

Georgian Mathematical Journal
Volume 8 (2001), Number 4, 791–814


ON SINGULAR BOUNDARY VALUE PROBLEMS FOR
FUNCTIONAL DIFFERENTIAL EQUATIONS OF HIGHER


ORDER
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Abstract. Sufficient conditions are established for the solvability of the
boundary value problem


x(n)(t) = f(x)(t), hi(x) = 0 (i = 1, . . . , n),


where f is an operator (hi (i = 1, . . . , n) are operators) acting from some
subspace of the space of (n − 1)-times differentiable on the interval ]a, b[
m-dimensional vector functions into the space of locally integrable on ]a, b[
m-dimensional vector functions (into the space Rm).
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1. Formulation of the Main Results


1.1. Formulation of the problem and a brief survey of literature. Con-
sider the functional differential equation of n-th order


x(n)(t) = f(x)(t) (1.1)


with the boundary conditions


hi(x) = 0 (i = 1, . . . , n). (1.2)


When the operators f : Cn−1([a, b];Rm) → L([a, b];Rm) and hi : Cn−1([a, b];Rm)
→ Rm (i = 1, . . . , n) are continuous, problem (1.1), (1.2) is called regular. If the
operator f (operators hi (i = 1, . . . , n)) acts from some subspace of the space
Cn−1(]a, b[ ;Rm) into the space Lloc(]a, b[ ;Rm) (into the space Rm), problem
(1.1), (1.2) is called singular.


The basic principles of the theory of a wide enough class of regular problems
of form (1.1), (1.2) are constructed in the monographs [4], [5], [43]. Optimal
sufficient conditions for such problems to be solvable and uniquely solvable are
given in [7], [8], [10]–[12], [22], [24], [26]–[28], [39].
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As to singular problems of form (1.1), (1.2), they have been studied with
sufficient completeness in the case with the operator f having the form


f(x)(t) = g
(
t, x(t), . . . , x(n−1)(t)


)


(see [1], [2], [14]–[21], [32]–[35], [37], [45] and the references cited therein). For
the singular functional differential equation (1.1), the weighted initial problem
is studied in [30], [31], two-point problems in [3], [6], [23], [36], [38], [40]–[42],
whereas the multi-point Vallée-Poussin problem in [25]. In the general case the
singular problem (1.1), (1.2) remains studied but little. An attempt is made in
this paper to fill up this gap to some extent.


Throughout the paper the following notation will be used.
R = ]−∞, +∞[ , R+ = [0, +∞[ .
Rm is the space of m-dimensional column vectors x = (xi)


m
i=1 with the com-


ponents xi ∈ R (i = 1, . . . ,m) and the norm


‖x‖ =
m∑


i=1


|xi|.


Rm
+ = {x = (xi)


m
i=1 : xi ∈ R+ (i = 1, . . . , m)}.


Rm×m is the space of m × m matrices X = (xik)
m
i,k=1 with the components


xik ∈ R (i, k = 1, . . . , m) and the norm


‖X‖ =
m∑


i,k=1


|xik|.


If x = (xi)
m
i=1 ∈ Rm and X = (xik)


m
i,k=1 ∈ Rm×m, then


|x| = (|xi|)m
i=1 and |X| = (|xik|)m


i,k=1.


Rm×m
+ = {X = (xik)


m
i,k=1 : xik ∈ R+ (i, k = 1, . . . , m)}.


r(X) is the spectral radius of the matrix X ∈ Rm×m.
Inequalities between matrices and vectors are understood componentwise,


i.e., for x = (xi)
m
i=1, y = (yi)


m
i=1, X = (xik)


m
i,k=1 and Y = (yik)


m
i,k=1 we have


x ≤ y ⇐⇒ xi ≤ yi (i = 1, . . . , m)


and


X ≤ Y ⇐⇒ xik ≤ yik (i, k = 1, . . . ,m).


If k is a natural number and ε ∈ ]0, 1[ , then


(k − ε)! =
k∏


i=1


(i− ε).


If m and n are natural numbers, −∞ < a < b < +∞, α ∈ R and β ∈ R, then
Cn−1


α,β (]a, b[ ;Rm) is the Banach space of (n−1)-times continuously differentiable
vector functions x : ]a, b[→ Rm having limits


lim
t→a


(t− a)αix(i−1)(t), lim
t→b


(b− t)βix(i−1)(t) (i = 1, . . . , n), (1.3)
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where


αi =
α + i− n + |α + i− n|


2
, βi =


β + i− n + |β + i− n|
2


(1.4)


(i = 1, . . . , n).


The norm of an arbitrary element x of this space is defined by the equality


‖x‖Cn−1
α,β


= sup
{ n∑


k=1


(t− a)αi(b− t)βi‖x(i−1)(t)‖ : a < t < b
}
.


C̃n−1
α,β (]a, b[ ;Rm) is the set of x ∈ Cn−1


α,β (]a, b[ ;Rm) for which x(n−1) is locally
absolutely continuous on ]a, b[ , i.e., absolutely continuous on [a + ε, b − ε] for
arbitrarily small positive ε.


Lα,β(]a, b[ ;Rm) and Lα,β(]a, b[ ;Rm×m) are respectively the Banach space of
vector functions y : ]a, b[→ Rm and the Banach space of matrix functions Y :
]a, b[→ Rm×m whose components are summable with weight (t − a)α(b − t)β.
The norms in these spaces are defined by the equalities


‖y‖Lα,β
=


b∫


a


(t− a)α(b− t)β‖y(t)‖ dt, ‖Y ‖Lα,β
=


b∫


a


(t− a)α(b− t)β‖Y (t)‖ dt.


Lα,β(]a, b[ ;Rm
+ ) = {y ∈ Lα,β(]a, b[ ;Rm) : y(t) ∈ Rm


+ for t ∈ ]a, b[ }.
Lα,β(]a, b[ ;Rm×m


+ ) = {Y ∈ Lα,β(]a, b[ ;Rm×m) : Y (t) ∈ Rm×m
+ for t ∈ ]a, b[ }.


In the sequel it will always be assumed that −∞ < a < b < +∞,


α ∈ [0, n− 1], β ∈ [0, n− 1], (1.5)


whereas f : Cn−1
α,β (]a, b[ ;Rm) → Lα,β(]a, b[ ;Rm) and hi : Cn−1


α,β (]a, b[ ;Rm) → Rm


(i = 1, . . . , n) are continuous operators which, for each ρ ∈ ]0, +∞[, satisfy the
conditions


sup
{
‖f(x)(·)‖ : ‖x‖Cn−1


α,β
≤ ρ


}
∈ Lα,β(]a, b[ ;R+), (1.6)


sup
{
‖hi(x)‖ : ‖x‖Cn−1


α,β
≤ ρ


}
< +∞ (i = 1, . . . , n). (1.7)


By a solution of the functional differential equation (1.1) is understood a vector


function x ∈ C̃n−1
α,β (]a, b[ ;Rm) satisfying (1.1) almost everywhere on ]a, b[ . A


solution of (1.1) satisfying (1.2) is called a solution of problem (1.1), (1.2).


1.2. Theorem on the Fredholm property of a linear boundary value
problem. We begin by introducing


Definition 1.1. A linear operator p : Cn−1
α,β (]a, b[ ;Rm) → Rm is called stron-


gly bounded if there exists ζ ∈ Lα,β(]a, b[ ;R+) such that


‖p(x)(t)‖ ≤ ζ(t)‖x‖Cn−1
α,β


for a < t < b, x ∈ Cn−1
α,β (]a, b[ ;Rm). (1.8)
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Consider the boundary value problem


x(n)(t) = p(x)(t) + q(t), (1.9)


`i(x) = c0i (i = 1, . . . , n), (1.10)


where p : Cn−1
α,β (]a, b[ ;Rm) → Lα,β(]a, b[ ;Rm) is a linear, strongly bounded op-


erator, `i : Cn−1
α,β (]a, b[ ;Rm) → Rm (i = 1, . . . , m) are linear bounded operators,


q ∈ Lα,β(]a, b[ ;Rm), c0i ∈ Rm (i = 1, . . . ,m).


Theorem 1.1. For problem (1.9), (1.10) to be uniquely solvable it is neces-
sary and sufficient that the corresponding homogeneous problem


x(n)(t) = p(x)(t), (1.90)


`i(x) = 0 (i = 1, . . . , n) (1.100)


have only a trivial solution. Moreover, if problem (1.90) (1.100) has only a
trivial solution, then there exists a positive constant γ such that for any q ∈
Lα,β(]a, b[ ;Rm) and c0i ∈ Rm (i = 1, . . . , m), a solution x of problem (1.9), (1.10)
admits the estimate


‖x‖Cn−1
α,β


≤ γ
( n∑


i=1


‖c0i‖+ ‖q‖Lα,β


)
. (1.11)


The vector differential equation with deviating arguments


x(n)(t) =
n∑


i=1


Pi(t)x
(i−1)(τi(t)) + q(t), (1.12)


where τi : [a, b] → [a, b] (i = 1, . . . , n) are measurable functions, Pi : ]a, b[→
Rm×m (i = 1, . . . , n) are matrix functions with measurable components and
q ∈ Lα,β(]a, b[ ;Rm), is a particular case of equation (1.9). Along with (1.12),
consider the corresponding homogeneous equation


x(n)(t) =
n∑


i=1


Pi(t)x
(i−1)(τi(t)). (1.120)


From Theorem 1.1 follows


Corollary 1.1. Let almost everywhere on ]a, b[ the inequalities


τi(t) > a for i > n− α, τj(t) < b for j > n− β (1.13)


be fulfilled. Moreover,


b∫


a


(t− a)α(b− t)β
(
τi(t)− a


)−αi
(
b− τi(t)


)−βi‖Pi(t)‖ dt


< +∞ (i = 1, . . . , n).∗) (1.14)


∗) Here and in the sequel it will be assumed that if αi = 0 (βi = 0), then (τi(t)−a)−αi ≡ 1
((τi(t)− b)−βi ≡ 1).
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Then for problem (1.12), (1.2) to be uniquely solvable, it is necessary and suf-
ficient that the corresponding homogeneous problem (1.120), (1.20) have only a
trivial solution. Moreover, if problem (1.120) (1.20) has only a trivial solution,
then there exists a positive constant γ such that for any q ∈ Lα,β(]a, b[ ;Rm)
and c0i ∈ Rm (i = 1, . . . , m), a solution x of problem (1.12), (1.2) admits esti-
mate (1.11).


1.3. A priori boundedness principle for the nonlinear problem (1.1),
(1.2). To formulate this principle we have to introduce


Definition 1.2. Let γ be a positive number. The pair (p, (`i)
n
i=1) of contin-


uous operators p : Cn−1
α,β (]a, b[ ;Rm) × Cn−1


α,β (]a, b[ ;Rm) → Lα,β(]a, b[ ;Rm) and


(`i)
n
i=1 : Cn−1


α,β (]a, b[ ;Rm)×Cn−1
α,β (]a, b[ ;Rm) → Rmn is said to be γ-consistent if:


(i) the operators p(x, ·) : Cn−1
α,β (]a, b[ ;Rm) → Lα,β(]a, b[ ;Rm) and `i(x, ·) :


Cn−1
α,β (]a, b[ ;Rm) → Rm are linear for any fixed x ∈ Cn−1


α,β (]a, b[ ;Rm) and i ∈
{1, . . . , n};


(ii) for any x and y ∈ Cn−1
α,β (]a, b[ ;Rm) and for almost all t ∈ ]a, b[ we have


inequalities


‖p(x, y)(t)‖ ≤ δ
(
t, ‖x‖Cn−1


α,β


)
‖y‖Cn−1


α,β
,


n∑


i=1


‖`i(x, y)‖ ≤ δ0


(
‖x‖Cn−1


α,β


)
‖y‖Cn−1


α,β
,


where δ0 : R+ → R+ is nondecreasing, δ(·, ρ) ∈ Lα,β(]a, b[ ;R+) for every ρ ∈ R+,
and δ(t, ·) : R+ → R+ is nondecreasing for every t ∈ ]a, b[ ;


(iii) for any x ∈ Cn−1
α,β (]a, b[ ;Rm), q ∈ Lα,β(]a, b[ ;Rm) and ci ∈ Rm (i =


1, . . . , n), an arbitrary solution y of the boundary value problem


y(n)(t) = p(x, y)(t) + q(t), `i(x, y) = ci (i = 1, . . . , n) (1.15)


admits the estimate


‖y‖Cn−1
α,β


≤ γ
( n∑


i=1


‖ci‖+ ‖q‖Lα,β


)
. (1.16)


Definition 1.2′. The pair (p, (`i)
n
i=1) of continuous operators


p : Cn−1
α,β (]a, b[ ;Rm) × Cn−1


α,β (]a, b[ ;Rm) → Lα,β(]a, b[ ;Rm) and (`i)
n
i=1 :


Cn−1
α,β (]a, b[ ;Rm)×Cn−1


α,β (]a, b[ ;Rm) → Rmn is said to be consistent if there exists
γ > 0 such that this pair is γ-consistent.


Theorem 1.2. Let there exist a positive number ρ0 and a consistent pair
(p, (`i)


n
i=1) of continuous operators p : Cn−1


α,β (]a, b[ ;Rm) × Cn−1
α,β (]a, b[ ;Rm) →


Rmn and (`i)
n
i=1 : Cn−1


α,β (]a, b[ ;Rm) × Cn−1
α,β (]a, b[ ;Rm) → Rmn such that for any


λ ∈ ]0, 1[ an arbitrary solution of the problem


x(n)(t) = (1− λ)p(x, x)(t) + λf(x)(t), (1.17)


(λ− 1)`i(x, x) = λhi(x) (i = 1, . . . , n) (1.18)


admits the estimate


‖x‖Cn−1
α,β


≤ ρ0. (1.19)
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Then problem (1.1), (1.2) is solvable.


For n = 1 and α = β = 0, Theorem 1.2 implies Theorem 1 from [27].


Corollary 1.2. Let there exist a positive number γ, a γ-consistent pair
(p, (`i)


n
i=1) of continuous operators p : Cn−1


α,β (]a, b[ ;Rm) × Cn−1
α,β (]a, b[ ;Rm) →


Lα,β(]a, b[ ;Rm), (`i)
n
i=1 : Cn−1


α,β (]a, b[ ;Rm) × Cn−1
α,β (]a, b[ ;Rm) → Rmn and func-


tions η : ]a, b[×R+ → R+ and η0 : R+ → R+ such that the inequalities
∥∥∥f(x)(t)− p(x, x)(t)


∥∥∥ ≤ η
(
t, ‖x‖Cn−1


α,β


)
, (1.20)


n∑


i=1


∥∥∥hi(x)− `i(x, x)
∥∥∥ ≤ η0


(
‖x‖Cn−1


α,β


)
(1.21)


are fulfilled for any x ∈ Cn−1
α,β (]a, b[ ;Rm) and almost all t ∈ ]a, b[ . Moreover,


η(·, ρ) ∈ Lα,β(]a, b[ ;R+) for ρ ∈ R+ and


lim sup
ρ→+∞


(
η0(ρ)


ρ
+


1


ρ


b∫


a


(s− a)α(b− s)βη(s, ρ) ds


)
<


1


γ
. (1.22)


Then problem (1.1), (1.2) is solvable.


As an example, in Cn−1
α,0 (]a, b[ ;Rm) consider the boundary value problem


x(n)(t) = g
(
t, x(τ1(t)), . . . , x


(n−1)(τn(t))
)
, (1.23)


lim
t→a


x(i−1)(t) = ci(x) (i = 1, . . . , k),


lim
t→b


x(i−1)(t) = ci(x) (i = k + 1, . . . , n).
(1.24)


Here k ∈ {1, . . . , n − 1}, α ∈ [0, n − k], τi : [a, b] → [a, b] (i = 1, . . . , n)


are measurable functions, ci : C̃n−1
α,0 (]a, b[ ;Rm) → Rm (i = 1, . . . , m) are con-


tinuous operators, and g : ]a, b[×Rmn → Rm is a vector function such that
g(·, x1, . . . , xn) : ]a, b[→ Rm is measurable for any xi ∈ Rm (i = 1, . . . , n) and
g(t, ·, . . . , ·) : Rmn → Rm is continuous for almost all t ∈ ]a, b[ . We will also
suppose that for i > n− α the inequality


τi(t) > a


holds almost everywhere on ]a, b[ .
The following statement is valid.


Corollary 1.3. Let there exist η0 : R+ → R+, Pi ∈ Lα,0(]a, b[ ;Rmn
+ ) (i =


1, . . . , n) and q : ]a, b[×R+ → Rm
+ such that


n∑


i=1


‖ci(x)‖ ≤ η0


(
‖x‖Cn−1


α,0


)
for x ∈ Cn−1


α,0 (]a, b[ ;Rm) (1.25)
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and on ]a, b[×Rmn the inequality
∣∣∣g(t, x1, . . . , xn)


∣∣∣


≤
n∑


i=1


(
τi(t)− a


)αiPi(t)|xi|+ q
(
t,


n∑


i=1


(
τi(t)− a


)αi‖xi‖
)


(1.26)


holds. Let, moreover, q(·, ρ) ∈ Lα,0(]a, b[ ;Rm
+ ) for every ρ ∈ R+, the components


of q(t, ρ) are nondecreasing with respect to ρ,


lim
ρ→+∞


(
η0(ρ)


ρ
+


1


ρ


b∫


a


(s− a)α‖q(s, ρ)‖ ds
)


= 0 (1.27)


and


r(P) < 1, (1.28)


where


P =
k∑


i=1


(b− a)n−k−1−α+αk+1


(n− k − 1)!(k + 1− i− αk+1)!


b∫


a


(s− a)α
(
τi(s)− a


)k+1−i−αk+1Pi(s) ds


+
n∑


i=k+1


(b− a)n−i−α+αi


(n− i)!


b∫


a


(s− a)αPi(s) ds.


Then problem (1.23), (1.24) is solvable.


Before passing to the formulation of the next corollary we introduce


Definition 1.3. An operator p : Cn−1
α,β (]a, b[ ;Rm) → Lα,β(]a, b[ ;Rm) (an op-


erator ` : Cn−1
α,β (]a, b[ ;Rm) → Rm) is called positive homogeneous if the equality


p(λx)(t) = λp(x)(t)
(
`(λx) = λ`(x)


)


is fulfilled for all x ∈ Cn−1
α,β (]a, b[ ;Rm), λ ∈ R+ and almost all t ∈ ]a, b[ .


Definition 1.4. A positive homogeneous operator p : Cn−1
α,β (]a, b[ ;Rm) →


Lα,β(]a, b[ ;Rm) (a positive homogeneous operator ` : Cn−1
α,β (]a, b[ ;Rm) → Rm) is


called strongly bounded (bounded) if there exists a function ζ ∈ Lα,β(]a, b[ ;R+)
(a positive number ζ0) such that the inequality


‖p(x)(t)‖ ≤ ζ(t)‖x‖Cn−1
α,β


(
‖`(x)‖ ≤ ζ0‖x‖Cn−1


α,β


)


holds for all x ∈ Cn−1
α,β (]a, b[ ;Rm) and almost all t ∈ ]a, b[.


Corollary 1.4. Let there exist a linear, strongly bounded operator
p : Cn−1


α,β (]a, b[ ;Rm) → Lα,β(]a, b[ ;Rm), a positive homogeneous, continuous,


strongly bounded operator p : Cn−1
α,β (]a, b[ ;Rm) → Lα,β(]a, b[ ;Rm), linear bounded
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operators `i : Cn−1
α,β (]a, b[ ;Rm) → Rm (i = 1, . . . , n), positive homogeneous, con-


tinuous, bounded operators `i : Cn−1
α,β (]a, b[ ;Rm) → Rm (i = 1, . . . , m), and


functions η :]a, b[×R+ and η0 : R+ → R+ such that the inequalities
∥∥∥f(x)(t)− p(x)(t)− p(x)(t)


∥∥∥ ≤ η
(
t, ‖x‖Cn−1


α,β


)
, (1.29)


n∑


i=1


∥∥∥hi(x)− `i(x)− `i(x)
∥∥∥ ≤ η0


(
‖x‖Cn−1


α,β


)
(1.30)


hold for any x ∈ Cn−1
α,β (]a, b[ ;Rm) and for almost all t ∈ ]a, b[ . Moreover,


η(·, ρ) ∈ Lα,β(]a, b[ ;R+) for any ρ ∈ R+,


lim
ρ→+∞


(
η0(ρ)


ρ
+


1


ρ


b∫


a


(s− a)α(b− s)βη(s, ρ) ds


)
= 0 (1.31)


and for any λ ∈ [0, 1] the problem


x(n)(t) = p(x)(t) + λp(x)(t), `i(x) + λ`i(x) = 0 (i = 1, . . . , n) (1.32)


has only a trivial solution. Then problem (1.1), (1.2) is solvable.


As an example, for the second order singular half-linear differential equation


u′′(t) = p1(t)|u(t)|µ|u′(t)|1−µ sgn u(t) + p2(t)u
′(t) + p0(t) (1.33)


let us consider the two-point boundary value problems


lim
t→a


u(t) = c1, lim
t→b


u(t) = c2 (1.341)


and


lim
t→a


u(t) = c1, lim
t→b


u′(t) = c2. (1.342)


We are interested in the case where µ ∈ [0, 1] and pi : ]a, b[→ R (i = 0, 1, 2)
are measurable functions satisfying either the conditions


b∫


a


(t− a)(b− t)|pi(t)| dt < +∞ (i = 0, 1),


b∫


a


|p2(t)| dt < +∞, (1.351)


p1(t) ≥ −λ1[σ(t)]1+µ,
[
p2(t)− σ′(t)


σ(t)


]
sgn(t0 − t) ≥ −λ2σ(t) (1.361)


for a < t < b,


or the conditions


b∫


a


(t− a)|p0(t)| dt < +∞ (i = 0, 1),


b∫


a


|p2(t)| dt < +∞, (1.352)


p1(t) ≥ −λ1[σ(t)]1+µ, p2(t)− σ′(t)
σ(t)


≥ −λ2σ(t) for a < t < b. (1.362)
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Here t0 ∈ ]a, b[ , λi ∈ R+ (i = 1, 2), and σ : ]a, b[→ R+ is a locally absolutely
continuous function such that either


σ′(t) sgn(t0 − t) ≤ 0 for a < t < b,


+∞∫


0


ds


λ1 + λ2s + s(1+µ)/µ


>
µ


2


[ b∫


a


σ(s) ds +
∣∣∣∣


t0∫


a


σ(s) ds−
b∫


t0


σ(s) ds


∣∣∣∣
]
, (1.371)


or


+∞∫


0


ds


λ1 + λ2s + s(1+µ)/µ
> µ


b∫


a


σ(s) ds. (1.372)


By virtue of Theorems 3.1 and 3.2 from [9] Corollary 1.4 implies


Corollary 1.5. Let conditions (1.35i), (1.36i) and (1.37i) be fulfilled for
some i ∈ {1, 2}. Then problem (1.33), (1.34i) has at least one solution.


This corollary is a generalization of the classical result of Ch. de la Vallée-
Poussin [44] for equation (1.33).


2. Auxiliary Propositions


Lemma 2.1. Let ρ > 0, η ∈ Lα,β(]a, b[ ;R+), t0 ∈ ]a, b[ , and S be the set of
(n − 1)-times continuously differentiable vector functions x : ]a, b[→ Rm satis-
fying the conditions


∥∥∥x(i−1)(t0)
∥∥∥ ≤ ρ (i = 1, . . . , n), (2.1)


∥∥∥x(n−1)(t)− x(n−1)(s)
∥∥∥ ≤


t∫


s


η(ξ) dξ for a < s ≤ t < b. (2.2)


Then S ⊂ C̃n−1
α,β (]a, b[ ;Rm) and S is a compact set of the space Cn−1


α,β (]a, b[ ;Rm).


Proof. Let x be an arbitrary element of the set S. Then by (2.2) the function
x(n−1) is locally absolutely continuous on ]a, b[ and


‖x(n)(t)‖ ≤ η(t) for almost all t ∈ ]a, b[ . (2.3)


Therefore


x(n) ∈ Lα,β(]a, b[ ;Rm), (2.4)


x(i−1)(t) =
n∑


j=i


(t− t0)
j−i


(j − i)!
x(j−1)(t0)


+
1


(n− i)!


t∫


t0


(t− s)n−ix(n)(s) ds for a < t < b (i = 1, . . . , n), (2.5)
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and
∥∥∥x(i−1)(t)


∥∥∥ ≤ εi(t) for a < t < b (i = 1, . . . , n), (2.6)


where


εi(t) = ρ
n∑


j=i


(b− a)j−i


(j − i)!
+


1


(n− i)!


∣∣∣∣
t∫


t0


(t− s)n−iη(s) ds


∣∣∣∣ (i = 1, . . . , n). (2.7)


Let


i1 = max{i : αi = 0}, i2 = max{i : βi = 0}.
Then


n− i ≥ α, αi = 0 for i ≤ i1, αi = α + i− n > 0 for i > i1, (2.81)


n− i ≥ β, βi = 0 for i ≤ i2, βi = β + i− n > 0 for i > i2. (2.82)


Therefore


εi(t) ≤ εi(a+) < +∞ for i ≤ i1, a < t ≤ t0, (2.9)


t0∫


a


ε1+i1(s) ds < +∞ if i1 < n− 1, (2.10)


εi(t) ≤ εi(b−) < +∞ for i ≤ i2, t0 ≤ t < b, (2.11)


b∫


t0


ε1+i2(s) ds < +∞ if i2 < n− 1. (2.12)


If i > i1, then, with (2.7) and (2.81) taken into account, for any δ ∈ ]0, t0− a[
we find


lim sup
t→a


[
(t− a)αiεi(t)


]
= lim sup


t→a


[
(t− a)α+i−n


(n− i)!


a+δ∫


t


(s− t)n−iη(s) ds


]


≤ 1


(n− i)!


a+δ∫


a


(s− a)αη(s) ds.


Hence, because of the arbitrariness of δ, it follows that


lim
t→a


[
(t− a)αiεi(t)


]
= 0 for i > i1. (2.13)


Analogously, it can be shown that


lim
t→b


[
(b− t)βiεi(t)


]
= 0 for i > i2. (2.14)
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If i ≤ i1 (if i ≤ i2), then by virtue of conditions (2.3) and (2.81) (conditions
(2.3) and (2.82)) we have


t0∫


a


(s− a)n−i‖x(n)(s)‖ ds < +∞
( b∫


t0


(b− s)n−i‖x(n)(s)‖ ds < +∞
)
.


Hence (2.5) implies the existence of the limit


lim
t→a


x(i−1)(t)
(


lim
t→b


x(i−1)(t)
)
.


If however i > i1 (i > i2), then from (2.6) and (2.13) (from (2.6) and (2.14)) we
have


lim
t→a


(t− a)αix(i−1)(t) = 0
(


lim
t→b


(b− t)βix(i−1)(t) = 0
)
.


We have thereby proved the existence of limit (1.3). Therefore S ⊂
C̃n−1


α,β (]a, b[ ;Rm).
By the Arzela–Ascoli lemma, from estimates (2.3), (2.6) and conditions (2.9)–


(2.14) it follows that S is a compact set of the space Cn−1
α,β (]a, b[ ;Rm).


Let (p, (`i)
n
i=1) be a γ-consistent pair of continuous operators p :


Cn−1
α,β (]a, b[ ;Rm) × Cn−1


α,β (]a, b[ ;Rm) → Lα,β(]a, b[ ;Rm) and (`i)
n
i=1 :


Cn−1
α,β (]a, b[ ;Rm) × Cn−1


α,β (]a, b[ ;Rm) → Rmn, and q : Cn−1
α,β (]a, b[ ;Rm) →


Lα,β(]a, b[ ;Rm), c0i : Cn−1
α,β (]a, b[ ;Rm) → Rm (i = 1, . . . , n) be continuous opera-


tors. For any x ∈ Cn−1
α,β (]a, b[ ;Rm), consider the linear boundary value problem


y(n)(t) = p(x, y)(t) + q(x)(t), `i(x, y) = c0i(x) (i = 1, . . . , n). (2.15)


By condition (iii) of Definition 1.2, the homogeneous problem


y(n)(t) = p(x, y)(t), `i(x, y) = 0 (i = 1, . . . , n) (2.150)


has only a trivial solution. By Theorem 1.1 this fact guarantees the existence
of a unique solution y of problem (2.15). We write


u(x)(t) = y(t).


Lemma 2.2. u : Cn−1
α,β (]a, b[ ;Rm) → Cn−1


α,β (]a, b[ ;Rm) is a continuous opera-
tor.


Proof. Let


xi ∈ Cn−1
α,β (]a, b[ ;Rm), yi(t) = u(xi)(t) (i = 1, 2)


and


y(t) = y2(t)− y1(t).


Then


y(n)(t) = p2(x2, y)(t) + q0(x1, x2)(t),


`i(x2, y) = ci(x1, x2) (i = 1, . . . , n),
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where


q0(x1, x2)(t) = p(x1, y1)(t)− p(x2, y1)(t) + q(x2)(t)− q(x1)(t),


ci(x1, x2) = `i(x1, x2)− `i(x2, y1) + c0i(x2)− c0i(x1) (i = 1, . . . , n).


Hence, by condition (iii) of Definition 1.2 we have


∥∥∥u(x2)− u(x1)
∥∥∥


Cn−1
α,β


≤ γ
( n∑


i=1


‖ci(x1, x2)‖+ ‖q0(x1, x2)‖Lα,β


)
.


Since the operators p, q, `i and c0i (i = 1, . . . , n) are continuous, this estimate
implies the continuity of the operator u.


Lemma 2.3. Let k ∈ {1, . . . , n−1}, α ∈ [0, n−k], and x ∈ Cn−1
α,0 (]a, b[ ;Rm)


be a vector function satisfying conditions (1.24). Then on ]a, b[ the following
inequalities are fulfilled:


|x(i−1)(t)| ≤
n∑


j=i


(b− a)j−i|cj(x)|


+
1


(n− i)!
(b− a)n−i−α+αi(t− a)−αiy(x) (i = k + 1, . . . , n), (2.16)


|x(i−1)(t)| ≤
n∑


j=i


(b− a)j−i|cj(x)|


+
(b− a)n−k−1−α+αk+1


(n− k − 1)!(k + 1− i− αk+1)!
(t− a)k+1−i−αk+1y(x) (i = 1, . . . , k), (2.17)


where


y(x) =


b∫


a


(s− a)α|x(n)(s)| ds. (2.18)


Proof. Let x0(t) be a polynomial of degree not higher than n− 1 satisfying the
conditions


x
(i−1)
0 (a) = ci(x) (i = 1, . . . , k), x


(i−1)
0 (b) = ci(x) (i = k + 1, . . . , n).


Then


|x(i−1)
0 (t)| ≤


n∑


j=i


(b− a)j−i|cj(x)| for a ≤ t ≤ b (i = 1, . . . , n). (2.19)


On the other hand,


x(i−1)(t) = x
(i−1)
0 (t)− (−1)n−i


(n− i)!


b∫


t


(s− t)n−ix(n)(s) ds (2.20)


(i = k + 1, . . . , n),


x(i−1)(t) = ci(x) +


t∫


a


x(i)(s) ds (i = 1, . . . , k). (2.21)
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By (1.4)


n− i− α− αi ≥ 0 (i = 1, . . . , n).


Therefore


(s− t)n−i ≤ (s− a)n−i−α+αi(s− a)−αi(s− a)α


≤ (b− a)n−i−α+αi(t− a)−αi(s− a)α for t ≤ s < b (i = 1, . . . , n).


If along with this we take into account inequality (2.19), then from (2.20) we
obtain estimates (2.16).


It is clear that


αk+1 ≤ 1,


since α ≤ n − k. If αk+1 < 1, then by virtue of (2.16) and (2.19), from (2.21)
follow estimates (2.17).


To complete the proof of the lemma it remains to consider the case where
αk+1 = 1. Then α = n− k and thus from (2.19)–(2.21) we find


|x(k−1)(t)| ≤
n∑


j=k


(b− a)j−k|cj(x)|


+
1


(n− k − 1)!


t∫


a


( b∫


τ


(s− τ)n−k−1|x(n)(s)| ds


)
dτ


=
n∑


j=k


(b− a)j−k|cj(x)|


+
1


(n− k − 1)!


[
(t− a)


b∫


t


(s− a)n−k−1|x(n)(s)| ds +


t∫


a


(s− a)n−k|x(n)(s)| ds


]


≤
n∑


j=k


(b− a)j−k|cj(x)|+ 1


(n− k − 1)!
y(x)


and


|x(i−1)(t)| ≤
n∑


j=i


(b− a)j−i|cj(x)|+ 1


(n− k − 1)!(k − i)!
(t− a)k−iy(x)


(i = 1, . . . , k).


Therefore estimates (2.17) are valid.


3. Proof of the Main Results


Proof of Theorem 1.1. Let B = Cn−1
α,β (]a, b[ ;Rm)×Rmn be a Banach space with


elements u = (x; c1, . . . , cn), where x ∈ Cn−1
α,β (]a, b[ ;Rm), ci ∈ Rm (i = 1, . . . , n),


and the norm


‖u‖B = ‖u‖Cn−1
α,β


+
n∑


i=1


‖ci‖.
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Fix arbitrarily t0 ∈ ]a, b[ and, for any u = (x; c1, . . . , cn), set


p̃(u)(t) =


(
n∑


i=1


(t− t0)
i−1


(i− 1)!


(
ci + x(i−1)(t0)


)


+
1


(n− 1)!


t∫


t0


(t− s)n−1p(x)(s) ds; c1 − `1(x), . . . , cn − `n(x)


)
,


q̃(t) =


(
1


(n− 1)!


t∫


t0


(t− s)n−1q(s) ds; c01, . . . , c0n


)
.


Problem (1.9), (1.10) is equivalent to the operator equation


u = p̃(u) + q̃ (3.1)


in the space B since u = (x; c1, . . . , cn) is a solution of equation (3.1) if and only
if ci = 0 (i = 1, . . . , n) and x is a solution of problem (1.9), (1.10). As for the
homogeneous equation


u = p̃(u) (3.10)


it is equivalent to the homogeneous problem (1.90), (1.100).
From condition (1.8) and Lemma 2.1 it immediately follows that the linear


operator p̃ : B → B̃ is compact. By this fact and the Fredholm alternative for
operator equations ([13], Ch. XIII, § 5, Theorem 1), equation (3.1) is uniquely
solvable if and only if equation (3.10) has only a trivial solution. Moreover, if
equation (3.10) has only a trivial solution, then the operator I − p̃ is invertible
and (I − p̃)−1 : B → B is a linear bounded operator, where I : B → B is an
identical operator. Therefore there exists γ0 > 0 such that for any q̃ ∈ B the
solution u of equation (3.1) admits the estimate


‖u‖B ≤ γ0‖q̃‖B.


However,


‖q̃‖B ≤
n∑


i=1


‖c0i‖+ γ1‖q‖Lα,β
,


where γ1 > 1 is a constant depending only on α, β, a, b, t0 and n. Hence


‖u‖B ≤ γ
( n∑


i=1


‖c0i‖+ ‖q‖Lα,β


)
, (3.2)


where γ = γ0γ1.
Since problem (1.9), (1.10) is equivalent to equation (3.1), it is clear that


problem (1.9), (1.10) is uniquely solvable if and only if problem (1.90), (1.100)
has only a trivial solution. Moreover, if (1.90), (1.100) has only a trivial solution,
then by virtue of (3.2) the solution x of problem (1.9), (1.10) admits estimate
(1.11).
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Proof of Corollary 1.1. We set


p(x)(t) =
n∑


i=1


Pi(t)x
(i−1)(τi(t))


for any x ∈ Cn−1
α,β (]a, b[;Rm). Then equations (1.12) and (1.120) take respectively


forms (1.9) and (1.90). On the other hand, in view of (1.13) and (1.14)


p : Cn−1
α,β (]a, b[ ;Rm) → Lα,β(]a, b[ ;Rm)


is a strongly bounded linear operator. Therefore the conditions of Theorem 1.1
are fulfilled.


Proof of Theorem 1.2. Let δ, δ0 and γ be the functions and numbers appearing
in Definitions 1.2 and 1.2′. We set


η(t) = 2ρ0δ(t, 2ρ0) + sup
{
‖f(x)(t)‖ : ‖x‖Cn−1


α,β
≤ 2ρ0


}
,


η0 = 2ρ0δ0(2ρ0) +
n∑


i=1


sup
{
‖hi(x)‖ : ‖x‖Cn−1


α,β
≤ 2ρ0


}
,


ρ1 = γ
(
η0 + ‖η‖Lα,β


)
, η∗(t) = δ(t, ρ1)ρ0 + η(t), (3.3)


B0 =
{
x ∈ Cn−1


α,β (]a, b[ ;Rm) : ‖x‖Cn−1
α,β


≤ ρ1


}
, (3.4)


χ(s) =







1 for 0 ≤ s ≤ ρ0


2− s/ρ0 for ρ0 < s < 2ρ0


0 for s ≥ 2ρ0


, (3.5)


q(x)(t) = χ
(
‖x‖Cn−1


α,β


)[
f(x)(t)− p(x, x)(t)


]
, (3.6)


c0i(x) = χ
(
‖x‖Cn−1


α,β


)[
`i(x, x)− hi(x)


]
(i = 1, . . . , n). (3.7)


By (1.6) and (1.7)


η0 < +∞, η ∈ Lα,β(]a, b[ ;R+), η∗ ∈ Lα,β(]a, b[ ;R+)


and for every x ∈ Cn−1
α,β (]a, b[ ;Rm) and almost all t ∈ ]a, b[ we have the inequal-


ities


‖q(x)(t)‖ ≤ η(t),
n∑


i=1


‖c0i(x)‖ ≤ η0. (3.8)


Let u : Cn−1
α,β (]a, b[ ;Rm) → Cn−1


α,β (]a, b[ ;Rm) be an operator which to every


x ∈ Cn−1
α,β (]a, b[ ;Rm) assigns the solution y of problem (2.15). By Lemma 2.1,


u is a continuous operator. On the other hand, by conditions (ii) and (iii) of
Definition 1.2, notations (3.3), (3.4) and inequalities (3.8), the vector function
y = u(x) satisfies, for each x ∈ B0, the conditions


‖y‖Cn−1
α,β


≤ ρ1,
∥∥∥y(n−1)(t)− y(n−1)(s)


∥∥∥ ≤
t∫


s


η∗(ξ) dξ for a < s ≤ t < b.
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By Lemma 2.2 this implies that the operator u maps the ball B0 into its own
compact subset. Therefore, owing to Schauder’s principle, there exists x ∈ B0


such that


x(t) = u(x)(t) for a < t < b.


By notations (3.6), (3.7) the function x is a solution of problem (1.17), (1.18),
where


λ = χ
(
‖x‖Cn−1


α,β


)
. (3.9)


Let us show that x admits estimate (1.19). Assume the contrary. Then either


ρ0 < ‖x‖Cn−1
α,β


< 2ρ0, (3.10)


or


‖x‖Cn−1
α,β


≥ 2ρ0. (3.11)


If condition (3.10) is fulfilled, then by virtue of (3.5) and (3.9)


λ ∈ ]0, 1[ ,


which, by one of the conditions of the theorem, guarantees the validity of esti-
mate (1.19). But this contradicts condition (3.10).


Assume now that inequality (3.11) is fulfilled. Then by virtue of (3.5) and
(3.9)


λ = 0


and therefore x is a solution of problem (2.150). Thus x(t) ≡ 0 since problem
(2.150) has only a trivial solution. But this contradicts inequality (3.11). The
contradiction obtained proves the validity of estimate (1.19).


By (1.19), (3.5)–(3.7) and (3.9), it clearly follows from (1.17), (1.18) that
λ = 1 and x is a solution of problem (1.1), (1.2).


Proof of Corollary 1.2. By (1.22) there is ρ0 > 0 such that


γ


(
η0(ρ) +


b∫


a


(s− a)α(b− s)βη(s, ρ) ds


)
< ρ for ρ > ρ0. (3.12)


Let x be a solution of problem (1.17), (1.18) for some λ ∈ ]0, 1[ . Then y = x
is also a solution of problem (1.15) where


q(t) = λ
(
f(x)(t)− p(x, x)(t)


)
,


c0i(x) = λ
(
`i(x, x)− hi(x)


)
(i = 1, . . . , n).


Assume that


ρ = ‖x‖Cn−1
α,β


.
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By the γ-consistency of the pair (p, (`i)
n
i=1) and inequalities (1.20), (1.21) we


have


ρ ≤ γ
( n∑


i=1


‖c0i(x)‖+ ‖q‖Lα,β


)


≤ γ
(
η0(ρ) +


b∫


a


(s− a)α(b− s)βη(s, ρ) ds
)
.


Hence by (3.12) it follows that ρ ≤ ρ0. Therefore estimate (1.19) is valid, which
due to Theorem 1.2 guarantees the solvability of problem (1.1), (1.2).


Proof of Corollary 1.3. Problem (1.23), (1.24) is obtained from problem (1.1),
(1.2) when


f(x)(t) ≡ g
(
t, x(τ1(t)), . . . , x


(n−1)(τn(t))
)
, (3.13)


hi(x) = lim
t→a


x(i−1)(t)− ci(x) (i = 1, . . . , k),


hi(x) = lim
t→b


x(i−1)(t)− ci(x) (i = k + 1, . . . , n).
(3.14)


By virtue of the restrictions imposed on g, τi, ci (i = 1, . . . , n) and the inequal-
ity α ≤ n − k it is obvious that f : Cn−1


α,0 (]a, b[ ;Rm) → Lα,0(]a, b[ ;Rm) and


hi : Cn−1
α,0 (]a, b[ ;Rm) → Rm (i = 1, . . . , m) are continuous operators satisfying


conditions (1.6) and (1.7), where β = 0.
Assume for any x, y ∈ Cn−1


α,0 (]a, b[ ;Rm) and t ∈ ]a, b[ that


p(x, y)(t) = 0, `i(x, y) = lim
t→a


y(i−1)(t) (i = 1, . . . , k),


`i(x, y) = lim
t→b


y(i−1)(t) (i = k + 1, . . . , n).
(3.15)


According to Definition 1.2′ and Theorem 1.2 the pair (p, (`i)
n
i=1) of continuous


operators p : Cn−1
α,0 (]a, b[ ;Rm) × Cn−1


α,0 (]a, b[ ;Rm) → Lα,0(]a, b[ ;Rm), (`i)
n
i=1 :


Cn−1
α,0 (]a, b[ ;Rm)× Cn−1


α,0 (]a, b[ ;Rm) → Rmn, is consistent.
To prove Corollary 1.3, by Theorem 1.2 it is sufficient to show that for each


λ ∈ ]0, 1[ an arbitrary solution x of problem (1.17), (1.18) admits the estimate


‖x‖Cn−1
α,0


≤ ρ0, (3.16)


where ρ0 is a non-negative constant not depending on λ and x.
By virtue of (3.13)–(3.15) problem (1.17), (1.18) takes the form


x(n)(t) = λg
(
t, x(τ1(t)), . . . , x


(n−1)(τn(t))
)
, (3.17)


lim
t→a


x(i−1)(t) = λci(x) (i = 1, . . . , k),


lim
t→b


x(i−1)(t) = λci(x) (i = k + 1, . . . , n).
(3.18)


Let x be a solution of problem (3.17), (3.18) for some λ ∈ ]0, 1[ . Then by
virtue of Lemma 2.3 we conclude that estimates (2.16), (2.17), where y(x) is
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the vector given by equality (2.18), are true. On the other hand, on account of
(1.26) we have


y(x) ≤
n∑


i=1


b∫


a


(s− a)α
(
τi(s)− a


)αiPi(s)|x(i−1)(s)| ds


+


b∫


a


(s− a)αq
(
s, ‖x‖Cn−1


α,0


)
ds.


If, along with (2.16) and (2.17), we take into account that αi = 0 (i = 1, . . . , k),
then from the latter inequality we obtain


y(x) ≤ Py(x) + y0(x)


and therefore


(E − P)y(x) ≤ y0(x), (3.19)


where E is the unique m×m matrix and


y0(x) =
n∑


i=1


( b∫


a


(
τi(s)− a


)αiPi(s) ds
) n∑


j=i


(b− a)j−i|cj(x)|


+


b∫


a


(s− a)αq
(
s, ‖x‖Cn−1


α,0


)
ds. (3.20)


By the nonnegativeness of the matrix P and inequality (1.28), from (3.19) it
follows that


y(x) ≤ (E −P)−1y0(x).


If along with this we take into account condition (1.25) and equality (3.20),
then (2.16) and (2.17) imply that


‖x‖Cn−1
α,0


≤ η1


(
‖x‖Cn−1


α,0


)
, (3.21)


where


η1(ρ) = µ


(
η0(ρ) +


b∫


a


(s− a)α‖q(s, ρ)‖ ds


)
,


and µ is a positive constant depending only on αi, Pi, τi (i = 1, . . . , n), a and
b. On the other hand, due to condition (1.27) we have


lim
ρ→+∞


η1(ρ)


ρ
= 0


and therefore
η1(ρ) < ρ for ρ > ρ0,


where


ρ0 = inf
{
ρ > 0 :


η(s)


s
< 1 for s ∈ [ρ, +∞[


}
.
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Therefore from (3.21) we obtain estimate (3.16). On the other hand, it is
obvious that the constant ρ0 does not depend on λ and x.


Proof of Corollary 1.4. The strong boundedness of the operators p and p and
the boundedness of the operators (`i)


n
i=1 and (`i)


n
i=1 guarantee the existence of


ζ ∈ Lα,β(]a, b[ ;R+) and ζ0 ∈ R+ such that the inequalities


‖p(x)(t)‖+ ‖p(x)(t)‖ ≤ ζ(t)‖x‖Cn−1
α,β


,


n∑


i=1


(
‖`i(x)‖+ ‖`i(x)‖


)
≤ ζ0‖x‖Cn−1


α,β


(3.22)


hold for each x ∈ Cn−1
α,β (]a, b[ ;Rm) and almost all t ∈ ]a, b[ .


By Theorem 1.1 and Definition 1.2′ the pair (p, (`i)
n
i=1) is consistent since for


λ = 0 problem (1.32) has only a trivial solution.
Let us consider for arbitrary λ ∈ [0, 1], q ∈ Lα,β(]a, b[ ;Rm) and c0i ∈ Rm


(i = 1, . . . , n) the boundary value problem


x(n)(t) = p(x)(t) + λp(x)(t) + q(t), (3.23)


`i(x) + λ`i(x) = c0i (i = 1, . . . , n) (3.24)


and prove that every solution x of this problem admits the estimate


‖x‖Cn−1
α,β


≤ γ
( n∑


i=1


‖c0i‖+ ‖q‖Lα,β


)
, (3.25)


where γ is a positive constant not depending on λ, q, c0i (i = 1, . . . , n) and x.
Assume the contrary that this is not so. Then for each natural k there are


λk ∈ [0, 1], qk ∈ Lα,β(]a, b[ ;Rm), cki ∈ Rm (i = 1, . . . , n)


such that the problem


x(n)(t) = p(x)(t) + λkp(x)(t) + qk(t),


`i(x) = λk`i(x) + cki (i = 1, . . . , n)


has a solution xk admitting the estimate


ρk
def
= ‖xk‖Cn−1


α,β
> k


( n∑


i=1


‖cki‖+ ‖qk‖Lα,β


)
.


If we assume that


xk(t) = ρ−1
k xk(t), qk(t) = ρ−1


k qk(t), cki = ρ−1
k cki (i = 1, . . . , n),


then we have


‖xk‖Cn−1
α,β


= 1, (3.26)


‖qk‖Cn−1
α,β


<
1


k
,


n∑


i=1


‖cki‖ <
1


k
, (3.27)


x
(n)
k (t) = p(xk)(t) + λkp(xk)(t) + qk(t), (3.28)
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`i(xk) = λk`i(xk) + cki (i = 1, . . . , n). (3.29)


Let t0 = a+b
2


. Then (3.28) implies


xk(t) = yk(t) + zk(t), (3.30)


where


yk(t) =
n∑


i=1


(t− t0)
i−1


(i− 1)!
x


(i−1)
k (t0)


+
1


(n− 1)!


t∫


t0


(t− s)n−1
(
p(xk)(s) + λkp(xk)(s)


)
ds, (3.31)


zk(t) =
1


(n− 1)!


t∫


t0


(t− s)n−1qk(s) ds.


By (3.27) we have


lim
k→+∞


‖zk‖Cn−1
α,β


= 0, lim
k→+∞


cki = 0 (i = 1, . . . , n). (3.32)


On the other hand, with (3.22) and (3.26) taken into account, from (3.31) we
find


‖y(i−1)
k (t0)‖ ≤ ρ∗ (i = 1, . . . , n),


∥∥∥y(n−1)
k (t)− y


(n−1)
k (s)


∥∥∥ ≤
t∫


s


ζ(ξ) dξ for a < s < t < b,


where ρ∗ is a positive constant not depending on k. By virtue of these inequali-
ties and Lemma 1.1, we can assume without loss of generality that the sequence
(yk)


+∞
k=1 is converging in the norm of the space Cn−1


α,β (]a, b[ ;Rm). It can also


be assumed without loss of generality that the sequence (λk)
+∞
k=1 is converging.


Assume that
λ = lim


k→+∞
λk, x(t) = lim


k→+∞
yk(t).


Then by (3.29)–(3.32) we have


lim
k→+∞


‖xk − x‖Cn−1
α,β


= lim
k→+∞


‖yk − x‖Cn−1
α,β


= 0 (3.33)


and


`i(x) = λ`i(x) (i = 1, . . . , n),


x(t) =
n∑


i=1


(t− t0)
i−1


(i− 1)!
x(i−1)(t0) +


1


(n− 1)!


t∫


t0


(t− s)n−1
(
p(x)(s) + λp(x)(s)


)
ds.


Therefore x is a solution of problem (1.32). On the other hand, from (3.26) and
(3.33) it clearly follows that


‖x‖Cn−1
α,β


= 1.
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But this is impossible because for each λ ∈ [0, 1] problem (1.32) has only a
trivial solution. The contradiction obtained proves the existence of a positive
number γ that possesses the above-mentioned property.


By condition (1.31) there is ρ0 > 0 such that inequality (3.12) is fulfilled.
To prove Corollary 1.4, it is sufficient due to Theorem 1.2 to establish that


for each λ ∈ ]0, 1[ an arbitrary solution x of the problem


x(n)(t) = p(x)(t) + λ
[
f(x)(t)− p(x)(t)


]
, (3.34)


`i(x) = λ
(
`i(x)− hi(x)


)
(i = 1, . . . , n) (3.35)


admits estimate (1.19).
It is obvious that each solution x of problem (3.34), (3.35) is a solution of


problem (3.23), (3.24), where


q(t) = λ
(
f(x)(t)− p(x)(t)− p(x)(t)


)
,


c0i = λ
(
`i(x) + `i(x)− hi(x)


)
(i = 1, . . . , n).


(3.36)


According to the above proof, x admits estimate (3.25) from which, with (1.29),
(1.30) and (3.36) taken into account, we find


‖x‖Cn−1
α,β


≤ γ


(
η0


(
‖x‖Cn−1


α,β


)
+


b∫


a


(s− a)α(b− s)βη
(
s, ‖x‖Cn−1


α,β


)
ds


)
.


Hence, by virtue of (3.12), we obtain estimate (1.19).
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27. I. Kiguradze and B. Půža, On boundary value problems for functional differential
equations. Mem. Differential Equations Math. Phys. 12(1997), 106–113.
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43. Š. Schwabik, M. Tvrdý, and O. Vejvoda, Differential and integral equations: boun-
dary value problems and adjoints. Academia, Praha, 1979.
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