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Abstract. Necessary and sufficient conditions, which govern a trace inequal-
ity for one-sided potentials in the “diagonal” case, are established. An ap-
plication to the existence of positive solutions of a certain nonlinear integral
equation is presented.
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Introduction

It is well-known that the trace inequality for the Riesz potential
∫

Rn

|Iαf(x)|pv(x) dx ≤ c
∫

Rn

|f(x)|p dx, 0 < α < n, 1 < p < ∞,

is of great importance for the spectral properties of the Schrödinger operator
and has numerous applications to partial differential equations, Sobolev spaces,
complex analysis, etc. (see [1]–[7]). The pointwise conditions derived in [3], [6],
[7] turned out to be of particular interest for existence theorems and estimates
of solutions of certain semilinear elliptic equations.

The trace inequality for the Riemann–Liouville transform Rα in the case
where p = 2 and α > 1/2 was derived in [8]. For the extention of this result
when 1 < p < ∞ and α > 1/p we refer to [9] (for more general transforms see
[10]).

In the present paper criteria for the trace inequality for the Riemann–Liouville
and Weyl operators in a more complicated case 0 < α < 1/p, 1 < p < ∞, are
established. Some applications solvability problems of certain nonlinear integral
equation are presented.

For the basic definitions and auxilliary results concerning fractional integrals
on the line we refer to the monorgaph [11].
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1. Trace Inequalities

In this section we establish necessary and sufficient conditions for the validity
of the trace inequality for the Riemann–Liouville and Weyl operators. Two-
weighted inequalities are also derived.

Let ν be a locally finite Borel measure on Ω ⊂ R. Denote by Lp
ν(Ω) (1 <

p < ∞) a Lebesgue space with respect to the measure ν consisting of all ν
-measurable functions f for which

‖f‖Lp
ν(Ω) =

( ∫

Ω

|f(x)|p dν(x)
)1/p

< ∞.

If dν(x) = v(x) dx, with a locally integrable a.e. positive function v on Ω, then
we use the notation Lp

ν(Ω) ≡ Lp
v(Ω). If dν(x) = dx is a Lebesgue measure, then

we assume that Lp
ν(Ω) ≡ Lp(Ω).

Let

Rαf(x) =

x∫

0

f(y)(x− y)α−1 dy, x > 0, α > 0,

Wαf(x) =

∞∫

x

f(y)(y − x)α−1 dy, x > 0, α > 0

for measurable f : R+ → R1.

Theorem 1.1. Let 1 < p < ∞ and let 0 < α < 1
p
. Then the inequality

∞∫

0

|Rαf(x)|pv(x) dx ≤ c0

∞∫

0

|f(x)|p dx (1.1)

holds if and only if Wαv ∈ Lp′
loc(R+) and

Wα[Wαv]p
′
(x) ≤ cWαv(x) a.e. (1.2)

To prove this theorem we need

Proposition 1.1. Let 1 < p < ∞, and let 0 < α < 1
p
. If (1.1) is fulfilled,

then

x+h∫

x

v(y) dy ≤ c h1−αp (1.3)

for all positive x and h.

Proof. By the duality argument, (1.1) is equivalent to the inequality

‖Wαf‖Lp′ (R+) ≤ c
1/p
0 ‖f‖

Lp′
v1−p′ (R+)

. (1.4)
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Replaing here f(y) = χ(x,x+h)(y)v(y) for 0 < h ≤ x, we get

x∫

x−h

( x+h∫

x

v(z)(z − y)α−1 dz
)p′

dy ≤ cp′−1
0

x+h∫

x

v(y) dy.

Hence (1.3) holds for all x and h with the condition 0 < h ≤ x. Now let
0 < x < h < ∞. Then taking into account the condition 0 < α < 1

p
we obtain

x+h∫

x

v(y) dy =
∞∑

k=0

x+ h

2k∫

x+ h

2k+1

v(y) dy

=
∞∑

k=0

( x+ h

2k∫

x+ h

2k+1

v(y) dy
) (

h

2k+1

)αp−1( h

2k+1

)1−αp

≤ sup
t,a
t≤a

(( a+t∫

a

v(y) dy
)
tαp−1

)
h1−αp

∞∑

k=0

2(k+1)(αp−1) ≤ c h1−αp.

Therefore that (1.3) holds. Note that c=c02
(1−α)p max

{
1, 2αp−1

1−2αp−1

}
in (1.3).

Proof of Theorem 1.1. Necessity. Let us first show that, from (1.1) it follows

that Wαv ∈ Lp′
loc(R+). For f(y) = v(y)χ

(x,x+h)
(y) (x ∈ R+ and h > 0) from (1.1)

we have

x+h∫

x

(
Wα(vχ

(x,x+h)
)
)p′

(y) dy ≤ c

x+h∫

x

v(y) dy. (1.5)

Let v1(y) = χ
(x,x+2h)

v(y) and v2(y) = χ
R+\(x,x+2h)

(y)v(y), where x ∈ R+ and

h > 0. We have
x+h∫

x

(Wαv)p′(y) dy ≤ c(I1(x) + I2(x)),

where

I1(x) =

x+h∫

x

(Wαv1)
p′(y) dy and I2(x) =

x+h∫

x

(Wαv2)
p′(y) dy.

From (1.5) we get

I1(x) ≤ c

x+2h∫

x

v(y) dy < ∞.

Thus Wαv1 ∈ Lp′
loc(R+).
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Note that for z > x + 2h and x < y < x + h we have z − x ≤ 2(z − y). Now
using (1.3), we come to the estimate

(Wαv2)(y) =

∞∫

x+2h

(z − y)α−1v(z) dz ≤ 21−α

∞∫

x+h

(z − x)α−1v(z) dz

= 21−α

∞∫

h

tα−2
( x+t∫

x

v(z) dz
)

dt ≤ c 21−α

∞∫

h

tα−1−αp dt < ∞.

Therefore Wαv2 ∈ Lp′
loc(R+). Thus Wαv ∈ Lp′

loc(R+).
Now we prove that (1.1) yields (1.2).
In the sequel the following equality

Wαv(x) = (1− α)

∞∫

0

τα−1
( x+τ∫

x

v(y) dy
)

dτ

τ
(1.6)

will be used.
Thus

Wα

[
(Wαv)p′

]
(x) = (1− α)

∞∫

0

τα−1
( x+τ∫

x

(Wαv)p′(y) dy
)

dτ

τ
. (1.7)

Let v1 and v2 be defined as before. By (1.5) we have

x+h∫

x

(Wαv1)
p′(y) dy ≤ c

x+2h∫

x

v(y) dy. (1.8)

Then from (1.7) and (1.8) we derive the estimate

Wα

[
(Wαv1)

p′
]
(x) ≤ c

∞∫

0

τα−1
( x+2τ∫

x

v(t) dt
)

dτ

τ
= cWαv(x). (1.9)

It is easy to see that for t ∈ (x, x + h)

(Wαv2)(t) ≤ c

∞∫

h

rα−1
( x+r∫

x

v(y) dy
)

dr

r
.

Therefore (1.7) yields

Wα

[
(Wαv2)

p′
]
(x) ≤ c

∞∫

0

tα
( ∞∫

t

rα−1
( x+r∫

x

v(y) dy
)

dr

r

)p′
dt

t
.
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Integration by parts on the right-hand side of the last inequality leads to the
estimate

Wα

[
(Wαv2)

p′
]
(x)

≤ c

∞∫

0

rα

( ∞∫

r

τα−1
( x+τ∫

x

v(y) dy
)

dτ

τ

)p′−1(
rα

x+r∫

x

v(y) dy
)

dr

r
. (1.10)

Now recall that estimate (1.3) holds by Proposition 1.1. From inequality
(1.3), by a simple computation, we obtain

Wα

[
(Wαv2)

p′
]
(x) ≤ c

∞∫

0

hα−1
( x+h∫

x

v(y) dy
)

dh

h
.

Thus

Wα

[
(Wαv2)

p′
]
(x) ≤ c(Wαv)(x) a.e. (1.11)

Finally (1.9) and (1.11) imply (1.2).

Remark 1.1. It follows from the proof of necessity of the Theorem 1.1 that if
c0 is the best constant in (1.2), then for c from (1.3) we have

c = cp′−1
0 2p′−α + 2p′−1(1− α)p′ p′c1

α(αp− α)p′−1
,

where c1 = c02
(1−α)p max

{
1, 2αp−1

1−2αp−1

}
.

Sufficiency of Theorem 1.1. In order to show the sufficiency, we shall need the
following lemmas.

Lemma 1.1. Let 1 < p < ∞ and 0 < α < 1. Then there exists a positive
constant c such that for all f ∈ L1

loc(R+), f ≥ 0, and for arbitrary x ∈ R+ the
following inequality holds:

(Rαf(x))p ≤ cRα

(
(Rαf)p−1f

)
(x) (1.12)

(for c we have c = 2
1

p−1 if p ≤ 2 and c = 2p(p−1) if p > 2).

Proof. First we assume that Rαf(x) < ∞ and prove (1.12) for such x. We also
assume that

Vαf(x) ≤ (Rαf(x))p,
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where Vαf(x) ≡ Rα((Rαf)p−1f)(x), otherwise (1.12) is obvious for c = 1. Now
let us assume that 1 < p ≤ 2. Then we have

(Rαf(x))p =

x∫

0

(x− y)α−1f(y)
( x∫

0

(x− z)α−1f(z) dz
)p−1

dy

≤
x∫

0

(x− y)α−1f(y)
( y∫

0

(x− z)α−1f(z) dz
)p−1

dy

+

x∫

0

(x− y)α−1f(y)
( x∫

y

(x− z)α−1f(z) dz
)p−1

dy

≡ I1(x) + I2(x).

It is obvious that if z < y < x, then y − z ≤ x− z. Consequently,

I1(x) ≤
x∫

0

(x− y)α−1f(y)
( y∫

0

(y − z)α−1f(z) dz
)p−1

dy = Vαf(x).

Now we use Hölder’s inequality with respect to the exponents 1
p−1

, 1
2−p

and

measure dσ(y) = (x− y)α−1f(y) dy. We have

I2(x) ≤
( x∫

0

(x− y)α−1f(y) dy
)2−p

×
( x∫

0

( x∫

y

(x− z)α−1f(z) dz
)
(x− y)α−1f(y) dy

)p−1

= (Rαf(x))2−p(J(x))p−1,

where

J(x) ≡
x∫

0

( x∫

y

(x− z)α−1f(z) dz
)
(x− y)α−1f(y) dy.

Using Tonelli’s theorem we have

J(x) =

x∫

0

(x− z)α−1f(z)
( z∫

0

(x− y)α−1f(y) dy
)

dz.

Further, it is obvious that the following simple inequality

z∫

0

(x− y)α−1f(y) dy ≤
( z∫

0

(x− y)α−1f(y) dy
)p−1

(Rαf(x))2−p

≤ (Rαf(z))p−1(Rαf(x))2−p

holds, where z < x.
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Taking into account the last estimate, we obtain

J(x) ≤
( x∫

0

(x− z)α−1f(z)(Rαf(z))p−1 dz
)
(Rαf(x))2−p

= (Vαf(x))(Rαf(x))2−p.

Thus

I2(x) ≤ (Rαf(x))2−p(Rαf(x))(2−p)(p−1)(Vαf(x))p−1

= (Rαf(x))p(2−p)(Vαf(x))p−1.

Combining the estimates for I1 and I2 we derive

(Rαf(x))p ≤ Vαf(x) + (Rαf(x))p(2−p)(Vαf(x))p−1.

As we have assumed that Vαf(x) ≤ (Rαf(x))p, we obtain

Vαf(x) = (Vαf(x))2−p(Vαf(x))p−1 ≤ (Vαf(x))p−1(Rαf(x))p(2−p).

Hence

(Rαf(x))p ≤ (Vαf(x))p−1(Rαf(x))p(2−p) + (Vαf(x))p−1(Rαf(x))p(2−p)

= 2(Vαf(x))p−1(Rαf(x))p(2−p).

Using the fact Rαf(x) < ∞ we deduce that

(Rαf(x))p−1 ≤ 2
1

p−1 (Vαf(x)).

Now we shall deal with the case p > 2. Let us assume again that

Vαf(x) ≤ (Rαf(x))p,

where

Vαf(x) ≡ Rα

[
(Rαf)p−1f

]
(x).

As p > 2 we have

(Rαf(x))p =

x∫

0

f(y)(x− y)α−1
( x∫

0

(x− z)α−1f(z) dz
)p−1

dy

≤ 2p−1

x∫

0

f(y)(x− y)α−1
( y∫

0

(x− z)α−1f(z) dz
)p−1

dy

+ 2p−1

x∫

0

f(y)(x− y)α−1
( x∫

y

(x− z)α−1f(z) dz
)p−1

dy

≡ 2p−1I1(x) + 2p−1I2(x).
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It is clear that if z < y < x, then (x − z)α−1 ≤ (y − z)α−1. Therefore I1(x) ≤
Vαf(x). Now we estimate I2(x). We obtain

( x∫

y

(x− z)α−1f(z) dz
)p−1

=
( x∫

y

(x− z)α−1f(z) dz
)p−2( x∫

y

(x− z)α−1f(z) dz
)

≤ (Rαf(x))p−2

x∫

y

(x− z)α−1f(z) dz.

Using Tonelli’s theorem and the last estimate we have

I2(x) ≤ (Rαf(x))p−2

x∫

0

f(y)(x− y)α−1
( x∫

y

(x− z)α−1f(z) dz
)

dy

= (Rαf(x))p−2

x∫

0

f(z)(x− z)α−1
( z∫

0

(x− y)α−1f(y) dy
)

dz

≤ (Rαf(x))p−2

x∫

0

f(z)(x− z)α−1
( z∫

0

(z − y)α−1f(y) dy
)

dz.

Using Hölder’s inequality with respect to the exponents p−1 and p−1
p−2

we derive

x∫

0

(x− z)α−1f(z)
( z∫

0

(z − y)α−1f(y) dy
)

dz ≤
( x∫

0

(x− z)α−1f(z) dz
) p−2

p−1

×
( x∫

0

( z∫

0

(z − y)α−1f(y) dy
)p−1

(x− z)α−1f(z) dz

) 1
p−1

= (Rαf(x))
p−2
p−1 (Vαf(x))

1
p−1 .

Combining these estimates we obtain

(Rαf(x))p ≤ 2p−1Vαf(x) + 2p−1(Rαf(x))
p(p−2)

p−1 (Vαf(x))
1

p−1 .

From the inequality Vαf(x) ≤ (Rαf(x))p it follows that

Vαf(x) = (Vαf(x))
1

p−1 (Vαf(x))
p−2
p−1 ≤ (Vαf(x))

1
p−1 (Rαf(x))

p(p−2)
p−1 .

Hence

(Rαf(x))p ≤ 2p−1
(
(Vαf(x))

1
p−1 (Rαf(x))

p(p−2)
p−1 + (Vαf(x))

1
p−1 (Rαf(x))

p(p−2)
p−1

)

= 2p(Vαf(x))
1

p−1 (Rαf(x))
p(p−2)

p−1 .

The last estimate yields

(Rαf(x))p ≤ 2p(p−1)(Vαf(x)),

where 2 < p < ∞.
Next we shall show that (1.12) holds for x satisfying Rαf(x) = ∞.
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Let kn(x, y) = χ
(0,x)

(y) min{(x− y)α−1, n}, where n ∈ N . It is easy to verify

that (1.12) holds if we replace k(x, y) = χ
(0,x)

(y)(x − y)α−1 by kn(x, y). Let

I = (a, b), where 0 < a < b < ∞. Then

∫

I

kn(x, y)f(y)dy < ∞ and sup
I,n

∫

I

kn(x, y)f(y) dy = ∞.

Taking into account the above arguments we obtain

( x∫

0

χ
I
(y)kn(x, y)f(y) dy

)p

≤ c

( x∫

0

χ
I
(y)

( y∫

0

χ
I
(z)kn(y, z)f(z) dz

)p−1

f(z)kn(x, z) dy

)
.

(In the last inequality we can assume that f has a support in I. In this case
x∫
0

kn(x, y)f(y) dy < ∞.) The constant c is defined as follows: c = 2
1

p−1 if

1 < p ≤ 2 and c = 2p(p−1) if p > 2. Taking the supremum with respect to all I
and passing n to +∞, we obtain (1.12) for all x.

Remark 1.2. Let 1 < p < ∞, 0 < α < 1, kn(x, y) = min{n, (x − y)α−1}.
Then for all f ∈ L1

loc(R+) (f ≥ 0) and for all x ∈ R+ we have the inequality

( x∫

0

kn(x, y)f(y) dy
)p

≤ c

x∫

0

kn(x, y)
( y∫

0

kn(x, y)f(z) dz
)p−1

f(y) dy,

where c is the same as in inequlity (1.12).

Lemma 1.2. Let 0 < α < 1, v be a locally integrable a.e. positive function
on R+. Let there exist a constant c > 0 such that the inequality

‖Rαf‖Lp
v1

(R+) ≤ c1‖f‖Lp(R+), v1(x) =
[
(Wαv)(x)

]p′
(1.13)

holds for all f ∈ Lp(R+). Then

‖Rαf‖Lp
v(R+) ≤ c2‖f‖Lp(R+), f ∈ Lp(R+),

where c2 = c
1/p′
1 c1/p and c is the same as in (1.12).

Proof. Let f ≥ 0. Using Lemma 1.1, Tonelli’s theorem and Hölder’s inequality
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we have
∞∫

0

(Rαf(x))pv(x) dx

≤ c

∞∫

0

Rα

[
f(Rαf)p−1

]
(x)v(x) dx = c

∞∫

0

(Rαf)p−1(y)f(y)(Wαv)(y) dy

≤ c
( ∞∫

0

(f(y))p dy
) 1

p
( ∞∫

0

(Rαf(y))pv1(y) dy
) 1

p′

= c‖f‖Lp(R+)‖Rαf‖p−1
Lp

v1
(R+) ≤ cp−1

1 c‖f‖Lp(R+)‖f‖p−1
Lp(R+) = cp−1

1 c‖f‖p
Lp(R+).

Hence

‖Rαf‖Lp
v(R+) ≤ c

1
p′
1 c

1
p‖f‖Lp(R+).

Lemma 1.3. Let 1 < p < ∞, 0 < α < 1, Wαv ∈ Lp′
loc, and let

Wα(Wαv)p′(x) ≤ c3(Wαv)(x) a.e.

Then we have

‖Rαf‖Lp
v1

(R+) ≤ c4‖f‖Lp(R+), f ∈ Lp(R+), (1.14)

where v1(x) = [(Wαv)(x)]p
′
and c4 = c c3 (c is from (1.12)).

Proof. Let f ≥ 0 and let I ⊂ R+ be a support of f , where I has a form
I = (a, b), 0 < a < b < ∞. Let kn(x, y) = min{(x − y)α−1, n}. Then using
Lemma 1.1, Remark 1.1 and Tonelli’s theorem we have

∞∫

0

( x∫

0

kn(x, y)f(y) dy
)p

v1(x) dx

≤ c

∞∫

0

( x∫

0

kn(x, y)
( y∫

0

kn(y, z)f(z) dz
)p−1

f(y) dy

)
v1(x) dx

= c

∞∫

0

f(y)
( y∫

0

kn(y, z)f(z) dz
)p−1( ∞∫

y

kn(x, y)v1(x) dx
)

dy

≤ c‖f‖Lp(R+)

( ∫

I

( y∫

0

kn(y, z)f(z) dz
)p(

Wα[(Wαv)p′ ](y)
)p′

dy

)1/p′

≤ c c3‖f‖Lp(R+)

( ∫

I

( y∫

0

kn(y, z)f(z) dz
)p

[(Wαv)(y)]p
′
dy

)1/p′

.

The last expression is finite as
y∫

0

kn(y, z)f(z) dz ≤ n
∫

I

f(z) dz ≤ n|I| 1
p′ ‖f‖Lp(R+) < ∞
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and ∫

I

(
(Wαv)(y)

)p′
dy < ∞.

Consequently,
( ∫

I

( x∫

0

kn(x, y)f(y) dy
)p

v1(x) dx

)1/p

≤ c3 c‖f‖Lp(R+),

where c is from (1.12). Finally, we have (1.14).

Combining the above-provedLemmaswe obtain sufficiency ofTheorem 1.1.

The next theorem concerns the boundedness of Wα and is proved just in the
same way as the previous result.

Theorem 1.2. Let 1 < p < ∞ and 0 < α < 1/p. Then the inequality

‖Wαf‖Lp
v(R+) ≤ c‖f‖Lp(R+), f ∈ Lp(R+),

holds if and only if Rαv ∈ Lp′
loc(R+) and

Rα[Rαv]p
′
(x) ≤ cRαv(x)

for a.a. x ∈ R+.

Let us consider the Riemann–Liouville and Weyl operators:

Rαf(x) =

x∫

−∞
(x− y)α−1f(y) dy, x ∈ R,

Wαf(x) =

∞∫

x

(y − x)α−1f(y) dy, x ∈ R.

The following statements follow analogously and their proofs are omitted.

Theorem 1.3. Let 1 < p < ∞ and 0 < α < 1/p. Assume that v is a weight

on R. Then Rα is bounded from Lp(R) to Lp
v(R) if and only if Wαv ∈ Lp′

loc(R)
and

Wα[Wαv]p
′
(x) ≤ cWαv(x)

for a.a. x ∈ R.

Theorem 1.4. Let 1 < p < ∞ and 0 < α < 1/p. Then the inequality

‖Wαf‖Lp
v(R) ≤ c‖f‖Lp(R), f ∈ Lp(R),

holds if and only if Rαv ∈ Lp′
loc(R) and

Rα[Rαv]p
′
(x) ≤ cRαv(x)

for a.a. x ∈ R.
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Let us now consider the case of two weights.
Let µ and ν be locally finite Borel measures on R+ and let

Rα,µf(x) =
∫

[0,x]

f(y)(x− y)α−1 dµ(y),

Wα,νf(x) =
∫

[x,∞)

f(y)(y − x)α−1 dν(y),

where x ∈ R+ and α ∈ (0, 1).

Theorem 1.5. Let 1 < p < ∞ and 0 < α < 1. Assume that the measures µ

and ν satisfy the conditions Wα,ν(1) ∈ Lp′
µ,loc(R+) and

B ≡ sup
x,r

x>0,r>0

( ∞∫

r

ν(It(x))

t1−α

dt

t

)1/p( r∫

0

µ(It(x))

tα−1

dt

t

)1/p′

< ∞, (1.15)

where Ir(x) is the interval of the type [x, x + r). Then the inequality

∞∫

0

|Rα,µf(x)|p dν(x) ≤ c0

∞∫

0

|f(x)|p dµ(x), f ∈ Lp
µ(R+), (1.16)

holds if and only if

Wα,µ

[
Wα,ν(1)

]p′
(x) ≤ cWα,ν(1)(x) (1.17)

for µ-a.a. x.

Sufficiency of this theorem follows using the following Lemmas:

Lemma 1.4. Let 1 < p < ∞ and 0 < α < 1. Then there exists a positive
constant c such that for all f ∈ L1

µ,loc(R+), f ≥ 0, and for arbitrary x ∈ R+ the
inequality

(
Rα,µf(x)

)p ≤ cRα,µ

(
(Rα,µf)p−1f

)
(x) (1.18)

holds (for c we have c = 2
1

p−1 if p ≤ 2 and c = 2p(p−1) if p > 2).

Lemma 1.5. Let 0 < α < 1. Suppose that there exists a positive constant
c1 > 0 such that the inequality

‖Rα,µf‖Lp
ν1

(R+) ≤ c1‖f‖Lp
µ(R+), dν1(x) =

[
(Wα,ν(1))(x)

]p′
dµ(x) (1.19)

holds for all f ∈ Lp
µ(R+). Then

‖Rα,µf‖Lp
ν(R+) ≤ c2‖f‖Lp

µ(R+), f ∈ Lp
µ(R+).

where c2 = c
1/p′
1 c1/p and c is the same as in (1.18).
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Lemma 1.6. Let 1 < p < ∞, 0 < α < 1, Wα,ν(1) ∈ Lp′
µ,loc(R+), and let

Wα,µ(Wα,ν(1))p′(x) ≤ c3(Wα,ν(1))(x) µ-a.e.

Then we have

‖Rα,µf‖Lp
ν1

(R+) ≤ c4‖f‖Lp
µ(R+), f ∈ Lp

µ(R+),

where dν1(x) = [(Wα,ν(1))(x)]p
′
and c4 = cc3 (c is from (1.18)).

These lemmas can be proved in the same way as Lemmas 1.1, 1.2 and 1.3
above.

Taking into account the proof of Theorem 1.1, we easily obtain necessity.
Moreover, for the constant c in condition (1.17) we have

c = 2p′−1
(
cp′−1
0 21−α + (1− α)p′2(1−α)p′Bp′p′

)
,

where c0 and B are from (1.16) and (1.15), respectively.
Finally we note that the following proposition holds for the Volterra-type

integral operator

Kµf(x) =
∫

[0,x]

f(y)k(x, y) dµ(y),

where µ is a locally finite Borel measure on R+ and the kernel k satisfies the
condition: there exists a positive constant b such that for all x, y, z, with
0 < y < z < x < ∞, the inequality

k(x, y) ≤ bk(z, y) (1.20)

is fulfilled.

Theorem 1.6. Let 1 < p < ∞, the kernel k satisfy condition (1.20). Let ν
and µ be locally finite Borel measures on R+. Suppose that K ′

ν(1) ∈ Lp′
µ (R+),

where

K ′
νg(x) =

∫

[x,∞)

g(y)k(y, x) dν(y).

Then the condition

K ′
µ

[
K ′

ν(1)
]p′

(x) ≤ cK ′
ν(1)(x), µ-a.e.

implies the boundedness of the operator Kµ from Lp
µ(R+) to Lp

ν(R+).

The proof of this statement follows in the same way as sufficiency of Theo-
rem 1.5 and therefore is omitted.
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2. Application to the Existence of Positive Solutions of
Nonlinear Integral Equations

The goal of this section is to give a characterization of the existence of positive
solutions of some Volterra-type nonlinear integral equations.

First let us consider the integral equation

ϕ(x) =

∞∫

x

ϕp(t)

(t− x)1−α
dt +

∞∫

x

v(t)

(t− x)1−α
dt, 0 < α < 1 (2.1)

with given non-negative v ∈ Lloc(R+).

Theorem 2.1. Let 1 < p < ∞, 0 < α < 1, p′ = p
p−1

, and Ap = (p′−1)(p′)−p.

(i) If Wαv ∈ Lp
loc(R+) and the inequality

Wα[Wαv]p(x) ≤ ApWαv(x) a.e. (2.2)

holds, then (2.1) has a non-negative solution ϕ ∈ Lp
loc(R+). Moreover,

(Wαv)(x) ≤ ϕ(x) ≤ p′(Wαv)(x).
(ii) If 0 < α < 1

p′ and (2.1) has a non-negative solution in Lp
loc(R+), then

Wαv ∈ Lp
loc(R+) and

Wα[(Wαv)p](x) ≤ cWαv(x) a.e. (2.3)

for some constant c > 0.

Proof. We shall use the following iteration procedure. Let ϕ0 = 0, and let for
k = 0, 1, 2, . . .

ϕk+1(x) = Wα(ϕp
k)(x) + Wαv(x). (2.4)

By induction it is easy to verify that

Wαv(x) ≤ ϕk(x) ≤ ϕk+1(x), k = 0, 1, 2, . . . (2.5)

From (2.4) we shall inductively derive an estimate of ϕk(x).
Let

ϕk(x) ≤ ckWαv(x) (2.6)

for some k = 0, 1, . . . . It is obvious that c1 = 1. Then (2.2), (2.3) and (2.6)
yield

ϕk+1(x) ≤ (Apc
p
k + 1)(Wαv)(x),

where Ap is the constant from (2.2). Thus ck+1 = Apc
p
k + 1 for k = 1, 2, . . . .

Now by induction and the definition of Ap we deduce that the sequence (ck)k is
increasing. Indeed, it is obvious that c1 < c2. Let ck < ck+1. Then

ck+1(x) = Apc
p
k + 1 < Apc

p
k+1 + 1 = ck+2.

It is also clear that (ck)k is bounded from the above by p′ and consequently it
converges. As the equation z = Apz

p +1 has only one solution, x = p′, it follows
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that lim
k→∞

ck = p′. On the other hand, the sequence (ϕk)k is nondecreasing and

by (2.6) we get

ϕ(x) = lim
k→∞

ϕk(x) ≤ p′(Wαv)(x).

By our assumption Wαv ∈ Lp
loc(R+) and from the preceding estimate we con-

clude that ϕ ∈ Lp
loc(R+). Moreover, (Wαv)(x) ≤ ϕ(x) ≤ p′(Wαv)(x).

Now we prove the statement (ii). Suppose (2.1) has a solution ϕ ∈ Lp
loc(R

+).
We have

Wα(ϕp)(x) ≤ ϕ(x) < ∞ a.e. (2.7)

Hence Wα(ϕp) ∈ Lp
loc(R+). Then from (2.7) we get

Wα

[
Wα(ϕp)(x)

]p
(x) ≤ Wα(ϕp)(x) a.e.

Applying Theorem 1.1, we deduce that

‖Rαf‖
Lp′

ρ
≤ ‖f‖Lp′ ,

where ρ(x) = ϕp(x). But (Wαv)(x) ≤ ϕ(x). Due to (2.7) we get

‖Rαf‖
Lp′

ρ1

≤ c‖f‖Lp′

with ρ1(x) = (Wαv)p(x). Using Lemma 1.2 we arrive at the inequality

‖Rαf‖
Lp′

v
≤ ‖f‖Lp′ .

Applying Theorem 1.1 we come to condition (2.3).

Analogously, we can prove

Theorem 2.2. Let 1 < p < ∞, 0 < α < 1, and let Ap = (p′ − 1)(p′)−p.
(i) If Rαv ∈ Lp

loc(R+) and the inequality

Rα[Rαv]p(x) ≤ ApRαv(x) a.e.

holds, then the integral equation

ϕ(x) = Rα(ϕp)(x) + Rα(v)(x) (2.8)

has a non-negative solution ϕ ∈ Lp
loc(R+). Moreover, Rαv(x) ≤ ϕ(x) ≤

p′(Rαv)(x).
(ii) If 0 < α < 1

p′ and (2.8) has a non-negative solution in Lp
loc(R+), then

Rαv ∈ Lp
loc(R+) and

Rα[(Rαv)p](x) ≤ cRαv(x) a.e.

for some constant c > 0.
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