ);
6) there exists a set X ∈ I(µ) such that X + X 6∈ dom(µ);
7) there exists a set X ∈ I(µ) such that linQ(X) 6∈ dom(µ);
8) there exists a linearly independent (over Q) set X ∈ I(µ) such that

linQ(X) 6∈ dom(µ).

The proof is presented in [4]. Notice that the argument is essentially based
on some properties of the so-called Ulam transfinite matrix (see, e.g., [6]).

The equivalence of assertions 1)–8) shows us that, in order to obtain a positive
answer to the question formulated above, we need only the existence of two sets
X ∈ I(µ) and Y ∈ I(µ) for which X + Y 6∈ I(µ). Clearly, the question will
be solved positively if the existence of two sets X ∈ I(µ) and Y ∈ I(µ) is
established, for which X + Y = E.

Our goal is to demonstrate that there always exists an HE-quasi-invariant
extension µ′ of µ such that the vector sum of some two µ′-measure zero subsets
of E is identical with the whole space E. For this purpose, several auxiliary
notions and propositions are necessary.
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Let E be an arbitrary set, G be a group of transformations of E and let Y
be a subset of E. We say (cf. [5]) that Y is G-absolutely negligible (in E)
if, for any σ-finite G-quasi-invariant measure µ on E, there exists a G-quasi-
invariant measure µ′ on E extending µ and such that µ′(Y ) = 0. The concept
of an absolutely negligible set is thoroughly discussed in monograph [5] where
a significant role of this concept is emphasized for various questions concerning
extensions of quasi-invariant (invariant) measures.

Below, the symbol ω denotes the first infinite ordinal (cardinal) and ω1 stands
for the first uncountable ordinal (cardinal).

Let E be a set and let {Xi : i ∈ I} be a partition of E.
A set X ⊂ E is called a partial selector of {Xi : i ∈ I} if card(X ∩Xi) ≤ 1

for all indices i ∈ I. Accordingly, a set X ⊂ E is called a selector of the same
partition if card(X ∩Xi) = 1 for all i ∈ I.

Our starting point is the following lemma (cf. [5]).

Lemma 1. Let E be a set of cardinality ω1, let G be a group of transforma-
tions of E, such that card(G) = ω1 and

card({x ∈ E : g(x) = h(x)}) ≤ ω

for any two distinct transformations g ∈ G and h ∈ G. Further, let {Gξ : ξ <
ω1} be an increasing (with respect to inclusion) ω1-sequence of subgroups of G
and let {Xξ : ξ < ω1} be a partition of E, such that:

1) card(Gξ) ≤ ω for all ordinals ξ < ω1;
2) card(Xξ) ≤ ω for all ordinals ξ < ω1;
3) ∪{Gξ : ξ < ω1} = G;
4) for each ξ < ω1, the set Xξ is Gξ-invariant.
Then every partial selector of {Xξ : ξ < ω1} is a G-absolutely negligible subset

of E.

A detailed proof of this proposition can be found in [5].

Let (G, +) be a commutative group. The group of all translations of G is
obviously isomorphic to G, and we can identify these two groups in our further
considerations.

Lemma 2. Let (G, +) be a commutative group of cardinality ω1 and let X be
an arbitrary uncountable subset of G. Then there exists a G-absolutely negligible
set Y ⊂ G such that X + Y = G.

Proof. Let {xξ : ξ < ω1} be an injective family of all elements of G. Put E = G
and equip E with the group of all translations of G. Let {Gξ : ξ < ω1} and
{Xξ : ξ < ω1} be two families satisfying the conditions of Lemma 1. We now
define an injective ω1-sequence {yξ : ξ < ω1} of elements of E. Suppose that,
for an ordinal ξ < ω1, the partial ξ-sequence {yζ : ζ < ξ} has already been
defined. For each ordinal ζ < ξ, let Xη(ζ) be such that yζ ∈ Xη(ζ). We denote

Zξ = ∪{Xη(ζ) : ζ < ξ}
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and observe that card(Zξ) ≤ ω. Since the given set X is uncountable, we must
have

(E \ Zξ) ∩ (xξ −X) 6= ∅.

Choose any element of (E \ Zξ) ∩ (xξ −X) and denote it by yξ. Continuing in
this manner, we will be able to construct the desired ω1-sequence {yξ : ξ < ω1}
of elements of E. Now, putting

Y = {yξ : ξ < ω1}
and taking into account the relation

(∀ξ < ω1)(xξ ∈ yξ + X),

we see that

X + Y = E = G.

Also, in accordance with Lemma 1, the set Y is G-absolutely negligible in E.
This completes the proof of Lemma 2.

Remark 1. It is not hard to verify that Lemma 2 remains true for an arbitrary
group G of cardinality ω1. In addition to this, suppose that E is a vector space
over Q with card(E) = ω1 and let G = HE. Then card(G) = ω1, too, and

card({x ∈ E : g(x) = h(x)}) ≤ 1

for any two distinct transformations g ∈ G and h ∈ G. The argument used in
the proof of Lemma 2 shows us that, for every uncountable set X ⊂ E, there
exists an HE-absolutely negligible set Y ⊂ E for which we have X + Y = E.

Theorem 2. Let (G, ·) be a group of cardinality ω1 (identified with the group
of all its left translations). Then there exist two G-absolutely negligible sets
X ⊂ G and Y ⊂ G such that X · Y = G. In particular, for any nonzero
σ-finite left G-quasi-invariant (respectively, left G-invariant) measure µ on G,
there exists a left G-quasi-invariant (respectively, left G-invariant) measure µ′

on G extending µ and satisfying the relations

X ∈ I(µ′), Y ∈ I(µ′), X · Y = G 6∈ I(µ′).

Proof. Take any uncountable G-absolutely negligible set X ⊂ G (the existence
of such a set easily follows from Lemma 1). In virtue of Lemma 2 (cf. Remark 1
above), there exists a G-absolutely negligible set Y ⊂ G satisfying the equality
X · Y = G.

Remark 2. It would be interesting to generalize Theorem 2 to those groups
whose cardinalities are greater than ω1. In this connection, it can be shown
that if G is an uncountable group and card(G) is a regular cardinal, then, for
each set X ⊂ G with card(X) = card(G), there exists a G-absolutely negligible
set Y ⊂ G such that X · Y = G (the argument is very similar to the proof of
Lemma 2).
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Lemma 3. Let E be a vector space (over Q) and let

E = E1 + E2 (E1 ∩ E2 = {0})
be a representation of E in the form of the direct sum of two vector subspaces
E1 and E2 (over Q again). Suppose also that a set Y ⊂ E1 is HE1-absolutely
negligible in E1. Then the set Y + E2 turns out to be HE-absolutely negligible
in E.

The proof of this statement is presented in monograph [5].

Lemma 4. Let E be a vector space (over Q). Then, for each uncountable set
X ⊂ E, there exists an HE-absolutely negligible set Y ⊂ E such that X+Y = E.

Proof. We may assume, without loss of generality, that card(X) = ω1. Denote
by E1 the vector subspace of E (over Q again) generated by X. Evidently, we
have card(E1) = ω1. Let us represent our E in the form of the direct sum of
two vector subspaces:

E = E1 + E2 (E1 ∩ E2 = {0}).
Applying Lemma 2 (see also Remark 1), we can find an HE1-absolutely negligible
set Y1 ⊂ E1 such that X + Y1 = E1. Let us put

Y = Y1 + E2.

Then, in view of Lemma 3, the set Y is HE-absolutely negligible in E. Further-
more, we may write

X + Y = X + Y1 + E2 = E1 + E2 = E,

and the lemma is proved.

From Lemma 4 we easily obtain the following statement.

Theorem 3. Let E be a vector space (over Q) and let µ be a nonzero σ-finite
HE-quasi-invariant measure on E. Then, for each uncountable set X ∈ I(µ),
there exist an HE-quasi-invariant measure µ′ on E extending µ and a set Y ∈
I(µ′), for which we have X + Y = E 6∈ I(µ′).

Proof. Let Y be an HE-absolutely negligible set in E such that X + Y = E
(the existence of Y was established in Lemma 4). The absolute negligibility of
Y implies that there exists an HE-quasi-invariant extension µ′ of µ for which
µ′(Y ) = 0. Thus, we see that the measure µ′ and the set Y are the required
ones.

Finally, taking into account Theorem 1, we conclude that the following result
is valid.

Theorem 4. Let E be an uncountable vector space (over Q) and let µ be a
nonzero σ-finite HE-quasi-invariant measure on E. Then there exists an HE-
quasi-invariant measure µ′ on E extending µ such that, for some sets X ∈ I(µ′)
and Y ∈ I(µ′), we have X + Y 6∈ dom(µ′).
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The latter theorem can be regarded as a generalized version of Example 2 for
nonzero σ-finite quasi-invariant measures in vector spaces. It would be interest-
ing to extend this theorem to a wider class of uncountable groups equipped with
nonzero σ-finite left quasi-invariant (in particular, left invariant) measures.
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