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ON THE ξ-EXPONENTIALLY ASYMPTOTIC STABILITY OF
LINEAR SYSTEMS OF GENERALIZED ORDINARY


DIFFERENTIAL EQUATIONS


M. ASHORDIA AND N. KEKELIA


Abstract. Necessary and sufficient conditions and effective sufficient condi-
tions are established for the so-called ξ-exponentially asymptotic stability of
the linear system


dx(t) = dA(t) · x(t) + df(t),
where A : [0, +∞[→ Rn×n and f : [0, +∞[→ Rn are respectively matrix-
and vector-functions with bounded variation components, on every closed
interval from [0, +∞[ and ξ : [0, +∞[→ [0, +∞[ is a nondecreasing function
such that lim


t→+∞
ξ(t) = +∞.
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Let the components of matrix-functions A : [0, +∞[→ Rn×n and vector-
functions f : [0, +∞[→ Rn have bounded total variations on every closed seg-
ment from [0, +∞[ .


In this paper, sufficient (necessary and sufficient) conditions are given for
the so-called ξ-exponentially asymptotic stability in the Lyapunov sense for the
linear system of generalized ordinary differential equations


dx(t) = dA(t) · x(t) + df(t). (1)


The theory of generalized ordinary differential equations enables one to inves-
tigate ordinary differential, difference and impulsive equations from the unified
standpoint. Quite a number of questions of this theory have been studied suf-
ficiently well ([1]–[3], [5], [6], [8], [10], [11]).


The stability theory has been investigated thoroughly for ordinary differential
equations (see [4], [7] and the references therein). As to the questions of stability
for impulsive equations and for generalized ordinary differential equations they
are studied, e.g., in [3], [9], [10] (see also the references therein).


The following notation and definitions will be used in the paper:
R = ] −∞, +∞[ , R+ = [0, +∞[ , [a, b] and ]a, b[ (a, b ∈ R) are, respectively,


closed and open intervals.
Re z is the real part of the complex number z.
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Rn×m is the space of all real n×m-matrices X = (xij)
n,m
i,j=1 with the norm


‖X‖ = max
j=1,...,m


n∑


i=1


|xij|, |X| = (|xij|)n,m
i,j=1,


Rn×m
+ =


{
X = (xij)


n,m
i,j=1 : xij ≥ 0 (i = 1, . . . , n; j = 1, . . . , m)


}
.


The components of the matrix-function X are also denoted by [x]ij (i =
1, . . . , n; j = 1, . . . , m).


On×m (or O) is the zero n×m-matrix.
Rn = Rn×1 is the space of all real column n-vectors x = (xi)


n
i=1.


If X ∈ Rn×n, then X−1 and det(X) are, respectively, the matrix inverse to
X and the determinant of X. In is the identity n× n-matrix; diag(λ1, . . . , λn)
is the diagonal matrix with diagonal elements λ1, . . . , λn.


r(H) is the spectral radius of the matrix H ∈ Rn×n.
+∞∨
0


(X) = sup
b∈R+


b∨
0
(X), where


b∨
0
(X) is the sum of total variations on [0, b] of the


components xij (i = 1, . . . , n; j = 1, . . . , m) of the matrix-function X : R+ →
Rn×m; V (X)(t) = (v(xij)(t))


n,m
i,j=1, where v(xij)(0) = 0 and v(xij)(t) =


t∨
0
(xij)


for 0 < t < +∞ (i = 1, . . . , n; j = 1, . . . , m).
X(t−) and X(t+) are the left and the right limit of the matrix-function


X : R+ → Rn×m at the point t; d1X(t) = X(t)−X(t−), d2X(t) = X(t+)−X(t).
BVloc(R+,Rn×m) is the set of all matrix-functions X : R+ → Rn×m of bounded


total variation on every closed segment from R+.
Lloc(R+,Rn×m) is the set of all matrix-functions X : R+ → Rn×m such that


their components are measurable and integrable functions in the Lebesgue sense
on every closed segment from R+.


C̃loc(R+,Rn×m) is the set of all matrix-functions X : R+ → Rn×m such that
their components are absolutely continuous functions on every closed segment
from R+.


s0 : BVloc(R+,R) → BVloc(R+,R) is the operator defined by


s0(x)(t) ≡ x(t)− ∑


0<τ≤t


d1x(τ)− ∑


0≤τ<t


d2x(τ).


If g : R+ → R is a nondecreasing function x : R+ → R and 0 ≤ s < t < +∞,
then


t∫


s


x(τ) dg(τ) =
∫


]s,t[


x(τ) dg1(τ)−
∫


]s,t[


x(τ) dg2(τ)


+
∑


s<τ≤t


x(τ) d1g(τ)− ∑


s≤τ<t


x(τ) d2g(τ),


where gj : R+ → R (j = 1, 2) are continuous nondecreasing functions such that
g1(t)−g2(t) ≡ s0(g)(t), and


∫
]s,t[


x(τ) dgj(τ) is the Lebesgue–Stiltjes integral over
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the open interval ]s, t[ with respect to the measure corresponding to the function


gj (j = 1, 2) (if s = t, then
t∫
s


x(τ) dg(τ) = 0).


A matrix-function is said to be nondecreasing if each of its components is
nondecreasing.


If G = (gik)
`,n
i,k=1 : R+ → R`×n is a nondecreasing matrix-function, X =


(xik)
n,m
i,k=1 : R+ → Rn×m, then


t∫


s


dG(τ) ·X(τ) =
( n∑


k=1


t∫


s


xkj(τ) dgik(τ)
)`,m


i,j=1
for 0 ≤ s ≤ t < +∞,


S0(G)(t) ≡
(
s0(gik)(t)


)`,n


i,k=1
.


If Gj : R+ → R`×n (j = 1, 2) are nondecreasing matrix-functions, G(t) ≡
G1(t)−G2(t) and X : R+ → Rn×m, then


t∫


s


dG(τ) ·X(τ) =


t∫


s


dG1(τ) ·X(τ)−
t∫


s


dG2(τ) ·X(τ) for 0 ≤ s ≤ t < +∞.


A and B : BVloc(R+,Rn×n) × BVloc(R+,Rn×m) → BVloc(R+,Rn×m) are the
operators defined, respectively, by


A(X,Y )(t) = Y (t) +
∑


0<τ≤t


d1X(τ) ·
(
In − d1X(τ)


)−1
d1Y (τ)


− ∑


0≤τ<t


d2X(τ) ·
(
In + d2X(τ)


)−1
d2Y (τ) for t ∈ R+


and


B(X, Y )(t) = X(t)Y (t)−X(0)Y (0)−
t∫


0


dX(τ) · Y (τ) for t ∈ R+.


L : BV 2
loc(R+,Rn×n) → BVloc(R+,Rn×n) is an operator given by


L(X, Y )(t) =


t∫


0


d
(
X(τ) + B(X, Y )(τ)


)
·X−1(τ) for t ∈ R+.


We will use the following properties of these operators (see [2]):


B
(
X,B(Y, Z)


)
(t) ≡ B(XY,Z)(t),


B
(
X,


∫


0


dY (s) · Z(s)
)
(t) ≡


t∫


0


dB(X, Y )(s) · Z(s).







648 M. ASHORDIA AND N. KEKELIA


Under a solution of the system (1) we understand a vector-function x ∈
BVloc(R+,Rn) such that


x(t) = x(s) +


t∫


s


dA(τ) · x(τ) + f(t)− f(s) (0 ≤ s ≤ t < +∞).


Note that the linear system of ordinary differential equations


dx


dt
= P (t)x + q(t) (t ∈ R+), (2)


where P ∈ Lloc(R+,Rn×n) and q ∈ Lloc(R+,Rn), can be rewritten in form (1) if
we set


A(t) ≡
t∫


0


P (τ) dτ, f(t) ≡
t∫


0


q(τ) dτ.


We assume that A ∈ BVloc(R+,Rn×n), f ∈ BVloc(R+,Rn), A(0) = On×n and


det
(
In + (−1)j djA(t)


)
6= 0 for t ∈ R+ (j = 1, 2).


These conditions guarantee the unique solvability of the Cauchy problem for
system (1) (see [11]).


Definition 1. Let ξ : R+ → R+ be a nondecreasing function such that


lim
t→+∞ ξ(t) = +∞. (3)


Then the solution x0 of system (1) is called ξ-exponentially asymptotic stable if
there exists a positive number η such that for every ε > 0 there exists a positive
number δ = δ(ε) such that an arbitrary solution x of system (1), satisfying the
inequality ‖x(t0)− x0(t0)‖ < δ for some t0 ∈ R+, admits the estimate


‖x(t)− x0(t)‖ < ε exp
(
− η


(
ξ(t)− ξ(t0)


))
for t ≥ t0.


Stability, uniform stability, asymptotic stability and exponentially asymptotic
stability are defined just in the same way as for systems of ordinary differential
equations, i.e., when A(t) ≡ diag(t, . . . , t) (see, e.g., [4] or [7]). Note that the
exponentially asymptotic stability is a particular case of the ξ-exponentially
asymptotic stablility if we assume ξ(t) ≡ t.


Definition 2. System (1) is called stable in this or another sense if every
solution of this system is stable in the same sense.


We will use the following propositions.


Proposition 1. System (1) is ξ-exponentially asymptotically stable (unifor-
mly stable) if and only if its corresponding homogeneous system


dx(t) = dA(t) · x(t) (10)


is ξ-exponentially asymptotically stable (uniformly stable).
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Proposition 2. System (10) is ξ-exponentially asymptotically stable (unifor-
mly stable) if and only if its zero solution is ξ-exponentially asymptotically stable
(uniformly stable).


Proposition 3. System (10) is ξ-exponentially asymptotically stable (unifor-
mly stable) if and only if there exist positive numbers ρ and η such that


‖U(t, s)‖ ≤ ρ exp
(
− η


(
ξ(t)− ξ(s)


))
for t ≥ s ≥ 0


(
‖U(t, s)‖ ≤ ρ for t ≥ s ≥ 0


)
,


where U is the Cauchy matrix of system (10).


The proofs of these propositions are analogous to those for ordinary differen-
tial equations.


Therefore, the ξ-exponentially asymptotic stability (uniform stability) is not
the property of a solution of system (1). It is the common property of all
solutions and a vector-function f does not influence on this property. Hence
the ξ-exponentially asymptotic stability (uniform stability) is the property of
the matrix-function A and the following definition is natural.


Definition 3. The matrix-function A is called ξ-exponentially asymptoti-
cally stable (uniformly stable) if the system (10) is ξ-exponentially asymptoti-
cally stable (uniformly stable).


Theorem 1. Let the matrix-function A0 ∈ BVloc(R+,Rn×n) be ξ-exponenti-
ally asymptotically stable,


det
(
In + (−1)j djA0(t)


)
6= 0 for t ∈ R+ (j = 1, 2) (4)


and


lim
t→+∞


ν(ξ)(t)∨


t


A(A0, A− A0) = 0, (5)


where ξ : R+ → R+ is a nondecreasing function satisfying condition (3),


ν(ξ)(t) = sup
{
τ ≥ t : ξ(τ) ≤ ξ(t+) + 1


}
.


Then the matrix-function A is ξ-exponentially asymptotically stable as well.


To prove the theorem we will use the following lemma.


Lemma 1. Let the matrix-function A0 ∈ BVloc(R+,Rn×n) satisfy condition
(4). Let, moreover, the following conditions hold:


(a) the Cauchy matrix U0 of the system


dx(t) = dA0(t) · x(t) (6)


satisfies the inequality


|U0(t, t0)| ≤ Ω exp
(
− ξ(t) + ξ(t0)


)
(t ≥ t0) (7)
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for some t0 ∈ R+, where Ω ∈ Rn×n
+ , and ξ is a function from BVloc(R+,R)


satisfying (3);
(b) there exists a matrix H ∈ Rn×n


+ such that


r(H) < 1 (8)


and


t∫


t0


exp
(
ξ(t)− ξ(τ)


)
|U0(t, τ)| dV


(
A(A0, A− A0)


)
(τ) < H for t ≥ t0. (9)


Then an arbitrary solution x of system (1) admits an estimate


|x(t)| ≤ R|x(t0)| exp
(
− ξ(t) + ξ(t0)


)
for t ≥ t0, (10)


where R = (In −H)−1Ω.


Proof. Let A = (aik)
n
i,k=1, A0 = (a0ik)


n
i,k=1, U0 = (u0ik)


n
i,k=1, H = (hik)


n
i,k=1, and


x = (xi)
n
i=1 be an arbitrary solution of system (10).


According to the variation of constants formula and properties of the Cauchy
matrix U0 (see [11]) we have


x(t) = U0(t, t0)x(t0) +


t∫


t0


U0(t, s) d
(
A(s)− A0(s)


)
· x(s)


− ∑


t0<s≤t


d1U0(t, s) · d1


(
A(s)− A0(s)


)
· x(s)


+
∑


t0≤s<t


d2U0(t, s) · d2


(
A(s)− A0(s)


)
· x(s)


= U0(t, t0)x(t0) +


t∫


t0


U0(t, s) d
(
A(s)− A0(s)


)
· x(s)


+
∑


t0<s≤t


U0(t, s) d1A(s) ·
(
In − d1A0(s)


)−1
d1


(
A(s)− A0(s)


)
· x(s)


− ∑


t0≤s<t


U0(t, s) d2A(s) ·
(
In + d2A0(s)


)−1
d2


(
A(s)− A0(s)


)
· x(s).


Therefore


x(t) = U0(t, t0)x(t0) +


t∫


t0


U(t, τ) dA(A0, A− A0)(τ) · x(τ) for t ≥ t0. (11)


Let


yk(t) = max
{


exp
(
ξ(τ)− ξ(t0)


)
· |xk(τ)| : t0 ≤ τ ≤ t


}
,


y(t) =
(
yk(t)


)n


k=1
.
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Then
∣∣∣∣∣


n∑


j,k=1


t∫


t0


u0ij(t, τ)xk(τ) d(bjk)(τ)


∣∣∣∣∣ ≤
n∑


j,k=1


t∫


t0


|u0ij(t, τ)| |xk(τ)| dv(bjk)(τ)


≤
n∑


k,j=1


t∫


t0


exp
(
− ξ(τ) + ξ(t0)


)
|u0ij(t, τ)| dv(bjk)(τ) · yk(t)


for t ≥ t0, (i = 1, . . . , n),


where bjk(t) ≡ A(a0jk, ajk − a0jk)(t) (j, k = 1, . . . , n). From this and (11) we
have


exp
(
ξ(t)− ξ(t0)


)
· |xi(t)| ≤


n∑


k=1


exp
(
ξ(t)− ξ(t0)


)
|u0ik(t, t0)| |xk(t0)|


+
n∑


k,j=1


t∫


t0


exp
(
ξ(t)− ξ(τ)


)
|u0ij(t, τ)| dv(bjk)(τ) · yk(t)


for t ≥ t0, (i = 1, . . . , n).


By this, (7) and (9) we obtain


y(t) ≤ Ω|x(t0)|+ Hy(t) for t ≥ t0.


Hence


(In −H)y(t) ≤ Ω|x(t0)| for t ≥ t0. (12)


On the other hand, by (8) the matrix In −H is nonsingular and the matrix
(In−H)−1 is nonnegative since H is a nonnegative matrix. From this, (12) and
the definition of y we have


y(t) ≤ (In −H)−1Ω|x(t0)| for t ≥ t0


and


|x(t)| ≤ (In −H)−1Ω|x(t0)| exp
(
− ξ(t) + ξ(t0)


)
for t ≥ t0.


Therefore estimate (10) is proved.


Proof of Theorem 1. By the ξ-exponentially asymptotic stability of the matrix-
function A0 and Proposition 3 there exist positive numbers η and ρ0 such that
the Cauchy matrix U0 of system (6) satisfies the estimate


|U0(t, τ)| ≤ R0 exp
(
− 2η


(
ξ(t)− ξ(τ)


))
for t ≥ τ ≥ 0, (13)


where R0 is an n× n matrix whose every component equals ρ0.
Let


ε = (4nρ0)
−1


(
exp(η)− 1


)
exp(−2η). (14)
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By (5) there exists t∗ ∈ R+ such that


ν(ξ)(t)∨


t


A(A0, A− A0) < ε for t ≥ t∗. (15)


On the other hand, by (13) we have


t∫


t0


exp
(
η
(
ξ(t)− ξ(τ)


))
|U0(t, τ)| dV (B)(τ) ≤ J (t) (t ≥ t0) (16)


for every t0 ≥ 0, where B(t) ≡ A(A0, A− A0)(t) and


J (t) ≡ R0


t∫


t0


exp
(
− η


(
ξ(t)− ξ(τ)


))
dV (B)(τ).


Let k(t) be the integer part of ξ(t)− ξ(t0) for every t ≥ t0,


Ti =
{
τ ≥ t0 : ξ(t0) + i ≤ ξ(τ) < ξ(t0) + i + 1


}
(i = 0, . . . , k(t)),


where ki = k(ti) (i = 0, . . . , k(t)), the points t0, t1, . . . , tk(t) are defined by


t0 = sup T0, ti =







ti−1 if Ti = ∅
sup Ti if Ti 6= ∅


(i = 1, . . . , k(t)).


Let us show that


ti ≤ ν(ξ)(ti−1) (i = 1, . . . , k(t)). (17)


If Ti = ∅, then (17) is evident.
Let now Ti 6= ∅. It is sufficient to show that


Ti ⊂ Qi, (18)


where


Qi =
{
τ : ξ(τ) < ξ(ti−1+) + 1


}
.


It is easy to verify that


ξ(ti−1+) ≥ ξ(t0) + i. (19)


Indeed, otherwise there exists δ > 0 such that


ξ(ti−1 + s) < ξ(t0) + i for 0 ≤ s ≤ δ.


On the other hand, by the definition of ti−1 we have


ξ(t0) + i− 1 ≤ ξ(ti−1−)


and therefore


ξ(t0) + i− 1 ≤ ξ(ti−1 + s) < ξ(t0) + i for 0 ≤ s ≤ δ.


But this contradicts the definition of ti−1.
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Let τ ∈ Ti. Then from (19) and the inequality ξ(τ) < ξ(t0) + i + 1 it follows
that ξ(τ) < ξ(ti−1+) + 1, τi ∈ Qi. Hence (17) is proved.


Let t0 ≥ t∗. Then according to (15) and (17) we get


J (t) ≤ R0 exp
(
− η


(
ξ(t)− ξ(t0)


)) 1+k(t)∑


i=1


ti∫


ti−1


exp
(
η
(
ξ(τ)− ξ(t0)


))
dV (B)(τ)


= R0 exp
(
− η


(
ξ(t)− ξ(t0)


))( 1+k(t)∑


i=1, i=1+ki


ti∫


ti−1


exp
(
η
(
ξ(τ)− ξ(t0)


))
dV (B)(τ)


+
1+k(t)∑


i=1, i 6=1+ki


ti∫


ti−1


exp
(
η
(
ξ(τ)− ξ(t0)


))
dV (B)(τ)


)


≤ R0 exp
(
− η


(
ξ(t)− ξ(t0)


))( 1+k(t)∑


i=1, i=1+ki


exp(η i)
[
V (B)(ti)− V (B)(ti−1)


]


+
1+k(t)∑


i=1, i 6=1+ki


exp(η i)
[
V (B)(ti)− V (B)(ti−1)


]


+
1+k(t)∑


i=1, i 6=1+ki


exp
(
(1 + ki)η


)
d1B(ti)


)


≤ εR0 exp
(
− η


(
ξ(t)− ξ(t0)


))( 1+k(t)∑


i=1


exp(η i) +
1+k(t)∑


i=1, i 6=1+ki


exp
(
(1 + ki)η


))


≤ 2εR0 exp
(
− η


(
ξ(t)− ξ(t0)


)) 1+k(t)∑


i=1


exp(η i)


= 2εR0 exp
(
− η


(
ξ(t)− ξ(t0)


))
exp(η)


(
exp


(
(1 + k(t))η


)
− 1


)(
exp(η)− 1


)−1


≤ 2εR0 exp
(
− ηk(t)


)
exp


(
(2 + k(t))η


)(
exp(η)− 1


)


= 2εR0 exp(2η)
(


exp(η)− 1
)−1


.


From (14), (16) and (20) it follows that inequality (9) holds for t0 ≥ t∗, where
H ∈ Rn×n is the matrix whose every component equals 1


2n
. On the other hand,


it can be easily shown that


r(H) <
1


2
.


Consequently, by Lemma 1 an arbitrary solution x of the system (10) admits
an estimate


‖x(t)‖ ≤ ρ exp
(
− η


(
ξ(t)− ξ(t0)


))
for t ≥ t0 ≥ t∗,


where ρ > 0 is a constant independent of t0.
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Note that a similar theorem is proved in [7] for the case of ordinary differential
equations.


Corollary 1. Let the components aik (i, k = 1, . . . , n) of the matrix-function
A satisfy the conditions


1 + (−1)j djaii(t) 6= 0 for t ∈ R+ (i = 1, . . . , n; j = 1, 2), (20)


lim
t→+∞


ν(ξ)(t)∨


t


A(aii, aik) = 0 (i, k = 1, . . . , n), (21)


and


aii(t)− aii(τ) ≤ −η
(
ξ(t)− ξ(τ)


)
for t ≥ τ ≥ 0 (i = 1, . . . , n), (22)


where η > 0, ξ : R+ → R+ is a nondecreasing function satisfying condition
(3), and ν(ξ) : R+ → R+ is the function defined as in Theorem 1. Then the
matrix-function A is ξ-exponentially asymptotically stable.


Proof. Corollary 1 follows from Theorem 1 if we assume that


A0(t) ≡ diag
(
a11(t), . . . , ann(t)


)
.


Indeed, by the definition of the operator A we have


[
A(A0, A− A0)(t)


]
ik


= aik(t) +
∑


0<τ≤t


d1aii(τ)


1− d1aii(τ)
d1aik(τ)


− ∑


0≤τ<t


d2aii(τ)


1 + d2aii(τ)
d2aik(τ) = A(aii, aik)(t)


for t ∈ R+ (i 6= k; i, k = 1, . . . , n)


and [
A(A0, A− A0)(t)


]
ii


= 0 for t ∈ R+ (i = 1, . . . , n).


Therefore, by (21) and (22) the matrix-function A is ξ-exponentially asymptot-
ically stable.


Corollary 2. Let the matrix-function P ∈ Lloc(R+,Rn×n) be ξ-exponentially
asymptotically stable and


lim
t→+∞


ξ(t)+1∨


t


(A− A0) = 0 for t ∈ R+,


where A0(t) ≡
t∫
0


P (τ) dτ , ξ : R+ → R+ is a continuous nondecreasing func-


tion satisfying condition (3). Then the matrix-function A is ξ-exponentially
asymptotically stable as well.
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Proof. Corollary 2 immediately follows from Theorem 1 if we observe that


A(A0, A− A0)(t) = A(t)− A0(t) (t ∈ R+)


in this case and, moreover,


ν(ξ)(t) = ξ(t) + 1 (t ∈ R+)


because ξ is a nondecreasing continuous function.


Theorem 2. The matrix-function A is ξ-exponentially asymptotically stable
if and only if there exist a positive number η and a nonsingular matrix-function
H ∈ BVloc(R+,Rn×n) such that


sup
{
‖H−1(t)H(s)‖ : t ≥ s ≥ 0


}
< +∞ (23)


and


+∞∨


0


Bη(H,A) < +∞, (24)


where


Bη(H, A)(t) ≡
t∫


0


exp
(
− ηξ(τ)


)
d


[
exp


(
ηξ(τ)


)
H(τ)


+ exp
(
ηξ(τ)


)
H(τ)A(τ)−


τ∫


0


d
(


exp
(
ηξ(s)


)
H(s)


)
· A(s)


]
. (25)


Proof. Let U and U∗ be the Cauchy matrices of systems (10) and


dy(t) = dA∗(t) · y(t),


respectively, where A∗(t) = L(exp(ηξ(·))H,A)(t). Then by the definition of the
operator L and by the equality


U(t, s) = exp
(
− η


(
ξ(t)− ξ(s)


))
H−1(t)U∗(t, s)H(s) for t, s ∈ R+


we obtain that


exp
(
η
(
ξ(τ)− ξ(s)


))
U(t, s) = H−1(t)H(s)


+H−1(t)


t∫


s


exp
(
η
(
ξ(τ)− ξ(s)


))
dBη(H, A)(τ) · U(τ, s) for t, s ∈ R+.


Hence


W (t, s) = H−1(t)H(s) + H−1(t)d1Bη(H, A)(t) ·W (t, s)


+ H−1(t)


t∫


s


dG(τ) ·W (τ, s) for t, s ∈ R+, (26)
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where


W (t, s) = exp
(
η
(
ξ(t)− ξ(s)


))
U(t, s), G(t) = Bη(H, A)(t−).


On the other hand by (23), (24) and by the equalities


det
(
In + (−1)j djA


∗(t)
)


= exp
(
(−1)jnη djξ(t)


)
det


(
H(t) + (−1)j djH(t)


)


× det
(
In + (−1)j djA(t)


)
det


(
H−1(t)


)
for t ∈ R+ (j = 1, 2)


and


In + (−1)jH−1(t) djBη(H, A)(t)


= H−1(t)
(
In + (−1)j djA


∗(t)
)
H(t) for t ∈ R+ (j = 1, 2)


there exists a positive number r0 such that


det
(
In + (−1)jH−1(t) djBη(H, A)(t)


)
6= 0 for t ∈ R+ (j = 1, 2) (27)


and
∥∥∥∥
(
In + (−1)jH−1(t) djBη(H, A)(t)


)−1
∥∥∥∥ < r0 for t ∈ R+ (j = 1, 2). (28)


From (26), by (23), (27) and (28) we get


‖W (t, s)‖ ≤ r0


(
ρ + ρ1


t∫


s


‖W (τ, s)‖ d‖V (G)(τ)‖
)


for t ≥ s ≥ 0,


where


ρ = sup
{
‖H−1(t)H(s)‖ : t ≥ s


}
, ρ1 = ρ‖H−1(0)‖.


Hence, according to the Gronwall inequality ([11])


‖W (t, s)‖ ≤ M < +∞ for t ≥ s ≥ 0,


where


M = r0 exp
(
r0ρ1


+∞∨


0


Bη(H,A)
)
.


Therefore


‖U(t, s)‖ ≤ M exp
(
− η


(
ξ(t)− ξ(s)


))
for t ≥ s ≥ 0,


i.e., the matrix-function A is ξ-exponentially asymptotically stable.
Let us show the necessity. Let the matrix-function A is ξ-exponentially


asymptotically stable. Then there exist positive numbers η and ρ such that


‖Z(t)Z−1(s)‖ ≤ ρ exp
(
− η


(
ξ(t)− ξ(s)


))
for t ≥ s ≥ 0, (29)


where Z (Z(0) = In) is the fundamental matrix of system (10).
Let


H(t) ≡ exp
(
− ηξ(t)


)
Z−1(t).
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Then according to (25), (29) and the equality


Z−1(t) = In − Z−1(t)A(t) +


t∫


0


dZ−1(τ) · A(τ) for t ∈ R+ (30)


(see [11]) we have


‖H−1(t)H(s)‖ = ‖Z(t)Z−1(s)‖ exp
(
η
(
ξ(t)− ξ(s)


))
≤ ρ for t ≥ s ≥ 0


and


Bη(H, A)(t) = Bη


(
exp(−ηξ)Z−1, A


)
(t) = 0 for t ∈ R+.


Therefore conditions (23) and (24) are fulfilled.


Remark 1. If in Theorem 2 the function ξ : R+ → R+ is continuous, then
condition (24) can be rewritten as


∥∥∥∥∥


+∞∫


0


dV
(
I(H, A) + η diag(ξ, . . . , ξ)


)
(t) · |H(t)|


∥∥∥∥∥ < +∞.


Corollary 3. Let the matrix-function Q ∈ BVloc(R+,Rn×n) be uniformly
stable and


det
(
In + (−1)j djQ(t)


)
6= 0 for t ∈ R+ (j = 1, 2). (31)


Let, moreover, there exist a positive number η such that


∥∥∥∥∥


+∞∫


0


|Z−1(t)| dV
(
Gη(ξ,Q, A)


)
(t)


∥∥∥∥∥ < +∞ (32)


where Z (Z(0) = In) is the fundamental matrix of the system


dz(t) = dQ(t) · z(t), (33)


and


Gη(ξ, Q, A)(t) ≡ A(Q,A−Q)(t) + ηs0(ξ)(t) · In


+
∑


0<τ≤t


exp
(
− ηξ(τ)


)
d1 exp


(
ηξ(τ)


)
·
(
In − d1Q(τ)


)−1(
In − d1A(τ)


)


+
∑


0≤τ<t


exp
(
− ηξ(τ)


)
d2 exp


(
ηξ(τ)


)
·
(
In + d2Q(τ)


)−1(
In + d2A(τ)


)
. (34)


Then the matrix-function A is ξ-exponentially asymptotically stable.


Proof. Let Bη(H, A) be the matrix-function defined by (25), where H(t) ≡
Z−1(t). Using the formula of integration by parts ([11]), the properties of the
operator B given above and equality (30), we conclude that


Bη(H, A)(t)
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=


t∫


0


exp
(
− ηξ(τ)


)
d
(


exp(ηξ(τ))Z−1(τ) + B
(


exp(ηξ)Z−1, A
)
(τ)


)


=


t∫


0


exp
(
− ηξ(τ)


)
d
(


exp(ηξ(τ))Z−1(τ)
)


+


t∫


0


exp
(
− ηξ(τ)


)
dB


(
exp(ηξ)In,B


(
exp(ηξ)Z−1, A


)
(τ)


)


=


t∫


0


exp
(
− ηξ(τ)


)
d
(


exp(ηξ(τ))Z−1(τ)
)


+


t∫


0


exp
(
− ηξ(τ)


)
dB


(
exp(ηξ)In,B(Z−1, A)


)
(τ) for t ∈ R+; (35)


t∫


0


exp
(
− ηξ(τ)


)
d
(


exp(ηξ(τ))Z−1(τ)
)


=


t∫


0


Z−1(τ) d
(
ηs0(ξ)(τ)In −A(Q,Q)(τ)


)


+
∑


0<s≤τ


exp
(
− ηξ(s)


)
d1 exp


(
ηξ(s)


)
·
(
In − d1Q(s)


)−1


+
∑


0≤s<τ


exp
(
− ηξ(s)


)
d2 exp


(
ηξ(s)


)
·
(
In + d2Q(s)


)−1
for t ∈ R+; (36)


B(Z−1, A)(t) ≡
t∫


0


Z−1(τ) dA(τ)− ∑


0<τ≤t


d1Z
−1(τ) · d1A(τ)


+
∑


0≤τ<t


d2Z
−1(τ) · d2A(τ) =


t∫


0


Z−1(τ) dA(Q,A−Q)(τ) for t ∈ R+, (37)


B
(


exp(ηξ)In,B(Z−1, A)
)
(t)


=


t∫


0


Z−1(τ) dB
(


exp(ηξ)In,A(Q,A)
)
(τ) for t ∈ R+ (38)


and


t∫


0


exp
(
− ηξ(τ)


)
dB


(
exp(ηξ)In,A(Q,A)


)
(τ)


= A(Q,A)(t)− ∑


0<τ≤t


exp
(
− ηξ(τ)


)
d1 exp


(
ηξ(τ)


)
·
(
In − d1Q(τ)


)−1
d1A(τ)
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+
∑


0≤τ<t


exp
(
− ηξ(τ)


)
d2 exp


(
ηξ(τ)


)
·
(
In + d2Q(τ)


)−1
d2A(τ) (39)


for t ∈ R+.


From (35), by (36)–(39) we get


Bη(H, A)(t) =


t∫


0


exp
(
− ηξ(τ)


)
d
(


exp(ηξ(τ)) · Z−1(τ)
)


+


t∫


0


Z−1(τ) d


( τ∫


0


exp
(
− ηξ(s)


)
dB


(
exp(ηξ)In,A(Q,A)


)
(s)


)


=


t∫


0


Z−1(τ) dGη(ξ, Q,A)(τ) for t ∈ R+


and
+∞∨


0


Bη(H, A) ≤
∥∥∥∥∥


+∞∫


0


|Z−1(t)| dV
(
Gη(ξ, Q, A)


)
(t)


∥∥∥∥∥.


Therefore from (32) and the fact that the matrix-function Q is ξ-exponen-
tially asymptotically stable, it follows that the conditions of Theorem 2 are
fulfilled.


Remark 2. In Corollary 3 if the function ξ : R+ → R+ is continuous, then


Gη(ξ, Q, A)(t) = A(Q,A−Q)(t) + ηξ(t)In for t ∈ R+.


Corollary 4. Let the matrix-function Q ∈ BVloc(R+,Rn×n), satisfying con-
dition (31), be ξ-exponentially asymptotically stable and


+∞∨


0


B(Z−1, A−Q) < +∞, (40)


where Z (Z(0) = In) is the fundamental matrix of system (33). Then the
matrix-function A is ξ-exponentially asymptotically stable as well.


Proof. Since Q is ξ-exponentially asymptotically stable there exists a positive
number η such that the estimate (29) holds.


Let now Bη(H,A) be the matrix-function defined by (25), where


H(t) ≡ exp
(
− ηξ(t)


)
Z−1(t).


Using equality (30) for the matrix-function Q we conclude that


Z−1(t) = In + B(Z−1,−Q)(t) for t ∈ R+


and


Bη(H, A)(t) =


t∫


0


exp
(
− ηξ(τ)


)
dB(Z−1, A−Q)(τ) for t ∈ R+.
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By this and (40), condition (24) holds. Therefore, the conditions of Theorem 2
are fulfilled.


Remark 3. By the equality


B(Z−1, A−Q)(t) =


t∫


0


Z−1(τ) d
(
A(τ)−Q(τ)


)
for t ∈ R+


the condition


∥∥∥
+∞∫


0


|Z−1(t)| dV
(
A(Q,A−Q)


)
(t)


∥∥∥∥∥ < +∞


guarantees the fulfilment of condition (40) in Corollary 4. On the other hand,


lim
η→0+


Gη(ξ, Q, A)(t) = A(Q,A−Q)(t) for t ∈ R+,


where Gη(ξ, Q, A)(t) is defined by (34). Consequently, Corollary 3 is true in the
limit case (η = 0), too, if we require the ξ-exponentially asymptotic stability of
Q instead of the uniform stability.


Corollary 5. Let Q ∈ BVloc(R+,Rn×n) be a continuous matrix-function sat-
isfying the Lappo-Danilevskiǐ condition


t∫


0


Q(τ) dQ(τ) =


t∫


0


dQ(τ) ·Q(τ) for t ∈ R+.


Let, moreover, there exist a nonnegative number η such that


∥∥∥∥∥


+∞∫


0


∣∣∣ exp(−Q(t))
∣∣∣ dV (A−Q + ηξIn)(t)


∥∥∥∥∥ < +∞,


where ξ : R+ → R+ is a continuous function satisfying condition (3). Then:
(a) the uniform stability of the matrix-function Q guarantees the ξ-exponen-


tially asymptotic stability of the matrix-function A for η > 0;
(b) the ξ-exponentially asymptotic stability of Q guarantees the ξ-exponenti-


ally asymptotic stability of A for η = 0.


Proof. The corollary follows immediatelly from Corollaries 3 and 4 and Remark
3 if we note that


Z(t) = exp(Q(t)) for t ∈ R+


and in this case


Gη(ξ,Q, A)(t) = A(t)−Q(t) + ηξ(t)In for t ∈ R+.
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Corollary 6. Let there exist a nonnegative number η such that the compo-
nents aik (i, k = 1, . . . , n) of the matrix-function A satisfy conditions (20),


s0(aii)(t)− s0(aii)(τ)− ∑


τ<s≤t


ln
∣∣∣1− d1aii(s)


∣∣∣ +
∑


τ≤s<t


ln
∣∣∣1 + d2aii(s)


∣∣∣


≤ −η
(
s0(ξ)(t)− s0(ξ)(τ)


)
− µ


(
ξ(t)− ξ(τ)


)
for t ≥ τ ≥ 0 (41)


(i = 1, . . . , n),


(−1)j
∑


0≤t<+∞
|z−1


i (t)|
(


exp
(
(−1)j djξ(τ)


)
− 1


)
< +∞ (42)


(j = 1, 2; i = 1, . . . , n)


and
+∞∫


0


|z−1
i (t)| dv(gik)(t) < +∞ (i 6= k; i, k = 1, . . . , n), (43)


where µ = 0 if η > 0, µ > 0 if η = 0,


zi(t) ≡ exp
(
s0(aii)(t) + ηs0(ξ)(t)


)


× ∏


0<τ≤t


(
1− d1aii(τ)


)−1 ∏


0≤τ<t


(
1 + d2aii(τ)


)
(i = 1, . . . , n),


gik(t) ≡ s0(aik)(t) +
∑


0<τ≤t


exp
(
− η d1ξ(τ)


)
d1aik(τ) ·


(
1− d1aii(τ)


)−1


+
∑


0≤τ<t


exp
(
η d2ξ(τ)


)
d2aik(τ) ·


(
1 + d2aii(τ)


)−1


(i 6= k; i, k = 1, . . . , n),


and ξ : R+ → R+ is a nondecreasing function satisfying condition (3). Then
the matrix-function A is ξ-exponentially asymptotically stable.


Proof. For η > 0 the corollary follows from Corollary 3 if we assume that


Q(t) ≡ diag
(
a11(t) + ηs0(ξ)(t), . . . , ann(t) + ηs0(ξ)(t)


)
.


Indeed, by the definition of the operator A we have
[
A(Q,A−Q)(t)


]
ik


= aik(t) +
∑


0<τ≤t


d1aii(τ) ·
(
1− d1aii(τ)


)−1
d1aik(τ)


− ∑


0≤τ<t


d2aii(τ) ·
(
1 + d2aii(τ)


)−1
d2aik(τ) for t ∈ R+ (i 6= k; i, k = 1, . . . , n),


[
A(Q,A−Q)(t)


]
ii


= −ηs0(ξ)(t) for t ∈ R+ (i = 1, . . . , n).


From these relations, using (34) we obtain
[
Gη(ξ, Q,A)(t)


]
ik


= aik(t) +
∑


0<τ≤t


d1aii(τ) ·
(
1− d1aii(τ)


)−1
d1aik(τ)
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− ∑


0≤τ<t


d2aii(τ) ·
(
1 + d2aii(τ)


)−1
d2aik(τ)


− ∑


0<τ≤t


d1aik(τ) ·
(
1− d1aii(τ)


)−1(
1− exp


(
− ηd1ξ(τ)


))


− ∑


0≤τ<t


d2aik(τ) ·
(
1 + d2aii(τ)


)−1(
1− exp


(
ηd2ξ(τ)


))


= gik(t) for t ∈ R+ (i 6= k; i, k = 1, . . . , n)


and
[
Gη(ξ, Q,A)(t)


]
ii


=
∑


0<τ≤t


(
1− exp


(
− ηd1ξ(τ)


))


+
∑


0≤τ<t


(
1− exp


(
ηd2ξ(τ)


))
for t ∈ R+ (i = 1, . . . , n).


On the other hand, the matrix-function Z(t) = diag(z1(t), . . . , zn(t)) is the
fundamental matrix of the system (33), satisfying the condition Z(0) = In.
Therefore, by (41)–(43) the conditions of Corollary 3 are valid. For η = 0 the
corollary follows from Corollary 4 and Remark 3.


Remark 4. If, in addition to (20), the components aik (i, k = 1, . . . , n) of the
matrix-function A satisfy the condition


(−1)j djaik(t) ·
(
1 + (−1)j djaii(t)


)−1 ≥ 0 for t ∈ R+


(i 6= k; i, k = 1, . . . , n; j = 1, 2),


then we can assume without loss of generality that η > 0 and µ = 0 in Corol-
lary 6.


Corollary 7. Let there exist a nonnegative number η such that


+∞∫


0


tn`−1 exp(−t Re λ`) dv(bik)(t) < +∞ (` = 1, . . . , m; i, k = 1, . . . , n),


where bik(t) ≡ aik(t)−pikt+ηξ(t) (i, k = 1, . . . , n), ξ : R+ → R+ is a nondecreas-
ing function satisfying condition (3), and λ1, . . . , λm (λi 6= λj for i 6= j) are the
characteristic values of the matrix P = (pik)


n
i,k=1 with multiplicities n1, . . . , nm,


respectively. Then:
(a) if η > 0, Re λ` ≤ 0 (` = 1, . . . ,m), and, in addition, n` = 1 for Re λ` = 0,


then A is ξ-exponentially asymptotically stable;
(b) if η = 0 and Re λ` < 0 (` = 1, . . . ,m), then A is exponentially asymptot-


ically stable;
(c) if η = 0 and P is ξ-exponentially asymptotically stable, then A is ξ-


exponentially asymptotically stable as well.


Proof. The corollary immediatelly follows from Corollary 5 if we assume Q(t) ≡
Pt and derive the matrix-function exp(−Pt) by the standard way using the
Jordan canonical form of the matrix P .
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Consider now system (2), where P ∈ Lloc(R+,Rn×n), q ∈ Lloc(R+,Rn).
Theorem 2 and Corollary 6 have the following form for this system.


Theorem 2′. Let ξ : R+ → R+ be an absolutely continuous nondecreasing
function satisfying condition (3). Then the matrix-function P ∈ Lloc(R+,Rn×n)
is ξ-exponentially asymptotically stable if and only if there exist a positive num-
ber η and nonsingular matrix-function H ∈ C̃loc(R+,Rn×n) such that


sup
{
‖H−1(t)H(s)‖ : t ≥ s ≥ 0


}
< +∞


and
+∞∫


0


∥∥∥∥H ′(t) + H(t)
(
P (t) + ηξ′(t)In


)∥∥∥∥ dt < +∞.


Corollary 6′. Let there exist a positive number η such that the components
pik ∈ Lloc(R+,R) (i, k = 1, . . . , n) of the matrix-function P satisfy the conditions


pii(t) ≤ −η for t ≥ t∗ (i = 1, . . . , n)


and
+∞∫


t∗
exp


(
−


t∫


t∗


(
pii(τ) + η


)
dτ


)
|pik(t)| dt < +∞ (i 6= k; i, k = 1, . . . , n)


for some t∗ ∈ R+. Then the matrix-function P is exponentially asymptotically
stable.
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