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SOME PROBLEMS OF THERMOELASTIC EQUILIBRIUM OF
A RECTANGULAR PARALLELEPIPED IN TERMS OF


ASYMMETRIC ELASTICITY


N. KHOMASURIDZE


Abstract. An effective solution of a number of boundary value and bound-
ary contact problems of thermoelastic equilibrium is constructed for a ho-
mogeneous isotropic rectangular parallelepiped in terms of asymmetric and
pseudo-asymmetric elasticity (Cosserat’s continuum and pseudo- continuum).
Two opposite faces of a parallelepiped are affected by arbitrary surface dis-
turbances and a stationary thermal field, while for the four remaining faces
symmetry or anti-symmetry conditions (for a multilayer rectangular paral-
lelepiped nonhomogeneous contact conditions are also defined) are given.
The solutions are constructed in trigonometric series using the method of
separation of variables.
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Introduction


There are a number of papers devoted to problems of elastic equilibrium in
terms of asymmetric elasticity. Asymmetric elasticity was first introduced by
the Cosserat brothers [1] and was later on developed by Truesdell and Toupin
[2]. Papers by Kuvshinsky, Aero, Palmov, Grioli, Mindlin, Tiersten and Koiter
are devoted to linear theory for Cosserat’s medium. These and some other
papers are mentioned in [3]. Works by Eringen [4], Nowacki [5], Kupradze,
Gegelia, Basheleishvili and Burchuladze [6], Carbonari and Russo [7] are also
worth mentioning. Linear theory of asymmetric thermoelasticity was developed
by Nowacki [5].


As far as we know, there have been no papers dealing with thermoelastic equi-
librium of a rectangular parallelepiped in terms of asymmetric elasticity. This
issue is the subject of the given work, in which using the general solution intro-
duced by the author as well as the method of separation of variables and double
series, the solutions of some boundary value and boundary contact problems
of asymmetric thermoelasticity are constructed for a rectangular parallelepiped
occupying the domain Ω = {0 < x1 < x11, 0 < x2 < x21, 0 < x3 < x31}. For
the lateral faces x1 = 0, x1 = x11, x2 = 0, x2 = x21 symmetry and antisym-
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metry conditions are defined while on the faces x3 = 0 and x3 = x31 arbitrary
surface and thermal disturbances can be applied. In the case of the rectangular
parallelepiped which is multilayer along the coordinate x3 we have symmetry
and antisymmetry conditions again with x1 = 0, x1 = x11, x2 = 0, x2 = x21, on
the contact surfaces x3 = const nonhomogeneous contact conditions are defined
while on the two remaining faces arbitrary surface and thermal disturbances
can be applied.


1. If no mass forces are applied, the equilibrium equations for a homogeneous
isotropic body in the case of Cosserat’s continuum have the following form [6]:


a)
∑


j


∂Nji


∂xj


= 0,


b)
∑


j


∂Mji


∂xj


+
∑


k,j


εijkNjk = 0,


c) ∆T = 0,


(1)


where i = 1, 2, 3; j = 1, 2, 3; k = 1, 2, 3; εijk is Levy-Civita symbol; x1, x2, x3


are Cartesian coordinates, N11, N22, N33 are normal stresses, N21, N31, N12, . . . ,
N23 are tangential stresses, M11, M22, M33 are torsion micromoments; M21, M31,
M12, . . . , M23 are bending micromoments; T is the change in the temperature
of the body; ∆ = ∂


∂x2
1


+ ∂
∂x2


2
+ ∂


∂x2
3
.


The equalities connecting stresses and micromoments with the components
of displacement and rotation vectors have the following form [6]


Nij = δij[λ div ~U − (3λ + 2µ)γT ] + (µ + σ1)
∂uj


∂xi


+ (µ− σ1)
∂ui


∂xj


− 2σ1


∑


k


εijkωk,


Mij = δijσ2 div ~ω + (σ3 + σ4)
∂ωj


∂xi


+ (σ3 − σ4)
∂ωi


∂xj


,


(2)


where ~U = u1
~l1 + u2


~l2 + u3
~l3 (~l1,~l2,~l3 are basis vectors in the Cartesian coor-


dinate system), ~ω = ω1
~l1 + ω2


~l2 + ω3
~l3 are displacement and rotation vectors,


respectively, δij is Kronecker’s symbol, λ, µ are classical elasticity characte-
ristics and σ1, σ2, σ3, σ4 are asymmetric elasticity characteristics with µ > 0,
3λ + 2µ > 0, σ1 > 0, σ3 > 0, 3σ2 + 2σ3 > 0, σ4 > 0; λ = νE


(1−2ν)(1+ν)
, µ = E


2(1−ν)
,


where E is elasticity modulus, ν is the Poisson coefficient, γ is the coefficient of
linear thermal expansion.


Substituting (2) into (1)a, (1)b we have


grad[(λ + 2µ) div ~U − (3λ + 2µ) γ T ]− rot[(µ + σ1) rot ~U − 2σ1~ω] = 0,


grad[(σ2 + 2σ3) div ~ω]− rot[(σ3 + σ4) rot ~ω − 2σ1
~U ]− 4σ1~ω = 0.


(3)
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The second equation of system (3) can be written as


grad[(σ2 +2σ3) div ~ω]− rot[(σ3 +σ4) rot ~ω +2µ~U ]+2[(µ+σ1) rot ~U −2σ1~ω] = 0.


Taking into consideration the last equality we can write


a) grad[(λ + 2µ) div ~U − (3λ + 2µ)γ T ]


− rot[(µ + σ1) rot ~U − 2σ1~ω] = 0,


b) div[(µ + σ1) rot ~U − 2σ1~ω] = − 2σ1


σ2 + 2σ3


[(σ2 + 2σ3) div ~ω],


c) grad[(σ2 + 2σ3) div ~ω]− rot[(σ3 + σ4) rot ~ω + 2µ~U ]


+ 2[(µ + σ1) rot ~U − 2σ1~ω] = 0,


d) div[(σ3 + σ4) rot ~ω + 2µ~U ] =
2µ


λ + 2µ
[(λ + 2µ) div ~U


− (3λ + 2µ)γ T ] +
2µ(3λ + 2µ)


λ + 2µ
γT = 0.


(4)


It can be easily seen that (4b) and (4d) are identities.


Without loss of generality we can represent the function T as


T =
2(λ + 2µ)


(3λ + 2µ)γ


∂T̃


∂x3


, (5)


where ∆T̃ = 0. No loss of generality will occur if T is expressed by a derivative
of the harmonic function T̃ since it is preserved by an appropriate representation
of the harmonic function T̃ using the method of separation of variables as in
[8].


Introduce the notation


a) (λ + 2µ) div ~U − (3λ + 2µ)γ T = D,


b) (σ2 + 2σ3) div ~ω = D∗,


c) (µ + σ1) rot ~U − 2σ1 ~ω = ~K = K1
~l1 + K2


~l2 + K3
~l3,


d) (σ3 + σ4) rot ~ω + 2µ ~U = ~K∗ = K∗
1
~l1 + K∗


2
~l2 + K∗


3
~l3.


(6)


Taking (5) into account, we can write system (4) in the following way


grad D − rot ~K = 0, div ~K = − 2σ1


σ2 + 2σ3


D∗,


grad D∗ − rot ~K∗ + 2 ~K = 0, div ~K∗ =
2µ


λ + 2µ
D + 4µ


∂T̃


∂x3


.


(7)
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Finally we obtain the following system


a)
∂D


∂x1


− ∂K3


∂x2


+
∂K2


∂x3


= 0,


b)
∂D


∂x2


− ∂K1


∂x3


+
∂K3


∂x1


= 0,


c)
∂D


∂x3


− ∂K2


∂x1


+
∂K1


∂x2


= 0,


d)
∂K1


∂x1


+
∂K2


∂x2


+
∂K3


∂x3


= − 2σ1


σ2 + 2σ3


D∗,


e)
∂D∗


∂x1


− ∂K∗
3


∂x2


+
∂K∗


2


∂x3


+ 2K1 = 0,


f)
∂D∗


∂x2


− ∂K∗
1


∂x3


+
∂K∗


3


∂x1


+ 2K2 = 0,


g)
∂D∗


∂x3


− ∂K∗
2


∂x1


+
∂K∗


1


∂x2


+ 2K3 = 0,


h)
∂K∗


1


∂x1


+
∂K∗


2


∂x2


+
∂K∗


3


∂x3


=
2µ


λ + 2µ
D + 4µ


∂T̃


∂x3


;


(8)


a)
∂u1


∂x1


+
∂u2


∂x2


+
∂u3


∂x3


=
D


λ + 2µ
+ 2


∂T̃


∂x3


,


b) (µ + σ1)


(
∂u3


∂x2


− ∂u2


∂x3


)
− 2σ1ω1 = K1,


c) (µ + σ1)


(
∂u1


∂x3


− ∂u3


∂x1


)
− 2σ1ω2 = K2,


d) (µ + σ1)


(
∂u2


∂x1


− ∂u1


∂x2


)
− 2σ1ω3 = K3,


e)
∂ω1


∂x1


+
∂ω2


∂x2


+
∂ω3


∂x3


=
D∗


σ2 + 2σ3


,


f) (σ3 + σ4)


(
∂ω3


∂x2


− ∂ω2


∂x3


)
+ 2µu1 = K∗


1 ,


g) (σ3 + σ4)


(
∂ω1


∂x3


− ∂ω3


∂x1


)
+ 2µu2 = K∗


2 ,


h) (σ3 + σ4)


(
∂ω2


∂x1


− ∂ω1


∂x2


)
+ 2µu3 = K∗


3 ,


(9)


in 14 unknowns, in particular, the unknowns D, K1, K2, K3, D∗, K∗
1 , K∗


2 , K∗
3 ,


ω1, ω2, ω3, u1, u2, u3 (the temperature T is defined by (1c) under appropri-
ate boundary conditions). Note that identities (8d) and (8h) complement six
equilibrium equations (8a,b,c,e,f,g) to obtain two similar systems (8a,b,c,d) and
(9e,f,g,h) which consist of four differential equations with the first order partial
derivatives in four unknowns D, K1, K2, K3 and D∗, K∗


1 , K
∗
2 , K


∗
3 , respectively (in


this case the functions D∗ and D, which also appear in the right-hand side of
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(8d) of system (8a,b,c,d) and in the right-hand side of (8h) of system (8c,f,g,h),
are assumed to be known).


The given work deals with the thermoelastic equilibrium of a rectangular
parallelepiped (RP) occupying the domain Ω = {0 < x1 < x11, 0 < x2 < x21,
0 < x3 < x31}. The boundary conditions appearing in the paper and defining
the class of the boundary value problems under consideration are given below.


For x1 = x1s : a) u1 = 0, N12 = 0, N13 = 0, M11 = 0,
ω2 = 0, ω3 = 0, ∂T


∂x1
= 0 ⇐⇒


u1 = 0, ∂u2


∂x1
= 0, ∂u3


∂x1
= 0, ∂ω1


∂x1
= 0,


ω2 = 0, ω3 = 0, ∂T
∂x1


= 0


or
b) N11 = 0, u2 = 0, u3 = 0, ω1 = 0 M12 = 0,


M13 = 0, T = 0 ⇐⇒
∂u1


∂x1
= 0, u2 = 0, u3 = 0, ω1 = 0, ∂ω2


∂x1
= 0,


∂ω3


∂x1
= 0, T = 0.


(10)


For x2 = x2s : a) u2 = 0, N23 = 0, N21 = 0, M22 = 0,
ω3 = 0, ω1 = 0, ∂T


∂x2
= 0 ⇐⇒


u2 = 0, ∂u3


∂x2
= 0, ∂u1


∂x2
= 0, ∂ω2


∂x2
= 0,


ω3 = 0, ω1 = 0, ∂T
∂x2


= 0


or
b) N22 = 0, u3 = 0, u1 = 0, ω2 = 0 M23 = 0,


M21 = 0, T = 0 ⇐⇒
∂u2


∂x2
= 0, u3 = 0, u1 = 0, ω2 = 0, ∂ω3


∂x2
= 0,


∂ω1


∂x2
= 0, T = 0.


(11)


For x3 = x3s : gs1N33 + g̃s1 · u3 = fs1(x1, x2),
gs2N31 + g̃s2 · u1 = fs2(x1, x2),
gs3N32 + g̃s3 · u2 = fs3(x1, x2),
gs4M33 + g̃s4 · ω3 = fs4(x1, x2),
gs5M31 + g̃s5 · ω1 = fs5(x1, x2),
gs6M32 + g̃s6 · ω2 = fs6(x1, x2),
gs7


∂T
∂x3


+ g̃s7T = fs7(x1, x2).


(12)


In (10), (11) and (12) we have s = 0, 1 with x10 = x20 = x30 = 0; gs1, g̃s1, . . . ,
g̃s7 being the defined constants governed by the conditions gs1 ·g̃s1 ≥ 0, gs2 ·g̃s2 ≥
0, . . . , gs7 · g̃s7 ≥ 0. The conditions imposed on the functions fs1, fs2, . . . , fs7


will be described in below, we can just note that the functions are taken so that
on the edges of the RP the compatibility conditions are satisfied. With g̃s1 =
g̃s2 = g̃s3 = 0, g̃s4 = g̃s5 = g̃s6 = 0 we have the boundary conditions for the first
problem of asymmetric thermoelasticity, with gs1 = gs2 = gs3 = 0, gs4 = gs5 =
gs6 = 0 we have the boundary conditions for the second problem of asymmetric
thermoelasticity, etc. Note that (12) implies that with x3 = 0 one type of
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conditions can be defined while with x3 = x31 there can be another conditions.
Conditions (10a) and (11a) are called the symmetry conditions, while conditions
(10b) and (11b) are called the antisymmetry conditions. We should also note
that conditions (10) and (11) are the conditions of the continuous extension
of the solution across the corresponding face of the RP. The validity of this
statements is a direct consequence of the constructed solutions of the boundary
value problems. It is interesting to observe that the technical interpretation of
boundary conditions (10) and (11) is the same as of the corresponding conditions
in [3].


Theorem 1. The general solution of system (7), (6) or, what is the same,
system (8), (9) according to asymmetric theory has the following form


ω1 =
∂ψ3


∂x1


+
κ
2


∂ϕ1


∂x2


+
1


2


∂2ϕ2


∂x1∂x3


+
∂ψ1


∂x3


,


ω2 =
∂ψ3


∂x2


− κ
2


∂ϕ1


∂x1


+
1


2


∂2ϕ2


∂x2∂x3


+
∂ψ2


∂x3


,


ω3 =
∂ψ3


∂x3


+
1


2


∂2ϕ2


∂x2
3


− ∂ψ1


∂x1


− ∂ψ2


∂x2


;


(13)


u1 =
∂


∂x1


(ϕ3 − x3ϕ1) +
∂ϕ2


∂x2


− σ3 + σ4


2µ


(
∂2ψ2


∂x2
1


− qψ2 − ∂2ψ1


∂x1∂x2


)
+ x3


∂T̃


∂x1


,


u2 =
∂


∂x2


(ϕ3 − x3ϕ1)− ∂ϕ2


∂x1


+
σ3 + σ4


2µ


(
∂2ψ1


∂x2
2


− qψ1 − ∂2ψ2


∂x1∂x2


)
+ x3


∂T̃


∂x2


,


u3 =
∂


∂x3


(ϕ3 − x3ϕ1) + κϕ1


− σ3 + σ4


2µ


(
∂2ψ2


∂x1∂x3


− ∂2ψ1


∂x2∂x3


)
+ x3


∂T̃


∂x3


+ T̃ .


(14)


In (13) and (14) ϕ1, ϕ2, ϕ3 and T̃ are harmonic functions, ψ1, ψ2, ψ3 are meta-


harmonic functions with ∆ψ1−qψ1 = 0, ∆ψ2−qψ2 = 0, ∆ψ3− 4σ1


σ2 + 2σ3


ψ3 = 0


and q =
4µσ1


(µ + σ1)(σ3 + σ4)
.


Proof. (8a, b, c) implies


∆D = 0.
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Without loss of generality assume


D = κµ
∂ϕ1


∂x3


, (15)


where ∆ϕ1 = 0 (see the comments to (5)) and κ = 2(λ+2µ)
λ+µ


= 4(1−ν), so taking


(15) into account we can write (8a, b, c, d) as


a)
∂


∂x3


(
K2 + κµ


∂ϕ1


∂x1


)
− ∂K3


∂x2


= 0,


b)
∂K3


∂x1


− ∂


∂x3


(
K1 − κµ


∂ϕ1


∂x2


)
= 0,


c)
∂


∂x2


(
K1 − κµ


∂ϕ1


∂x2


)
− ∂


∂x1


(
K2 + κµ


∂ϕ1


∂x1


)
= 0,


d)
∂K1


∂x1


+
∂K2


∂x2


+
∂K3


∂x3


= − 2σ1


σ2 + 2σ3


D∗.


(16)


From (16a, b, c) we have


K1 =
∂ϕ̃2


∂x1


+ κµ
∂ϕ1


∂x2


, K2 =
∂ϕ̃2


∂x2


− κµ
∂ϕ1


∂x1


, K3 =
∂ϕ̃2


∂x3


. (17)


Substituting (18) into (16d) we obtain


∆ϕ̃2 = − 2σ1


σ2 + 2σ3


D∗. (18)


(8e, f, g) implies


∆D∗ − 4σ1


σ2 + 2σ3


D∗ = 0.


If we write the solution of this equation as


D∗ = 4σ1ψ3,


where ∆ψ3 − 4σ1


σ2+2σ3
ψ3 = 0, then the solution of (18) can be represented as


ϕ̃2 = µ
∂ϕ2


∂x3


− 2σ1 · ψ3, (19)


where ∆ϕ2 = 0 (see the comments to (5)). Taking (19) into account we can
write (17) as


K1 = µ
∂2ϕ2


∂x1∂x3


− 2σ1
∂ψ3


∂x1


+ κµ
∂ϕ1


∂x2


,


K2 = µ
∂2ϕ2


∂x2∂x3


− 2σ1
∂ψ3


∂x2


− κµ
∂ϕ1


∂x1


,


K3 = µ
∂2ϕ2


∂x2
3


− 2σ1
∂ψ3


∂x3


.


(20)
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With (20) in mind (8e, f, g, h) can be written as


a)
∂


∂x3


(
K∗


2 + 2µ
∂ϕ2


∂x1


)
− ∂


∂x2


(K∗
3 − 2κµϕ1) = 0,


b)
∂


∂x1


(K∗
3 − 2κµϕ1)− ∂


∂x3


(
K∗


1 − 2µ
∂ϕ2


∂x2


)
= 0,


c)
∂


∂x2


(
K∗


1 − 2µ
∂ϕ2


∂x2


)
− ∂


∂x1


(
K∗


2 + 2µ
∂ϕ2


∂x1


)
= 0,


d)
∂K∗


1


∂x1


+
∂K∗


2


∂x2


+
∂K∗


3


∂x3


=
2κµ2


λ + 2µ


∂ϕ1


∂x3


+ 4µ
∂T̃


∂x3


.


(21)


From (21a, b, c) we have


K∗
1 =


∂ϕ̃3


∂x1


+ 2µ
∂ϕ2


∂x2


, K∗
2 =


∂ϕ̃3


∂x2


− 2µ
∂ϕ2


∂x1


, K∗
3 =


∂ϕ̃3


∂x3


+ 2κµϕ1. (22)


Substituting (22) into (21d) we have


∆ϕ̃3 = 4µ
∂


∂x3


(T̃ − ϕ1).


The solution of this equations is


ϕ̃3 = 2µϕ∗3 − 2µx3(ϕ1 − T̃ ), (23)


where ∆ϕ∗3 = 0.. If we substitute (23) into (22) then


K∗
1 = 2µ


∂ϕ∗3
∂x1


− 2µx3
∂ϕ1


∂x1


+ 2µ
∂ϕ2


∂x2


+ 2µx3
∂T̃


∂x1


,


K∗
2 = 2µ


∂ϕ∗3
∂x2


− 2µx3
∂ϕ1


∂x2


− 2µ
∂ϕ2


∂x1


+ 2µx3
∂T̃


∂x2


,


K∗
3 = 2µ


∂ϕ∗3
∂x3


− 2µx3
∂ϕ1


∂x3


+ 2µx3
∂T̃


∂x3


+ 2µ(4κ − 1)ϕ1 + 2µT̃ .


(24)


Applying rot to (6d) and substituting it into (6c) with rot rot ~ω = grad div ~ω−
∆~ω, in mind we obtain


∆~ω − q~ω =
1


σ2 + 2σ3


grad D∗ − 1


σ3 + σ4


rot ~K∗ +
q


2σ1


~K.


If we project this equation onto the coordinate axes and take into account
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equality D∗ = 4σ1ψ3 and formulas (20) and (24) we shall have


a) ∆ω1 − qω1 =
(


4σ1


σ2 + 2σ3


− q
)


∂ψ3


∂x1


− q


2


(
κ


∂ϕ1


∂x2


+
∂2ϕ2


∂x1∂x3


)
,


b) ∆ω2 − qω2 =
(


4σ1


σ2 + 2σ3


− q
)


∂ψ3


∂x2


+
q


2


(
κ


∂ϕ1


∂x1


− ∂2ϕ2


∂x2∂x3


)
,


c) ∆ω3 − qω3 =
(


4σ1


σ2 + 2σ3


− q
)


∂ψ3


∂x3


− q


2


∂2ϕ2


∂x2
3


.


(25)


The solution of (25a) (25b) will be


ω1 =
∂ψ3


∂x1


+
1


2


(
κ


∂ϕ1


∂x2


+
∂2ϕ2


∂x1∂x3


)
+


∂ψ1


∂x3


,


ω2 =
∂ψ3


∂x2


− 1


2


(
κ


∂ϕ1


∂x1


− ∂2ϕ2


∂x2∂x3


)
+


∂ψ2


∂x3


,


(26)


respectively, where ∆ψ1− qψ1 = 0, ∆ψ2− qψ2 = 0. We define ω3 from equality
(9e)


ω3 =
∂ψ3


∂x3


+
1


2


∂2ϕ2


∂x2
3


− ∂ψ1


∂x1


− ∂ψ2


∂x2


+ f(x1, x2), (27)


where f is a function resulting from integration of (9e) and satisfying the fol-
lowing equation and the following conditions:


∂2f


∂x2
1


+
∂2f


∂x2
2


− qf = 0;


∂f


∂xs


= 0 or f = 0 with xs = 0,


∂f


∂xs


= 0 or f = 0 with xs = xs1,


(28)


where s = 1, 2. The solution of (28) is f = 0.
Substituting (26), (27) and (24) into (9f,g,h) we have


u1 =
∂


∂x1


[
ϕ∗3 −


κ(σ3 + σ4)


4µ


∂ϕ1


∂x3


]
− x3


∂ϕ1


∂x1


+
∂ϕ2


∂x2


− σ3 + σ4


2µ


(
∂2ψ2


∂x2
1


− qψ2 − ∂2ψ1


∂x1∂x2


)
+ x3


∂T̃


∂x1


,


u2 =
∂


∂x2


[
ϕ∗3 −


κ(σ3 + σ4)


4µ


∂ϕ1


∂x3


]
− x3


∂ϕ1


∂x2


− ∂ϕ2


∂x1


+
σ3 + σ4


2µ


(
∂2ψ1


∂x2
2


− qψ1 − ∂2ψ2


∂x1∂x2


)
+ x3


∂T̃


∂x2


,


u3 =
∂


∂x3


[
ϕ∗3 −


κ(σ3 + σ4)


4µ


∂ϕ1


∂x3


]
− x3


∂ϕ1


∂x3


+ (κ − 1)ϕ1
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− σ3 + σ4


2µ


(
∂2ψ2


∂x1∂x3


− ∂2ψ1


∂x2∂x3


)
+ x3


∂T̃


∂x3


+ T̃ .


If we introduce the notation
[
ϕ∗3 − {(σ3+σ4)


4µ
∂ϕ1


∂x3


]
= ϕ3, where, naturally, ∆ϕ3 =


0, we can say that Theorem 1 is proved.


2. In the case of Cosserat’s pseudo-continuum equations (1) still hold, but
instead of (2) we have [3]


Nij = δij[λ div ~U − (3λ + 2µ)γ T ] + µ


(
∂uj


∂xi


+
∂ui


∂xj


)


− η1


∑


k


εijk∆(rotk
~U),


Mij = 2η1
∂


∂xi


(rotj
~U) + 2η2


∂


∂xj


(roti
~U),


(29)


where η1, η2 are asymmetric elasticity characteristics with η1 > 0, η2 > 0.
Substituting (29) into (1) we have


a) grad[(λ + 2µ) div ~U − (3λ + 2µ)γ T ]


− rot(µ rot ~U − η1∆ rot ~U) = 0,


b) div(µ rot ~U − η1∆ rot ~U) = 0,


(30)


where (30b) is a known identity. Write (30) as







grad D − rot ~K∗ = 0,


div ~K∗ = 0,
(31)


where D = (λ + 2µ) div ~U − (3λ + 2µ)γ T, ~K∗ = K∗
1
~l1 + K∗


2
~l2 + K∗


3
~l3, ~K∗ =


~K − η1


µ
∆ ~K and ~K = µ rot ~U = K1


~l1 + K2
~l2 + K3


~l3 = µ rot1
~U · ~l1 + µ rot2


~U ·
~l2 + µ rot3


~U ·~l3. If we write (31) in a scalar form, we have


a)
∂D


∂x1


− ∂K∗
3


∂x2


+
∂K∗


2


∂x3


= 0,


b)
∂D


∂x2


− ∂K∗
1


∂x3


+
∂K∗


3


∂x1


= 0,


c)
∂D


∂x3


− ∂K∗
2


∂x1


+
∂K∗


1


∂x2


= 0,


d)
∂K∗


1


∂x1


+
∂K∗


2


∂x2


+
∂K∗


3


∂x3


= 0.


(32)


As in the case of Cosserat’s continuum for a RP, we can state boundary
conditions defining the class of solvable boundary value problems considered
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according to pseudo-asymmetric thermoelasticity.


For x1 = x1s : a) u1 = 0, N12 = 0, N13 = 0,
K2 = 0, K3 = 0, ∂T


∂x1
= 0 ⇐⇒


u1 = 0, ∂u2


∂x1
= 0, ∂u3


∂x1
= 0, ∂2u1


∂x2
1


= 0, ∂3u2


∂x3
1


= 0,
∂3u3


∂x3
1


= 0, ∂T
∂x1


= 0


or
b) N11 = 0, u2 = 0, u3 = 0,


M12 = 0, M13 = 0, T = 0 ⇐⇒
∂u1


∂x1
= 0, u2 = 0, u3 = 0, ∂2u2


∂x2
1


= 0, ∂2u3


∂x2
1


= 0,
∂3u1


∂x3
1


= 0, T = 0.


(33)


It should be noted that in (32a) the fourth, the fifth and the sixth conditions,
appearing to the right of the equivalence sign, have been obtained assuming
that with x1 = x1s, besides the defined boundary conditions, equation (32a) also
holds. In its turn, in (33b) the sixth condition to the right of the equivalence
sign has been obtained assuming that with x1 = x1s equations (32a), (32b) and
(32c) differentiated, correspondingly, with respect to x1, x2 and x3 are true.


For x2 = x2s : a) u2 = 0, N23 = 0, N21 = 0,
K3 = 0, K1 = 0, ∂T


∂x2
= 0 ⇐⇒


u2 = 0, ∂u3


∂x2
= 0, ∂u1


∂x2
= 0, ∂2u2


∂x2
2


= 0, ∂3u3


∂x3
2


= 0,
∂3u1


∂x3
2


= 0, ∂T
∂x2


= 0


or
b) N22 = 0, u3 = 0, u1 = 0,


M21 = 0, M23 = 0, T = 0 ⇐⇒
∂u2


∂x2
= 0, u3 = 0, u1 = 0, ∂2u3


∂x2
2


= 0, ∂2u1


∂x2
2


= 0,
∂3u2


∂x3
2


= 0, T = 0.


(34)


Remarks similar to those conditions (33) take place.


For x3 = x3s : gs1N33 + g̃s1u3 = fs1(x1, x2),
gs2N31 + g̃s2u1 = fs2(x1, x2),
gs3N32 + g̃s3u2 = fs3(x1, x2),
gs4M31 + g̃s4K1 = fs4(x1, x2),
gs5M32 + g̃s5K2 = fs5(x1, x2),
gs6


∂T
∂x3


+ g̃s6T = fs6(x1, x2).


(35)


Comments to conditions (12) also hold for conditions (35) and to make it clear
we shall point out to following.


In (33), (34) and (35) we have s = 0, 1; (33a) and (34a) are symmetry con-
ditions and (33b) and (34b) are antisymmetry conditions. Conditions (33) and
(34) are the conditions of the continuous extension of the solution across the
corresponding face of the RP onto a domain which is a mirror reflection with
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respect to this face. The validity of the statement is a direct implication of the
constructed solution of the boundary value problems.


Theorem 2. The general solution of system (31) according to pseudo-asym-
metric theory has the following form:


u1 =
∂


∂x1


(ϕ3 − x3ϕ1) +
∂ϕ2


∂x2


− η1


(
η1


∂2ψ2


∂x2
1


− η1
∂2ψ1


∂x1∂x2


+ µψ2


)
+ x3


∂T̃


∂x1


,


u2 =
∂


∂x2


(ϕ3 − x3ϕ1)− ∂ϕ2


∂x1


− η1


(
η1


∂2ψ2


∂x1∂x2


− η1
∂2ψ1


∂x2
2


+ µψ1


)
+ x3


∂T̃


∂x2


,


u3 =
∂


∂x3


(ϕ3 − x3ϕ1) + κϕ1


− η2
1


(
∂2ψ2


∂x1∂x3


− ∂2ψ1


∂x2∂x3


)
+ x3


∂T̃


∂x3


+ T̃ .


(36)


In (36) ϕ1, ϕ2, ϕ3 and T̃ are harmonic functions and ψ1 and ψ2 are metahar-
monic functions with ∆ψs − µ


η1
ψs = 0, where s = 1, 2.


Proof. (32a,b,c) implies


∆D = 0.


If we assume


D = κµ
∂ϕ1


∂x3


, (37)


where ∆ϕ1 = 0, then taking (37) into account, we can write (32) as


∂


∂x3


(
K∗


2 + κµ
∂ϕ1


∂x1


)
− ∂K∗


3


∂x2


= 0,


∂K∗
3


∂x1


− ∂


∂x3


(
K∗


1 − κµ
∂ϕ1


∂x2


)
= 0,


∂


∂x2


(
K∗


1 − κµ
∂ϕ1


∂x2


)
− ∂


∂x1


(
K∗


2 + κµ
∂ϕ1


∂x1


)
= 0,


∂K∗
1


∂x1


+
∂K∗


2


∂x2


+
∂K∗


3


∂x3


= 0.


(38)
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It follows from system (38) that a function µ∂ϕ2


∂x3
exists such that


K∗
1 = µ


∂2ϕ2


∂x1∂x3


+ κµ
∂ϕ1


∂x2


, K∗
2 = µ


∂2ϕ2


∂x2∂x3


− κµ
∂ϕ1


∂x1


,


K∗
3 = µ


∂2ϕ2


∂x2
3


,


(39)


with ∆ϕ2 = 0.. The projection of the equality ∆ ~K − µ
η1


~K = − µ
η1


~K∗ onto the


coordinate axes with (39) in mind will give


a) ∆K1 − µ


η1


K1 = −µ2


η1


∂2ϕ2


∂x1∂x3


− κµ2


η1


∂ϕ1


∂x2


,


b) ∆K2 − µ


η1


K2 = −µ2


η1


∂2ϕ2


∂x2∂x3


+
κµ2


η1


∂ϕ1


∂x1


,


c) ∆K3 − µ


η1


K3 = −µ2


η1


∂2ϕ2


∂x2
3


.


(40)


From (40a) and (40b) we have


K1 = µ2η1
∂ψ1


∂x3


+ µ
∂2ϕ2


∂x1∂x3


+ κµ
∂ϕ1


∂x2


,


K2 = µ2η1
∂ψ2


∂x3


+ µ
∂2ϕ2


∂x2∂x3


− κµ
∂ϕ1


∂x1


,


(41)


where ∆ψs − µ
η1


ψs = 0 (s = 1, 2) and using the identity div(µ rot ~U) = ∂K1


∂x1
+


∂K2


∂x2
+ ∂K3


∂x3
= 0 we can define


K3 = −µ2η1


(
∂ψ1


∂x1


+
∂ψ2


∂x2


)
+ µ


∂2ϕ2


∂x2
3


+ f(x, y), (42)


where f is a function resulting from integration of the equality div(µ rot ~U) = 0
with respect to x3, which is the solution of boundary value problem (28) if we
replace the constant q by the constant µ


η1
. It can be easily seen that (28) implies


f = 0.
Taking into account (35), (41) and (42) we can obtain the following system


∂u1


∂x1


+
∂u2


∂x2


+
∂u3


∂x3


=
κµ


λ + 2µ


∂ϕ1


∂x3


+
3λ + 2µ


λ + 2µ
γ T,


∂


∂x2


(u3 − κϕ1)− ∂


∂x3


(
u2 + µη1ψ1 +


∂ϕ2


∂x1


)
= 0,


∂


∂x3


(
u1 − µη1ψ2 − ∂ϕ2


∂x2


)
− ∂


∂x1


(u3 − κϕ1) = 0,


∂


∂x1


(
u2 + µη1ψ1 +


∂ϕ2


∂x1


)
− ∂


∂x2


(
u1 − µη1ψ2 − ∂ϕ2


∂x2


)
= 0.


(43)
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from the equalities (λ+2µ) div ~U−(3λ+2µ)γ T = D = κµ∂ϕ1


∂x3
and µ rot ~U = ~K.


From (43) we have


u1 =
∂ϕ̃3


∂x1


+ µη1ψ2 +
∂ϕ2


∂x2


,


u2 =
∂ϕ̃3


∂x2


− µη1ψ1 − ∂ϕ2


∂x1


,


u3 =
∂ϕ̃3


∂x3


+ κϕ1;


(44)


∆ϕ̃3 = −2
∂ϕ1


∂x3


− µη1


(
∂ψ2


∂x1


− ∂ψ1


∂x2


)
+


3λ + 2µ


λ + 2µ
γ T. (45)


If the change in the temterature T is expressed by means of the function T̃
according to formula (5) (note that ∆T̃ = 0), then (45) will result in


ϕ̃3 = ϕ3 − x3ϕ1 − η2
1


(
∂ψ2


∂x1


− ∂ψ1


∂x2


)
+ x3T̃ . (46)


Substitution of (46) into (44) shows the validity of Theorem 2.


3. Below we shall give the construction pattern for regular solutions of bound-
ary value problems in asymmetric thermoelasticity. But before we continue our
discussion we must define the concept of regular solutions.


In the case of Cosserat’s continuum the solution of system (4) defined by
seven functions T , ui, ωi (i = 1, 2, 3) will be called regular if T is twice and


ui, ωi is three times continuously differentiable in the domain Ω̃ where Ω̃ is
the domain Ω together with the boundaries x1 = x1s and x2 = x2s (s = 0, 1)
and on the surface x3 = x3s they together with their first derivatives can be
represented by uniformly converging trigonometric series. It is also assumed
that the equilibrium equations are true for x1 = x1s and x2 = x2s.


The differential properties imposed on the functions fs1, fs2, . . . , fs6 from
(12) are defined by the regularity requirements imposed on the solution.


In the case of Cosserat’s pseudo-continuum the solution of (30), which is
defined by four functions T , ui is called regular if T is twice and ui is five times
continuously differentiable in the domain Ω̃ and on the surface x3 = x3s, T
together with its first derivative and ui together with its derivatives up to the
fourth order can be represented by uniformly converging trigonometric series.
We also assume that the equilibrium equations and their first derivatives hold
for x1 = x1s and x2 = x2s.


The differential properties imposed on the functions fs1, fs2, . . . , fs5 from
(35), similar to the case of Cosserat’s continuum, are defined by the regularity
requirement imposed on the solution.
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4. Let conditions (10b),(11b), (12) be satisfied on the surface of the RP, then


T̃ =
∞∑


m̃=1


∞∑


ñ=1


E0mn(x3) sin(mx1) sin(nx2),


ϕ1 =
∞∑


m̃=1


∞∑


ñ=1


E1mn(x3) sin(mx1) sin(nx2),


ϕ2 =
∞∑


m̃=0


∞∑


ñ=0


E2mn(x3) cos(mx1) cos(nx2),


ϕ3 =
∞∑


m̃=1


∞∑


ñ=1


E3mn(x3) sin(mx1) sin(nx2),


ψ1 =
∞∑


m̃=1


∞∑


ñ=0


Ẽ1mn(x3) sin(mx1) cos(nx2),


ψ2 =
∞∑


m̃=0


∞∑


ñ=1


Ẽ2mn(x3) cos(mx1) sin(nx2),


ψ3 =
∞∑


m̃=0


∞∑


ñ=0


Ẽ3mn(x3) cos(mx1) cos(nx2),


(47)


where Eimn(x3) = Aimn exp(−px3) + Bimn exp[p(x3 − x31)], i = 0, 1, 2, 3, p =√
m2 + n2, m = πm̃


x11
, n = πñ


x21
, Aimn and Bimn are constant; Ẽsmn(x3) =


Ãsmn exp(−p0x3) + B̃smn exp[p0(x3 − x31)], s = 1, 2, p0 =
√


p2 + q, Ãsmn and


B̃smn are constant; E3mn(x3) = Ã3mn exp(−p1x3) + B̃3mn exp[p1(x3 − x31)] with


p1 =
√


p2 + 4σ1


σ2+2σ3
, Ã3mn and B̃3mn are constant.


Substitution of (47) into (13) and (14) gives


ω1 =
∞∑


m̃=1


∞∑


ñ=0


ω1mn(x3) sin(mx1) cos(nx2),


ω2 =
∞∑


m̃=0


∞∑


ñ=1


ω2mn(x3) cos(mx1) sin(nx2),


ω3 =
∞∑


m̃=0


∞∑


ñ=0


ω3mn(x3) cos(mx1) cos(nx2),


u1 =
∞∑


m̃=0


∞∑


ñ=1


u1mn(x3) cos(mx1) sin(nx2),


u2 =
∞∑


m̃=1


∞∑


ñ=0


u2mn(x3) sin(mx1) cos(nx2),


u3 =
∞∑


m̃=1


∞∑


ñ=1


u3mn(x3) sin(mx1) sin(nx2),


(48)


where ω1mn(x3),ω2mn(x3), ω3mn(x3) are known expressions containing the con-
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stants Aimn, Bimn, Ãimn, B̃imn (i = 1, 2, 3) and depend on x3,m, n and depend-
ing on x3,m, n and the elastic characteristics of the RP (these expresseions are
not given due to their awkwardness).


The functions T̃ , ω1, ω2, . . . , u3 at least formally, satisfy equalibrium equations
and boundary conditions (10b) and (11b) (the word “formally” will be omitted


as soon as the constants A0mn, B0mn, Aimn, Bimn, Ãimn, B̃imn (i = 1, 2, 3) have
been defined, convergence of the series and uniqueness of the obtained solution
have been proved).


After the right-hand sides of formulas (12) have been substituted by the
corresponding trigonometric series and the obtained series have been compared
with the series represented by formulas (47a) and (48) we shall have two systems
of linear algebraic equations for fixed m and n. The first one with a second order
amtrix enables one to define the constants Aomn, B0mn, while the second one
woth a twelfth-order matrix can be used to define the constants Aimn, Bimn,
Ãimn, B̃imn (i = 1, 2, 3). Similar to [8], it is proved that the obtained solution
or, to be more precise, the series representing the solution, uniformly converge
in the domain Ω = {0 ≤ x1 ≤ x11, 0 ≤ x2 ≤ x21, 0 ≤ x3 ≤ x31} and thet
the resulted regular solution is unique. In particular, the uniqueness of the
solution of boundary value problems of asymmetric elasticity, corresponding to
thermoelasticity problems considered in the given paper, as well as of a number
of other boundary value ptoblems of asymmetric thermoelasticity is proved in
[6]. The solution method can be easily extended to the case of the boundary
value and boundary value constant problems of asymmetric thermoelasticity
considered in the present work.


Thus a regular solution of boundary value problem (4), (10b), (11b), (12) has
been obtained for gs1 = 0, gs2 = 0, . . . , gs7 = 0 and g̃s1 = 1, g̃s2 = 1, . . . , g̃s7 = 1.


We should also say a few words about the above-mentioned second- and
twelfth-order matrices or, to be more exact, of the determinants ∆2 and ∆12 of
these matrices. We shall start with ∆12. Scaling in the expressions for Eimn and
Ẽimn (i = 1, 2, 3) can be always performed so the the elements of the twelfth-
order matrix should be bounded values for any m̃ and ñ (including the case
when m̃ → ∞, ñ = ñ0 = const or ñ → ∞, m̃ = m̃0 = const, or when both
m̃ →∞ and ñ →∞). If this is the case, then analizing the system for m̃ →∞,
ñ = ñ0, for ñ →∞, m̃ = m̃0 and for m̃ →∞, ñ →∞, one can easily see that
for all those cases ∆12 6= 0, while when m̃ = m̃0 and ñ = ñ0 by virtue of the
uniqueness theorem we have ∆12 6= 0. The same holds for ∆2 too, though the
expression for this detertminant can be immediately written out and analysed.


Quite similarly one can find and analyzed a solution of any other problem
from the class of boundary value problems (4), (10), (11), (12) with the only
difference that different boundary conditions for x1 = x1s and x2 = x2s in the
expressions for T̃ , ϕ1, ϕ2, . . . , ψ3 (see formulas (47)) will correspond to different
trigonometrical functions.


If in (47) we omit the last equality (the expression for ψ3) and in the ex-


pression for p0 we replace q by µ
η1


, then the functions T̃ , ϕ1, ϕ2, ϕ3, ψ1, ψ2
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will define, according to Cosserat’s pseudo-continuum, the solution of bound-
ary value problem (30), (33b), (34b), (35). The comments and generalizations
given to boundary value problem (4), (10b), (11b) and (12) for Cosserat’s con-
tinuum, exactly hold for the same problem in CosseratTs pseudo-continuum,
i.e. problem (30), (33), (35b), (35). The only difference is that unlike in the
case of Cosserat’s continuum, where one has to solve systems of linear equa-
tions with a matrices of the second and twelfth order, in the case of Cosserat’s
pseudo-continuum we have a second-order and tenth-order matrices.


5. According to asymmetric theory, consider a RP multilayer along x3 (or
MRP in the abbreviated form) occupying the domain Ω3. Ω3 is a union of the
domains Ω31 = {0 < x1 < x11, 0 < x2 < x21, 0 < x3 < x31}, Ω32 = {0 <
x1 < x11, 0 < x2 < x21, x31 < x3 < x32}, . . . , Ω3β = {0 < x1 < x11, 0 <
x2 < x21, x3(β−1) < x3 < x3β}, contacting along the planes x3 = x3j, where
j = 1, 2, . . . , β − 1,, and β is the number of layers. Each layer has its elastic
and thermal characteristics. With x1 = 0 and x1 = x11 conditions (10) are
simultaneously satisfied for all layers while with x2 = 0 and x2 = x21 conditions
(11) hold.


If the body occupies the domain Ω3, then conditions (10), (11), (12) are
satisfied on its faces with x31 replaced by x3β in (12). On the contact planes
x3 = x3j (x3 = x3j is the contact plane of the j-th layer contacting the j+1-th
layer) the following conditions


Tj − Tj+1 = τj1(x1, x2), λ∗j
∂Tj


∂x3
− λ∗j+1


∂Tj+1


∂x3
= τj2(x1, x2),


u1j − u1(j+1) = qj1(x1, x2), N31j −N31(j+1) = Qj1(x1, x2),
u2j − u2(j+1) = qj2(x1, x2), N32j −N32(j+1) = Qj2(x1, x2),
u3j − u3(j+1) = qj3(x1, x2), N33j −N33(j+1) = Qj3(x1, x2),
ω1j − ω1(j+1) = qj4(x1, x2), M31j −M31(j+1) = Qj4(x1, x2),
ω2j − ω2(j+1) = qj5(x1, x2), M32j −M32(j+1) = Qj5(x1, x2),
ω3j − ω3(j+1) = qj6(x1, x2), M33j −M33(j+1) = Qj6(x1, x2)


(49)


or


Tj − Tj+1 = τj1(x1, x2), λ∗j
∂Tj


∂x3


− λ∗j+1


∂Tj+1


∂x3


= τj2(x1, x2),


N31j = Qj1(x1, x2), N31(j+1) = Q̃j1(x1, x2),


N32j = Qj2(x1, x2), N32(j+1) = Q̃j2(x1, x2),
u3j − u3(j+1) = qj3(x1, x2), N33j −N33(j+1) = Qj3(x1, x2),
ω1j − ω1(j+1) = qj4(x1, x2), M31j −M31(j+1) = Qj4(x1, x2),
ω2j − ω2(j+1) = qj5(x1, x2), M32j −M32(j+1) = Qj5(x1, x2),


M33j = Qj6(x1, x2), M33(j+1) = Q̃j6(x1, x2)


(50)


are defined. The right-hand sides of equalities (49) and (50) are defined func-
tions and λ∗j and λ∗j+1 are thermal conductivity coefficients.


When we state the problem of thermoelastic equilibrium of a MRP we give


expressions for the functions T̃ (j), ϕ
(j)
1 , ϕ


(j)
2 , ϕ


(j)
3 , ψ


(j)
1 , ψ


(j)
2 , ψ


(j)
3 for the j-th


layer bearing in mind conditions (10), (11), and following the technique of
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the previous section construct a system of 2β equations in 2β unknowns and
another system of 12β equations in 12β unknowns. Solvability of the system,
convergence of the corresponding series and uniqueness of the obtained regular
solutions of the respective boundary contact problems of thermoelasticity are
proved (the solution for the MRP is called regular if each of the solutions u1j,
u2j, u3j is regular).


Besides the given contact conditions, a number of other contact conditions
can be constructed under which the solution of boundary contact problems of
thermoelasticity can be likewise effective.


Solutions of boundary contact problems for Cosserat’s pseudo-continuum are
considered in a similar way.


In conclusion, we should note that the constructed effective solutions of
boundary vale and boundary contact problems, as a rule, become elementary.
Indeed, if the functions defined on the surface x = x3s (although we imply
boundary value problems the above-stated can be easily extended to bound-
ary contact problems as well) can be represented by finite trigonometric series,
then the solutions can be also represented by finite series the summands of
which are elementary functions. In particular, this statement can be used to
specify and define new elasticity characteristics of a material σ1, σ2, σ3, σ4 and
η1, η2, naturally, using high-quality measuring instruments.
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