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ON THE RATIONALITY OF CERTAIN STRATA OF THE
LANGE STRATIFICATION OF STABLE VECTOR BUNDLES


ON CURVES


E. BALLICO


Abstract. Let X be a smooth projective curve of genus g ≥ 2 and S(r, d)
the moduli scheme of all rank r stable vector bundles of degree d on X. Fix
an integer k with 0 < k < r. H. Lange introduced a natural stratification
of S(r, d) using the degree of a rank k subbundle of any E ∈ S(r, d) with
maximal degree. Every non-dense stratum, say W (k, r − k, a, d − a), has in
a natural way a fiber structure h : W (k, r−k, a, d−a) → Pica(X)×Picb(X)
with h dominant. Here we study the rationality or the unirationality of the
generic fiber of h.


2000 Mathematics Subject Classification: 14H60.
Key words and phrases: Stable vector bundles on curves, moduli schemes
of vector bundles, rational variety, unirational variety.


1. Introduction


Let X be a smooth complete algebraic curve of genus g ≥ 2 defined over
an algebraically closed base field K with char(K) = 0. Fix integers r, d with
r ≥ 1 and L ∈ Pic(X). Let SL(r, d) be the moduli scheme of stable rank r
vector bundles on X with determinant L and S(r, d) the moduli scheme of all
stable rank r vector bundles on X with degree d. It is well-known ([14]) that
S(r, d) (resp. SL(r, d)) is smooth, irreducible, of dimension (r2 − 1)(g − 1) + g
(resp. (r2 − 1)(g − 1)) and that SL(r, d) is unirational. The variety SL(r, d) is
a fine moduli scheme if and only if (r, d) = 1. P. E. Newstead ([11]) proved in
many cases that SL(r, d) is rational. For other cases, see [1]. By [5] SL(r, d)
is rational if (r, d) = 1. In [6] H. Lange introduced the following stratification
(called the Lange stratification) of the moduli scheme S(r, d), r ≥ 2, depending
on the choice of an integer k with 0 < k < r. For any rank r vector bundle
E set sk(E) := k(deg(E)) − r(deg(A)), where A is a rank k subsheaf of E
with maximal degree. By [9] we have sk(E) ≤ gk(r − k). If E is stable, then
sk(E) > 0. By [4], sect. 4, (see [8], Remark 3.14) for any L and a general
E ∈ SL(r, d) we have sk(E) = k(r− k)(g− 1) + e, where e is the unique integer
with (r − 1)(g − 1) ≤ e ≤ (r − 1)g and e + k(r − k)(g − 1) ≡ kd mod (r). For
any integer a set V (k, r − k, a, d− a) := {E ∈ S(r, d) : sk(E) = kd− ra}. This
gives a stratification of S(r, d) which will be called the Lange stratification of
S(r, d). Here we study the rationality or the unirationality of smaller strata
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of this stratification. Hence (setting b = d − a) we fix integers r, k, a, b with
0 < k < r and a/r < b/(r − k) < a/r + g − 1. By [12], Th. 0.1, there is a
non-empty open irreducible subset W (k, r−a, a, b) of V (k, r−k, a, b) such that
every E ∈ W (k, r − k, a, b) fits in an exact sequence


0 → H → E → Q → 0 (1)


with H computing sk(E) (i.e. with rank(H) = k, deg(H) = a, rank(Q) = r− k
and deg(Q) = b), H and Q stable and such that H is the only rank k subsheaf
of E computing sk(E). This means that (up to a scalar) E fits in a unique
extension (1). Furthermore, varying E in W (k, r − k, a, a, b), the pairs (H, Q)
obtained in this way cover a Zariski dense constructible subset of S(k, a)×S(r−
k, b). Conversely, the generic extension of the generic element of S(r − k, b) by
the generic element of S(k, a) is the generic element of W (k, r− k, a, b). Hence
there is a rational dominant map W (k, r − k, a, b) → Pica(X) × Picb(X) ∼=
Alb(X) × Alb(X) sending E into (det(H), det(Q)). For any L ∈ Pica(X) and
any M ∈ Picb(X) set W (k, r − k, a, b, L,M) := {E ∈ W (k, r − k, a, b) : E fits
in a unique exact sequence (1) and L ∼= det(H) and M ∼= det(Q) }. We are
interested in the rationality or unirationality of the strata W (k, r−k, a, b, L, M).
In this paper we prove the following results.


Theorem 1. Fix integers r, k, a, b with 0 < k < r and a/r < b/(r − k) <
a/r + g − 1. Then for a general pair (L,M) ∈ Pica(X) × Picb(X) the variety
W (k, r − k, a, b, L, M) is unirational.


Theorem 2. Fix integers r, k, a, b with 0 < k < r, a/r < b/(r − k) <
a/r + g − 1, (k, a) = 1 and (r − k, b) = 1. Then for a general pair (L,M) ∈
Pica(X)× Picb(X) the variety W (k, r − k, a, b, L, M) is rational.


Proofs of Theorems 1 and 2


Lemma 1. Fix integers u, v, a and b with u > 0 and v > 0 and take a
general pair (L,M) ∈ Pica(X) × Picb(X). Then for a general pair (A,B) ∈
SL(u, a)× SM(v, b) we have h0(X,Hom(A,B)) = max{0, bu− av + uv(1− g)}
and h1(X,Hom(A,B)) = max{0,−bu + av + uv(g − 1)}.
Proof. Without the restrictions det(A) ∼= L and det(B) ∼= M , this is a result
of A. Hirschowitz (see [2], sect. 4, or [13], Th. 1.2, for a published proof). By
semicontinuity and the openness of stability we obtain the result for a general
pair (L,M).


Lemma 2. Fix integers u, v, a and b with u > 0, v > 0 and a/u < b/v
and take a general pair (L,M) ∈ Pica(X) × Picb(X). Then for a general pair
(A,B) ∈ SL(u, a)× SM(v, b) the general extension of B by A is stable.


Proof. Without the restrictions det(A) ∼= L and det(B) ∼= M , this is proved in
[13] during the proof of [13], Theorems 0.1 and 0.2. By the openness of stability
we obtain the result for a general pair (L, M).







ON THE RATIONALITY OF CERTAIN STRATA 667


Lemma 3. Fix integers u, v, a and b with u > 0, v > 0 and a/u < b/v <
a/u + g − 1. Take a general pair (L,M) ∈ Pica(X) × Picb(X). Then for a
general pair (A,B) ∈ SL(u, a) × SM(v, b) the general extension, E, of B by A
is stable, su(E) = ub− va and A is the only rank u subbundle of E computing
su(E).


Proof. Without the restrictions det(A) ∼= L and det(B) ∼= M , this is [13], Th.
0.1. By the openness of stability and the semicontinuity of the Lange invariant
su we obtain the result for a general pair (L,M).


Now we can prove Theorems 2 and 1.


Proof of Theorem 2. The variety SL(k, a)× SM(r − k, b) is rational by [5], Th.
1.2. Since (k, a) = (r−k, b) = 1, both SL(k, a) and SM(r−k, b) are fine moduli
spaces and hence there is a universal family, U , of pairs (A,B) of vector bundles
on SL(k, a)× SM(r − k, b). For every (A,B) ∈ SL(k, a)× SM(r − k, b) we have
h0(X,Hom(A,B)) = 0 because µ(B) = b/(r − k) > a/k = µ(A) and both A
and B are stable. Thus h1(X,Hom(A,B)) = kb − (r − k)a + k(r − k)(g − 1)
(Riemann–Roch), i.e. h1(X, Hom(A,B)) does not depend from the choice of
the pair (A,B) ∈ SL(k, a)× SM(r− k, b) but only from the integers k, r, a and
b. Thus the vector spaces H1(X,Hom(A,B)), (A,B) ∈ SL(k, a)×SM(r−k, b),
fit together to form a vector bundle EXT on SL(k, a) × SM(r − k, b): the
relative Ext-functor considered in [7]; here we need the existence of U (i.e.
the conditions (k, a) = (r − k, b) = 1) for the construction of EXT . Since
EXT is a vector bundle over an irreducible rational variety, the total space
of EXT is an irreducible rational variety. By [13], Th. 0.1, a non-empty
open subset V of EXT corresponds to elements of W (k, r − k, a, b, L,M) and
conversely a general element of W (k, r− k, a, b, L, M) corresponds to a general
element of EXT . Hence there is a rational dominant map, f , from EXT into
W (k, r − k, a, b, L, M). As explained in the introduction, the uniqueness part
in [13], Th. 0.1, means that the rational map f induces a generically bijective
map from the projective bundle P (EXT )) onto W (k, r − k, a, b, L; M). Since
P (EXT )) is rational and char(K) = 0, we conclude.


Proof of Theorem 1. Fix integers x, y with x > 0, P ∈ X and R ∈ Picy(X).
Since SR(x, y) ∼= SR(uxP )(x, y + ux) for every integer u, we will assume y very
large, say y > x(2g − 1). By the very construction of SR(x, y), y > x(2g − 1),
using Geometric Invariant Theory, there is a smooth variety UR(x, y) with a
PGL(N)-action, N = y+x(1−g), without any fixed point and a morphism fx,y :
UR(x, y) → SR(x, y) which make SR(x, y) the GIT-quotient of UR(x, y) and such
that on UR(x, y)×X there exists a total family of vector bundles on X with R
as determinant. We repeat the proof of Theorem 2 using UL(k, a)×UM(r−k, b)
instead of SL(k, a) × SM(r − k, b). Since on UL(k, a) × UM(r − k, b) there is a
family of pairs of stable vector bundles, we may take a global EXT which is
a vector bundle over UL(k, a) × UM(r − k, b) and hence it is irreducible and
rational. By [13], Th. 0.1, there are a non-empty open subset V of EXT and a
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dominant morphism f : V → W (k, r−k, a, b, L, M). Thus W (k, r−k, a, b, L, M)
is unirational.
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