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ON THE EXISTENCE OF SINGULAR SOLUTIONS


M. BARTUŠEK AND J. OSIČKA


Abstract. Sufficient conditions are given, under which the equation y(n) =
f(t, y, y′, . . . , y(l))g(y(n−1)) has a singular solution y [T, τ) → R, τ < ∞
satisfying lim


t→τ−
y(i)(t) = ci ∈ R, i = 0, 1, . . . , l and lim


t→τ−
|y(j)(t)| = ∞ for


j = l + 1, . . . , n− 1 where l ∈ {0, 1, . . . , n− 2}.
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1. Introduction


Consider the n-th order differential equation


y(n) = f(t, y, y′, . . . , y(l))g(y(n−1)), (1)


where n ≥ 2, l ∈ {0, 1, . . . , n−2}, f ∈ C0(R+×Rl+1), g ∈ C0(R), R+ = [0,∞),
R = (−∞,∞) and there exists α ∈ {−1, 1} such that


αf(t, x1, . . . , xl+1)x1 > 0 for x1 6= 0. (2)


A solution y defined on the interval [T, τ) ⊂ R+ is called singular if τ < ∞ and
y cannot be defined for t = τ .


The problem of the existence of singular solutions satisfying the Cauchy
initial-value problem and their asymptotic behaviour is thoroughly studied in
[4] for the second order Emden–Fowler equation


y′′ = r(t)|y|λ sgn y, r(t) ≥ 0. (3)


In the common case for (1), the profound investigations are carried out in [5].
All these results concern the case α = 1. For α = −1, sufficient conditions are
given in [2], under which singular solutions of


y(n) = r(t)|y|λ sgn y, n ≥ 2, r ≤ 0,


exist.
Another problem concerning singular solutions is solved in [3] (n = 2,


f(t, x1, . . . , xl) ≡ r(t)|x1|σ sgn x1, g(x) = |x|λ) and in [1] in the case l = n − 2.
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Let τ ∈ (0,∞). Sufficient and/or necessary conditions are given there, un-
der which a singular solution y exists with given asymptotic behaviour at the
left-hand side point τ of the definition interval ci ∈ R,


lim
t→τ−


y(i)(t) = ci for i = 0, 1, . . . , n− 2, lim
t→τ−


|y(n−1)(t)| = ∞. (4)


In the present paper this result is generalized to the case in which we seek a
singular solution y satisfying the condition


τ ∈ (0,∞), ci ∈ R; lim
t→τ−


y(i)(t) = ci, i = 0, 1, . . . , l,


lim
t→τ−


|y(j)(t)| = ∞ for j = l + 1, . . . , n− 1.
(5)


Note that in [3] such solutions are called blackhole solutions (for n = 2 and
l = 0).


Denote by [[a]] the entire part of the number a.


2. Main Results


Let y be a solution of (1) satisfying (5). Since, according to (2)
f(t, c0, c1, . . . , cl) 6= 0 if and only if c0 6= 0, we ought to divide our investigation
into two cases c0 6= 0 and c0 = 0 for which the results are different.


Let c0 6= 0. The following theorem gives a necessary condition for the exis-
tence of a solution of (1), (5).


Theorem 1. Let c0 6= 0, M ∈ (0,∞), K ∈ (0, 1], λ ≤ 2 for l = n− 2,


λ∈̄
(
1 +


1


n− l − 1
, 1 +


1


n− l − 2


]
for < n− 2,


K|x|λ ≤ g(x) ≤ |x|λ for |x| ≥ M.
(6)


Then equation (1) has no singular solution y satisfying (5).


The next theorem shows that in the opposite case in (6) problem (1), (5) is
solvable.


Theorem 2. Let τ ∈ (0,∞), c0 6= 0, M ∈ (0,∞), β = α sgn c0, λ > 2 for
l = n− 2,


1 +
1


n− l − 1
< λ ≤ 1 +


1


n− l − 2
for l < n− 2 (7)


and


g(x) ≥ |x|λ for βx ≥ M. (8)


Then there exists a singular solution y of (1) satisfying (5) which is defined in
a left neighborhood of τ .


If, moreover, ε > 0, g(x) > 0 for βx ∈ (0, ε],


l +
1− α


2
is odd, (−1)icic0 ≥ 0 for i = 1, 2, . . . , l, (9)
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and
∣∣∣∣∣∣∣


βε∫


0


ds


g(s)


∣∣∣∣∣∣∣
= ∞, (10)


then y is defined on the interval [0, τ).


Corollary 1. Let c0 6= 0, M ∈ (0,∞) and


g(x) = |x|λ for |x| ≥ M.


Then (1) has a singular solution y satisfying (5) if and only if (7) is valid.


Corollary 2. Let λ > 1 + 1
n−1


and M ∈ R+ be such that


g(x) ≥ xλ for x ≥ M.


Then (1) has a singular solution.


Remark. For α = 1 the conclusion of Corollary 2 is known, see, e.g., [6,
Theorem 11.3]. For α = −1 it generalizes Corollary 1 in [1].


The following two theorems solve the same problem in the case


β ∈ {−1, 1}, c0 = 0, (−1)iβci ≥ 0 for i = 1, 2, . . . , l. (11)


Theorem 3. Let τ ∈ (0,∞), σ > 0, ε > 0,M ∈ (0,∞), M̄ ∈ (0,∞),


l − 1− α


2
be odd, (12)


2 + (n− 2)σ < λ for l = n− 2,


1 +
lσ + 1


n− l − 1
< λ ≤ 1 +


(l + 1)σ + 1


n− l − 2
for l < n− 2, (13)


(8) and (11) hold. Further, let


|f(t, x1, . . . , xl+1)| ≥ M̄ |x1|σ (14)


for t ∈ [0, τ ], βx1 ∈ [0, ε], (−1)jβxj+1 ∈ [(−1)jβcj, (−1)jβcj + ε], j = 1, . . . , l.
Then there exists a singular solution y of (1) satisfying (5), which is defined


in a left neighborhood of τ .
If, moreover, g(x) > 0 for βx ∈ (0, ε] and (10) holds, then y is defined on the


interval [0, τ).


Theorem 4. Let σ > 0, ci = 0 for i = 0, 1, . . . , l, M ∈ (0,∞), ε > 0,
α ∈ {−1, 1}, r ∈ C0(R+), αr(t) > 0 on R+, (12) hold and


g(x) = |x|λ for |x| ≥ M.


Then the equation


y(n) = r(t)|y|σg
(
y(n−1)


)
sgn y (15)


has a solution y satisfying (1), (5) if and only if (13) is valid.
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The following proposition shows that assumption (12) in Theorems 3 and 4
is important.


Proposition. Let ci = 0, i = 0, 1, . . . , l and l − α−1
2


be even. Let g(x) ≥ 0
on R. Then equation (1) has no solution satisfying (1), (5).


In this paper the main assumptions are imposed on the function g depending
on y(n−1). But solutions of (1), (5) may exist for the equation


y(n) = f(t, y, . . . , y(j)), j ∈ {l + 1, . . . , n− 1}, (16)


too. From this we formulate an open problem.


Open problem. To study the existence of a solution satisfying (1), (5) of
equation (16).


3. Lemmas and Proofs


We need the next two lemmas.


Lemma 1. Let [a, b] ⊂ R+, φ ∈ C0[a, b] and f̃ ∈ C0([a, b]×Rn) be such that


f̃(t, x1, . . . , xn)| ≤ φ(t), t ∈ [a, b], xi ∈ R, i = 1, . . . , n.


Then for arbitrary γi ∈ R, i = 0, 1, . . . , n− 1, the equation


u(n) = f̃(t, u, u′, . . . , u(n−1))


has at least one solution satisfying the boundary value conditions


u(i)(b) = γi for i = 0, 1, . . . , l + 1;


u(j)(a) = γj+1 for j = l + 1, . . . , n− 2.


Proof. It follows, e.g., from [6, Lemma 10.1] since the homogeneous problem


u(n) = 0, u(i)(b) = u(j)(a) = 0 for i = 0, 1, . . . , l + 1; j = l + 1, . . . , n− 2,


has a trivial solution only.


The following Kolmogorov–Horny type inequality is a very useful tool (see,
e.g., the proof of Lemma 5.2 in [6]).


Lemma 2. Let [a, b] ⊂ R+, a < b, m ≥ 2 be an integer, u ∈ Cm[a, b], and
let u(j) have zero in the interval [a, b] for j = 1, . . . , m− 1. Then


ρi ≤ 2i(m−i)ρ
m−i


m
0 ρ


i
m
m , i = 1, 2, . . . ,m− 1,


where


ρi = max {|u(i)(t)| a ≤ t ≤ b}, i = 0, 1, . . . , m.







ON THE EXISTENCE OF SINGULAR SOLUTIONS 673


Proof of Theorem 1. Let for simplicity c0 > 0 and α = 1. Put λ1 = 1
λ−1


and
let y [τ1, τ) → R be a solution of (1), (5). Then, according to (1) and (2)
limt→τ− y(j)(t) = ∞ for j = l + 1, . . . , n. Let T ∈ [τ1, τ) be such that


y(t) ≥ c0


2
on [T, τ), y(j)(T ) ≥ 0, j = l + 1, l + 2, . . . , n− 2,


y(n−1)(T ) ≥ M.
(17)


By this and the boundedness of y(i)(t), i = 0, 1, . . . , l, we obtain from (1)


y(n)(t) ≤ M1


[
y(n−1)(t)


]λ
, t ∈ [T, τ),


where M1 is a suitable constant. Let λ ≤ 1 + 1
n−l−1


. Hence the integration on
the interval [t, τ) yields


y(n−1)(t) ≥ [(λ− 1)M1(τ − t)]−λ1 , t ∈ [T, τ). (18)


Hence n− l − 1 ≤ λ1, and the Taylor Series Theorem, (17) and (18) yield


cl = y(l)(τ) =
n−l−2∑


i=0


y(l+i)(T )


i!
(τ − T )i +


τ∫


T


(τ − s)n−l−2


(n− l − 2)!
y(n−1)(s) ds


≥ y(l)(T ) + M2


τ∫


T


(τ − s)n−l−2−λ1 ds = ∞,


where


M2 =
[(λ− 1)M1]


−λ1


(n− l − 2)!
.


Hence a solution y satisfying (1), (5) does not exist in this case.
Let l < n− 2 and λ > 1 + 1


n−l−2
. Hence n− l − 2− λ1 > 0. Then, similarly


to (18), we can prove that


y(n−1)(t) ≤ [(λ− 1)M3(τ − t)]−λ1 , t ∈ [T, τ), (19)


where M3 = min {Kf
(
t, y(t), . . . , y(l)(t)


)
T ≤ t ≤ τ} > 0.


From this the Taylor Series Theorem yields


∞ = y(l+1)(τ) =
n−l−3∑


i=0


y(l+i+1)


i!
(τ − T )i +


τ∫


T


(τ − s)n−l−3


(n− l − 3)!
y(n−1)(s) ds


≤ M4 + M5


τ∫


T


(τ − s)n−l−3−λ1 ds < ∞


as n − l − 3 − λ1 > −1; M4 and M5 are positive constants. The contradiction
obtained proves that a singular solution does not exist.


Proof of Theorem 2. For l = n − 2 we proved the statement in [1]. Thus let
l < n− 2 and, first, we prove the result for (7) with λ 6= 1 + 1


n−l−2
.
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We prove the statement for α = 1 and c0 > 0; thus β = 1. For the other
cases the proof is similar.


Let


N > 2 max (c0, |c1|, . . . , |cl|), k0 > [[2M ]] , (20)


D = {[x1, . . . , xl+1]
c0
2
≤ x1 ≤ c0, |xj| ≤ N for j = 2, . . . , l + 1},


M1 = min{f(t, x1, . . . , xl+1) t ∈ [0, τ ], [x1, . . . , xl+1] ∈ D} > 0,
M2 = max{f(t, x1, . . . , xl+1) t ∈ [0, τ ], [x1, . . . , xl+1] ∈ D},
M3 = 2[(λ− 1)M1]


−λ1 , λ1 = 1
λ−1


, λ̄ = n− l − 1− λ1 > 0,


N1 = 2n−l−2M
1


n−l−1


3


[
1− λ1


n−l−1


]−1
.


Further, let T ∈ [0, τ) be such that


τ − T <
(


M3


M


)λ−1


, (τ − T )n−l−2 <
k0


M
, (21)


τ − T <
1


M2


2M∫


M


ds


g(s)
, (22)


(τ − T )λ̄ ≤ (2N1)
−n+l+1N, (23)


l−1∑


r=i+1


|cr|(τ − T )r−i


(r − i)!
+ N


(τ − T )l−i


(l − i)!
≤ N


2
, i = 0, 1, . . . , l − 1, (24)


l−1∑


r=1


|cr|(τ − T )r


r!
+ N


(τ − T )l


l!
≤ c0


2
. (25)


Denote J = [T, τ) and note that due to λ̄ > 0, T exists.


Consider the auxilliary two-point boundary-value problem k ∈ {k0, k0 +
1, . . . },


y(n) = f
(
t, Φ0(y), Φ1(y


′), . . . , Φ1(y
(l))


)
g


(
Φ2(t, y


(n−1))
)
,


y(i)(τ) = ci, i = 0, 1, . . . , l; y(l+1)(τ) = k;


y(j)(T ) = 0, j = l + 1, . . . , n− 2, t ∈ J,


(26)


where


Φ0(s) =







s for c0
2
≤ s ≤ N ,


N for s > N ,
c0
2


for s < c0
2
,


(27)


Φ1(s) =







s for |s| ≤ N ,


N sgn s for |s| > N
(28)
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and


Φ2(t, s) =







s for M ≤ s ≤ M3(τ − t)−λ1 ,


M3(τ − t)−
1


λ−1 for s > M3(τ − t)−λ1 ,


M for s < M .


(29)


Note that due to (21) Φ2 is well defined.
To prove the existence of a solution of (26), let us consider the sequence of


boundary value problems


m̄0 >
1


τ − t
, m ∈ {m̄0, m̄0 + 1, . . . }, τm = τ − 1


m
,


z(n) = F (t, z, z′, . . . , z(l), z(n−1)),


z(i)(τm) = ci, i = 0, 1, . . . , l, z(l+1)(τm) = k,


z(j)(T ) = 0, j = l + 1, . . . , n− 2,


(30)


where


F (t, x1, . . . , xl+2) = f (t, Φ0(x1), Φ1(x2), . . . , Φ1(xl+1)) g (Φ2(t, xl+2)) .


Since


|F (t, x1, . . . , xl+2)| ≤ M2 max
T≤t̄≤t


max
M≤s≤M3(τ−t̄)−λ1


g(t̄, s), t ∈ [T, τm],


(30) has a solution zm according to Lemma 1.
Further, we estimate z(n−1)


m . Let Jm = [T, τm]. First we prove that


z(n−1)
m (t) < M3(τ − t)−λ1 , t ∈ [T, τm), (31)


for large m, say m ≥ m̄0. If (31) is not valid, then either
(i) there exists t1 ∈ [T, τm) such that


z(n−1)
m (t1) = M3(τ − t1)


−λ1 and z(n−1)
m (τm) ≤ M3(τ − τm)−λ1 (32)


or
(ii)


z(n−1)
m (t) > M3(τ − t)−λ1 (33)


in a left neighborhood of t = τm.
Let (i) be valid. As (26)–(30) yield z(n)


m (t) > 0 and z(n−1)
m is increasing on Jm,


it follows from (32) and (21) that


M ≤ z(n−1)
m (t), t ∈ [t1, τm]. (34)


Hence


z(n)
m (t) ≥ M1


(
z(n−1)


m (t)
)λ


, t ∈ Jm,


and the integration and (32) yield


τm − t1


Mλ−1
3


>
1


[z
(n−1)
m (t1)]λ−1


− 1


[z
(n−1)
m (τm)]λ−1


≥ M1(λ− 1)(τm − t1),
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which contradicts the definition of M3.
Let (33) be valid and let t1, T ≤ t1 < τm be such that z(n−1)


m (t) > M3(τ−t)−λ1


on the interval [t1, τm). Then the Taylor Series Theorem yields


k = z(l+1)
m (τm) ≥


τm∫


t1


(τm − s)n−l−3


(n− l − 3)!
z(n−1)


m (s) ds


≥ M3


(n− l − 3)!


τm∫


t1


(τm − s)n−l−3(τ − s)−λ1 ds


≥ −M3


(n− l − 2)!


τm∫


t1


(τ − s)n−l−1−λ1
d


ds


(
(1− 1


m(τ − s)
)n−l−2


)
ds


≥ M3


(n− l − 2)!


(
1


m


)n−l−2−λ1
(


1− 1


m(τ − t1)


)n−l−2


→∞ for m →∞.


Hence (31) holds.
Further, we prove indirectly the following estimation from bellow


M < z(n−1)
m (t), t ∈ Jm. (35)


Note that z(n−1)
m is increasing, and first we prove that (35) is valid for t = τm.


Let, conversely, z(n−1)
m (τm) ≤ M . Then


k0 ≤ k = z(l+1)
m (τm) =


τm∫


T


(τm − s)n−l−3


(n− l − 3)!
z(n−1)


m (s) ds ≤ M


(n− l − 2)!
(τm−T )n−l−2,


which contradicts (21). Thus (35) holds. Let T1 ∈ [T, τm) exist such that
z(n−1)


m (T1) = M . Then M < z(n−1)
m (t) on Jm and


z(n)
m (t) ≤ M2g


(
z(n−1)


m (t)
)
, t ∈ Jm.


From this, by the integration, we have


2M∫


M


ds


g(s)
≤


k∫


M


ds


g(s)
≤ M2(τm − T ) < M2(τ − T ).


The contradiction with (22) proves that (35) is valid and according to (30)


z(j)
m (t) ≥ 0 on Jm, j = l + 1, l + 2, . . . , n. (36)


Denote ρ = maxt∈Jm |z(l)
m (t)|. Then, by virtue of (31), (36) and Lemma 2 with


[a, b] = [τ, t], u = z(l)
m and m = n− l − 1, we have


0 ≤ z(i+1)
m (t) ≤ 2n−l−2ρ


n−l−2
n−l−1


(
zn−1


m (t)
) 1


n−l−1 ≤ 2n−l−2M
1


n−l−1


3 ρ
n−l−2
n−l−1 (τ − t)−


λ1
n−l−1 ,


and hence, as λ1


n−l−1
∈ (0, 1), the integration on Jm yields


0 ≤ cl − z(l)
m (T ) ≤ N1(τ − T )1− λ1


n−l−1 ρ
n−l−2
n−l−1 . (37)
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Since z(l)
m is increasing on Jm, either z(l)


m (T ) ≥ −|cl| and ρ = |cl| or z(l)
m (T ) < −|cl|


and (23) and (37) yield


cl + ρ ≤ N1(τ − T )1− λ1
n−l−1 ρ


n−l−2
n−l−1 ≤ 1


2
N


1
n−l−1 ρ


n−l−2
n−l−1 .


Thus ρ ≤ 2|cl| or ρ
2
≤ cl + ρ ≤ 1


2
N


1
n−l−1 ρ


n−l−2
n−l−1 and according to (20) in all cases


we have


|z(l)
m (t)| ≤ N, t ∈ Jm. (38)


From this, (31), (36) and Lemma 2 with [a, b] = [T, t], u = z(l)
m and m = n− l−1


we have


|z(j)
m (t)| ≤ 2(j−l)(n−j−1)N


n−j−1
n−l−1 M


j−l
n−l−1


3 (τ − t)
j−l


n−l−1 ,


t ∈ Jm, j = l + 1, . . . , n− 2.
(39)


Further, (20), (24), (25), (38) and the Taylor Series Theorem yield


ci − z(i)
m (t) =


l−1∑


r=i+1


cr(t− τm)r−i


(r − i)!
+


t∫


τm


(t− s)l−i−1


(l − i− 1)!
z(l)


m (s) ds,


|z(i)
m (t)| ≤


l−1∑


r=i+1


cr|
(r − i)!


(τ − T )r−i +
N


(l − i)!
(τ − T )l−i + |ci| ≤ N,


i = 0, 1, . . . , l − 1, t ∈ Jm,


(40)


|zm(t)| ≥ c0 −
l−1∑


r=1


|cr|(τ − T )r


r!
− N


l!
(τ − T )l ≥ c0


2
, t ∈ Jm. (41)


Estimations (38), (39) and (40) show that {z(j)
m }, j = 0, 1, . . . , n − 1, m =


m0,m0 + 1, . . . , are uniformly bounded with respect to j and m and hence
according to the Arzelá–Ascoli Theorem (see [6], Lemma 10.2) there exists a
subsequence that converges uniformly to the solution yk of (26). At the same
time, it is clear that (see (41), too)


c0


2
≤ yk(t) ≤ N, |y(i)


k (t)| ≤ N, i = 1, 2, . . . , l, (42)


|y(j)
k (t)| ≤ 2(j−l)(n−j−1)N


n−j−1
n−l−1 M


j−l
n−l−1


3 (τ − t)
j−l


n−l−1 ,


t ∈ J, j = l + 1, . . . , n− 1.
(43)


Moreover, (31), (35), (42) yield


Φ0 (yk(t)) = yk(t), Φ1


(
y


(i)
k (t)


)
= y


(i)
k (t) for i = 1, 2, . . . , l,


Φ2


(
t, y


(n−1)
k (t)


)
= y


(n−1)
k (t), t ∈ J,


and hence yk(t) is a solution of (1) satisfying


y
(i)
k (τ) = ci, i = 0, 1, . . . , l; y


(l+1)
k (τ) = k.
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As estimations (42) a (43) do not depend on k, i and j, the Arzelá–Ascoli
Theorem implies the existence of a subsequence of {yk(τ)}∞k0


that converges
uniformly to the solution of (1) satisfying


y(j)(T ) = 0, j = l + 1, . . . , n− 2, (44)


lim
t→τ−


y(i)(t) = ci, i = 0, 1, . . . , l, lim
t→τ−


y(l)(t) = ∞. (45)


Let λ = 1 + 1
n−l−2


. Then there exists a sequence of {λs}∞1 such that λs satisfies


(7) and lim
s→∞λs = 1 + 1


n−l−2
. Denote by ys a solution of (1), (5) with λ = λs. It


follows from (21)–(25) that there exists T ∈ [0, τ) such that ys, s ∈ {1, 2, . . . } is
defined on the interval [T, τ). At the same time, since (38)–(41) do not depend
on λ, there exists Φ such that


|y(i)
s (t) ≤ Φ(t), t ∈ [T, τ), i = 0, 1, . . . , n− 1, s = 1, 2, . . . .


Hence, according to the Arzelá–Ascoli Theorem, there exists a subsequence of
{ys}∞1 that converges uniformly to a solution of (1), satisfying (5).


Let (9) and (10) be valid. Let y be defined on the interval (τ̄ , τ) ⊂ [0, τ) and
not be extendable to t = τ̄ . Then


lim sup
t→τ̄+


|y(n−1)(t)| = ∞. (46)


First we prove that


y(n−1)(t) > 0 on (τ̄ , τ). (47)


Suppose that there exists τ1 ∈ (τ̄ , τ) such that y(n−1)(τ1) = 0 and y(n−1)(t) > 0
on the interval (τ1, τ). As τ1 < T , it follows from this and (45) that y(j),
j = 0, 1, . . . , l, are bounded on the interval (τ1, τ). Let τ2 ∈ (τ1, τ) be such that
y(n−1)(τ2) = ε. Then by the integration of (1) and (10)


∞ =


ε∫


0


ds


g(s)
=


τ2∫


τ1


f
(
t, y(t), . . . , y(l)(t)


)
dt < ∞.


Hence (47) holds. As τ1 < T , it follows from (9), (44) and (45) that y(t) > 0
on the interval (τ̄ , τ) (y(i), i = 0, 1, . . . , l change their signs). Thus (1) yields
y(n)(t) > 0 on the interval (τ̄ , τ), which, together with (47), contradicts (46).
Hence y is defined at t = τ̄ and τ̄ = 0.


Proof of Theorem 3. Let α = 1 and β = 1. The proof is similar to the that of
Theorem 2. Since (11) and (12) are valid, we can restrict our investigation to
the case


D = {[x1, . . . , xl+1] 0 ≤ x1 ≤ ε, (−1)jxj+1 ∈ [(−1)jcj, (−1)jcj + ε]}.
The only problem is that due to c0 = 0, we have M1 = 0 and M3 = ∞, where
M1 and M3 are given as in the proof of Theorem 2. Thus (31) gives us no
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information and it must be proved in a different way. Hence we prove that (31)
is valid with the new values of λ1 and M3 given by


λ1 =
(n− 1)σ + 1


λ + σ − 1
, M3 =


[
2(n− 1)σ + 2


(λ + σ − 1)M1


] 1
λ+σ−1


where M1 = M̄
[l!(n−l−2)!(n−1)]σ


. Note that, similarly to the proof of Theorem 2,


z(n−1)
m is positively increasing on the interval Jm = [T, τm], τm = τ − 1


m
. Note


that (13) yields


n− l − 2 ≤ λ1 < n− l − 1.


If (31) is not valid, then either (32) or (33) holds.
Let (32) be valid. It follows similarly to (34) that


M ≤ z(n−1)
m (t), t ∈ [t1, τm]. (48)


Now we will estimate zm. According to (48) and the Taylor Series Theorem we
have


z(l+1)
m (s) =


n−l−3∑


r=0


z(l+1+r)
m (t)


r!
(s− t)r +


s∫


t


(s− σ)n−l−3


(n− l − 3)!
z(n−1)


m (σ) dσ


≥ z(n−1)
m (t)


(s− t)n−l−2


(n− l − 2)!
, t ≤ s ≤ τm. (49)


Similarly, the Taylor Series Theorem, (11), (12) and (49) yield


zm(t) ≥
t∫


τm


(t− s)l


l!
z(l+1)


m (s) ds ≥ z(n−1)
m (t)


t∫


τm


(s− t)n−2(−1)l


l!(n− l − 2)!
ds


=
(τm − t)n−1


l!(n− l − 2)!(n− 1)
z(n−1)


m (t), t ∈ [t1, τm].


From this, (8), (14), (48) and (49)


z(n)
m (t) ≥ M̄zσ


m(t)
(
z(n−1)


m (t)
)λ ≥ M1(τm − t)(n−1)σ


(
z(n−1)


m (t)
)λ+σ


.


The integration on the interval [t1, τm] yields


2(τm − t1)
(n−1)σ+1


Mλ+σ−1
3


≥ (τ − t1)
(n−1)σ+1 −m−(n−1)σ+1


Mλ+σ−1
3


≥


≥ 1
[
z


(n−1)
m (t1)


]λ+σ−1 −
1


[
z


(n−1)
m (τm)


]λ+σ−1 ≥
M1(λ + σ − 1)


(n− 1)σ + 1
(τm − t1)


(n−1)σ+1


for large m. The contradiction obtained with the definition of M3, shows that
(32) does not hold. The fact that (33) is impossible can be proved similarly to
the same case in the proof of Theorem 2.
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Proof of Theorem 4. (i) Let y [T, τ) → R be a solution of (1), (5) with α = 1


and, for simplicity, y(n−1)(t) ≥ M on the interval [T, τ). Put λ1 = (n−1)σ+1
λ+σ−1


and
M1 as in the proof of Theorem 3.


Let λ ≥ 1 + (l+1)σ+1
n−l−2


for l < n − 2; hence n − l − 2 − λ1 ≥ 0. We can prove
similarly to (44)− (46) that


y(n)(t) ≥ M1(τ − t)(n−1)σ[y(n−1)(t)]λ+σ, t ∈ [T, τ).


From this and by the integration we obtain an estimation from above of y(n−1)


similar to (19) and the proof is similar to the second part of the proof of Theorem
1.


Let λ < 1 + lσ+1
n−l−1


; hence n− l − 1− λ1 < 0. Then


y(t) =


t∫


τ


(t− s)l


l!
y(l+1)(s) ds ≤ |y(l)(t)|


l!
(τ − t)l, t ∈ [T, τ).


From this


y(n)(t) ≤ M2y
σ(t)


[
y(n−1)(t)


]λ ≤ M2(τ − t)lσ
[
y(n−1)(t)


]λ
,


and the integration on the interval [t, τ) yields


y(n−1)(t) ≥ M3(τ − t)−
lσ+1
λ−1 ,


where


M2 = max
t∈[0,τ ]


r(t), M3 =


[
M2(λ− 1)


lσ + 1


]− 1
λ−1


.


The proof is similar to the first part of the proof of Theorem 1, only in (18) we
take λ1 = lσ+1


λ−1
.


(ii) The existence problem is solved by Theorem 3.


Proof of Proposition. Let y [T, τ) → R be a solution of (1) and (5) with α = 1;
hence l is even. Let lim


t→τ−
y(n−1)(t) = ∞. Then y(l) < 0 in a left neighborhood


I of τ . From this and from l being even we can conclude that y < 0 and
y(n) ≤ 0 on I. The contradiction to lim


t→τ−
y(n−1) = ∞ proves the statement.


Other possible cases can be proved similarly.
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