## SUSPENSION AND LOOP OBJECTS AND REPRESENTABILITY OF TRACKS

H.-J. BAUES AND M. JIBLADZE

**Abstract.** In the general setting of groupoid enriched categories, notions of *suspender* and *looper* of a map are introduced, formalizing a generalization of the classical homotopy-theoretic notions of suspension and loop space. The formalism enables subtle analysis of these constructs. In particular, it is shown that the suspender of a principal coaction splits as a coproduct. This result leads to the notion of *theories with suspension* and to the cohomological classification of certain groupoid enriched categories.

**2000 Mathematics Subject Classification:** 18D05, 55P35, 55P40. **Key words and phrases:** Groupoid enriched category, suspension object, loop object, suspender, looper, principal coaction.

A category enriched in groupoids (termed a track category for short) is a special 2-category. A track category  $\mathscr{T}$  consists of objects A, B,... and homgroupoids  $\llbracket A, B \rrbracket$  in which the objects are maps (1-arrows or 1-cells) and the morphisms are isomorphisms termed tracks (2-arrows or 2-cells). For each map  $f: A \to B$  in  $\mathscr{T}$  we have the group  $\operatorname{Aut}(f)$  consisting of all tracks  $\alpha : f \Rightarrow f$  in  $\mathscr{T}$ . This is an automorphism group in the hom-groupoid  $\llbracket A, B \rrbracket$ .

Our leading example is the track category **Top**<sup>\*</sup> consisting of spaces A, B,...with basepoint \*, pointed maps  $f : A \to B$  and tracks  $\alpha : f \Rightarrow g$  which are homotopy classes (relative to the boundary) of homotopies  $f \simeq g$ ; compare (1.3) in [5]. For the trivial map  $0 : A \to * \to B$  in **Top**<sup>\*</sup> one has the well known isomorphism of groups

$$\operatorname{Aut}(A \to * \to B) = [\Sigma A, B]. \tag{(*)}$$

Here the left-hand side is the group of automorphisms of  $0 : A \to B$  in the track category **Top**<sup>\*</sup> and the right-hand side is the group of homotopy classes of maps  $\Sigma A \to B$  where  $\Sigma A$  is the *suspension* of A. Dually we also have the canonical isomorphism

$$\operatorname{Aut}(A \to \ast \to B) = [A, \Omega B], \tag{**}$$

where  $\Omega B$  is the *loop space* of B. Via (\*) and (\*\*) certain tracks in the track category  $\mathscr{T} = \mathbf{Top}^*$  are *represented* by morphisms in the homotopy category  $\mathscr{T}_{\simeq}$  of  $\mathscr{T}$ . We study in this paper the categorical aspects of such a representability of tracks which we call  $\Sigma$ -representability in (\*) and  $\Omega$ -representability in (\*\*). For this we introduce the notion of *suspender* generalizing the notion of

ISSN 1072-947X / \$8.00 / © Heldermann Verlag www.heldermann.de

suspension above by means of a universal property. The categorical dual of a suspender is a *looper* in a track category generalizing the notion of loop space. A track category  $\mathscr{T}$  is  $\Sigma$ -representable, resp.  $\Omega$ -representable, if suspenders, resp. loopers exist in  $\mathscr{T}$ . Of course the track category **Top**<sup>\*</sup> of pointed spaces (more generally the track category associated to any Quillen model category) is both  $\Sigma$ -representable and  $\Omega$ -representable.

We describe basic properties of suspenders and loopers. In particular we show that the suspender of a principal coaction splits as a coproduct. This is a crucial result which leads to the notion of *theories with suspension* and the cohomological classification of certain  $\Sigma$ -representable track categories in [6].

In topology a typical example of a suspender of a pointed space X is the space

$$\Sigma_* X = S^1 \times X / S^1 \times \{*\}.$$

Moreover a looper of X is given by the free loop space

$$\Omega_* X = (X^{S^1}, 0)$$

with the function space topology and basepoint given by the trivial loop 0. Splitting results  $\Sigma_* X \simeq X \lor \Sigma X$  (resp.  $\Omega_* X \simeq X \times \Omega X$ ) are well known in case X is a co-H-group (resp. H-group). For example Barcus and Barratt [5] or Rutter [12] use implicitly the splitting to obtain basic rules of homotopy theory. This paper and its sequel [6] specifies the categorical background of some of these rules. Suspenders and loopers are also responsible for the properties of *partial suspensions* and *partial loop operations* discussed in [6]; compare also [4, 3, 2].

The theory of  $\Sigma$ -representable track categories in this paper is also motivated by the approach of Gabriel and Zisman [7] who consider those properties of a track category  $\mathscr{T}$  which imply existence of a Puppe sequence for mapping cones. The suspension  $\Sigma A$  plays a crucial rôle in this sequence. Enriching the results in [7] we show that the main categorical nature of a suspension in a track category is described by the notion of suspender which is the link between tracks in  $\mathscr{T}$ and homotopy classes of maps in  $\mathscr{T}$ . Such a link, for example, is needed in results of Hardie, Kamps and Kieboom [9, 8] and Hardie, Marcum and Oda [10] who study homotopy-theoretic secondary operations like Toda brackets in 2categories. This paper does not aim at combining the theory of exact sequences in homotopy theory as considered in [7] and the theory of suspenders since the notion of suspenders, resp. loopers, is quite sophisticated and new.

#### 1. $\Sigma$ -representable track categories

We first introduce the following notation. In a groupoid  $\mathbf{G}$  the composition of morphisms

$$\stackrel{f}{<}$$

is denoted by f + g. Accordingly also the composition of tracks

$$\xleftarrow{\alpha} \xleftarrow{\beta}$$

in a track category is denoted by  $\alpha + \beta$ . We also write  $\alpha : a \simeq b$  for a track  $\alpha : a \Rightarrow b$ . We say that a groupoid **G** is *abelian* if all automorphism groups of objects in **G** are abelian. For  $\beta : y \to y$  and  $\varphi : x \to y$  in **G** we obtain the *conjugate* 

$$\beta^{\varphi} = -\varphi + \beta + \varphi : x \to x$$

so that  $(-)^{\varphi}$ : Aut $(y) \to$  Aut(x) is a homomorphism. The *loop groupoid* **G** of **G** is defined to have objects  $\alpha : x \to x$ , where x is an object of **G**; a morphism from  $\alpha : x \to x$  to  $\beta : y \to y$  is a morphism  $\varphi : x \to y$  in **G** such that  $\alpha = -\varphi + \beta + \varphi$ .

Track functors between track categories and track transformations between track functors are the enriched versions of functors and natural transformations enriched in the category  $\mathfrak{Gpd}$  of groupoids. Here  $\mathfrak{Gpd}$  is also an example of a track category with functors between groupoids as 1-arrows and natural transformations as 2-arrows. Each object C in a track category  $\mathscr{T}$  yields the representable track functor

$$[\![C,-]\!]:\mathscr{T}\to\mathfrak{Gpd}$$

between track categories which carries  $X \in Ob(\mathscr{T})$  to the hom-groupoid  $\llbracket C, X \rrbracket$ in  $\mathscr{T}$ .

In a track category  $\mathscr{T}$ , consider a map  $f: A \to B$ . For any object X, denote by  $\mathbf{G}_f(X)$  the following groupoid: objects of  $\mathbf{G}_f(X)$  are pairs  $(g, \alpha)$ , where  $g: B \to X$  is a map and  $\alpha: gf \Rightarrow gf$  is a track. A morphism from  $(g', \alpha')$ to  $(g, \alpha)$  is a track  $\gamma: g' \Rightarrow g$  such that  $\alpha' = \alpha^{\gamma f}$ . Any map  $h: X \to Y$ induces a functor  $\mathbf{G}_f(h): \mathbf{G}_f(X) \to \mathbf{G}_f(Y)$  sending  $(g, \alpha)$  to  $(hg, h\alpha)$  and  $\gamma$  to  $h\gamma$ . Moreover any track  $\eta: h \Rightarrow h'$  induces a natural transformation  $\mathbf{G}_f(\gamma): \mathbf{G}_f(h) \to \mathbf{G}_f(h')$  with components  $\eta g: hg \Rightarrow h'g$  for objects  $(g, \alpha)$  of  $\mathbf{G}_f(X)$ . Thus we have defined a track functor

$$\mathbf{G}_f:\mathscr{T}\to\mathfrak{Gpd}.$$

Any object  $(g: B \to C, \alpha: gf \Rightarrow gf)$  of  $\mathbf{G}_f(C)$  gives rise to a track transformation

$$(g,\alpha)^* : \llbracket C, - \rrbracket \to \mathbf{G}_f$$

consisting of functors

 $\llbracket C, X \rrbracket \to \mathbf{G}_f(X)$ 

which assign to  $h: C \to X$  the pair  $(hg, h\alpha)$  and to  $\eta: h' \Rightarrow h$  the track  $\eta g$  (this indeed defines a morphism in  $\mathbf{G}_f$  as  $\eta gf + h'\alpha = h\alpha + \eta gf$ , i. e.  $h'\alpha = (h\alpha)^{\eta gf}$ ).

1.1. **Definition.** For a map  $f : A \to B$  in a track category  $\mathscr{T}$ , a suspender for f is a triple  $(\Sigma_f, i_f, v_f)$  consisting of an object  $\Sigma_f$ , a map  $i_f : B \to \Sigma_f$ , and a track  $v_f : i_f f \Rightarrow i_f f$  having the property that the induced track transformation

$$(i_f, v_f)^* : \llbracket \Sigma_f, - \rrbracket \to \mathbf{G}_f$$

induces a bijection of isomorphism classes of objects.

In other words, the following conditions must be satisfied:

- (a) For any map  $g : B \to C$  and any track  $\eta : gf \Rightarrow gf$  there exists a map  $\Sigma_{\eta} : \Sigma_f \to C$  and a track  $\zeta_{\eta} : g \Rightarrow \Sigma_{\eta} i_f$  such that  $\eta = (\Sigma_{\eta} v_f)^{\zeta_{\eta} f}$  (surjectivity);
- (b) For any  $h, h': \Sigma_f \to C$  and any track  $\gamma: h'i_f \Rightarrow hi_f$  with  $h'\upsilon_f = (h\upsilon_f)^{\gamma f}$ one has  $\gamma = \delta i_f$  for some track  $\delta: h' \Rightarrow h$  (injectivity).

We point out that we do not assume for a suspender  $\Sigma_f$  that the map  $(i_f, v_f)^*$ is an equivalence of groupoids since this, in fact, does not hold in the example of topological spaces. Hence topology forces us to think of a weaker universal property, namely that  $(i_f, v_f)^*$  induces only a bijection of isomorphism classes of objects. A track category  $\mathscr{T}$  is  $\Sigma$ -representable if each map f in  $\mathscr{T}$  has a suspender  $(\Sigma_f, i_f, v_f)$ .

1.2. **Definition.** The dual notion of *looper* is obtained as a suspender in the opposite track category: a looper for  $f : A \to B$  consists of a map  $p_f : \Omega_f \to A$  and a track  $\lambda_f : fp_f \Rightarrow fp_f$  satisfying conditions dual to the above ones for suspenders. A track category  $\mathscr{T}$  is  $\Omega$ -representable if each map f in  $\mathscr{T}$  has a looper  $(\Omega_f, p_f, \lambda_f)$ .

Important particular cases are the suspenders and loopers for the identity map  $1=\mathrm{id}_A : A \to A$  which will be denoted  $\Sigma_*(A)$  and  $\Omega_*(A)$  respectively; suspender for a map  $0 : A \to *$  to the initial object will be called *suspension* of A and denoted  $\Sigma_0(A)$ , or simply  $\Sigma(A)$  if the map 0 is uniquely determined by the context; and dually the looper for a map  $0 : 1 \to A$  from the terminal object to A will be called *loop object* of A and denoted  $\Omega_0(A)$  or  $\Omega(A)$ .

These examples are important in that sometimes suspenders or loopers of all maps can be constructed using solely  $\Sigma_*$  and  $\Omega_*$  – indeed sometimes just using  $\Sigma_0$  and  $\Omega_0$ . See below.

We consider the following examples of  $\Omega$ -representable and  $\Sigma$ -representable track categories.

1.3. **Example.** The track category  $\mathfrak{Gpd}$  of groupoids is  $\Omega$ -representable. In fact, for a functor  $F : \mathbf{G} \to \mathbf{H}$  between groupoids the looper  $\Omega_F$  is obtained by the pullback diagram

$$\begin{array}{c} \Omega_F \longrightarrow \mathbf{H} \\ \downarrow & \downarrow \\ \mathbf{G} \xrightarrow{F} \mathbf{H}. \end{array}$$

Moreover the loop groupoid **H** itself has the universal property for  $\Omega_*(\mathbf{H})$ .

1.4. **Example.** The track category **Top**<sup>\*</sup> of pointed topological spaces is  $\Sigma$ -representable. Let  $IA = (A \times [0,1]) / (\{*\} \times [0,1])$  be the cylinder in **Top**<sup>\*</sup>.

Then the suspender  $\Sigma_f$  of a map  $f : A \to B$  is obtained by the pushout diagram



Here  $v_f$  yields the track  $v_f : i_f \Rightarrow i_f$  for the suspender  $\Sigma_f$ . Next let  $PB = B^I$  be the space of maps  $[0, 1] \to B$  with the compact open topology. Then the looper  $\Omega_f$  of f is obtained by the pullback diagram

$$\Omega_{f} \xrightarrow{\lambda_{f}} PB$$

$$\downarrow^{p_{f}} \qquad \downarrow^{(q_{0},q_{1})}$$

$$A \xrightarrow{(f,f)} B \times B.$$

Here  $\lambda_f$  yields the track  $\lambda_f : p_f \Rightarrow p_f$  for the looper  $\Omega_f$ . In the next example we show that the properties 1.1 are satisfied for  $\Sigma_f$  and  $\Omega_f$  respectively.

Let  $\mathbf{C}$  be a cofibration category in the sense of Baues [3]. For each cofibrant object X in  $\mathbf{C}$  we choose a cylinder

$$X \lor X \rightarrowtail IX \xrightarrow{\sim} X$$

which is a factorization of  $(1,1) : X \vee X \to X$ . For a fibrant object Y the homotopy classes relative to  $X \vee X$  of maps  $IX \to Y$  are the tracks in C. Therefore the full subcategory  $\mathbf{C}_{cf}$  of cofibrant and fibrant objects in C is a track category; see [3, II §5].

1.5. Lemma. For a cofibration category C the track category  $C_{cf}$  is  $\Sigma$ -representable.

*Proof.* For each cofibrant object X in **C** a fibrant model  $j: X \xrightarrow{\sim} RX$  can be chosen. Now the suspender  $\Sigma_f$  of  $f: A \to B$  in  $\mathbf{C}_{cf}$  is obtained by a fibrant model of the pushout  $\Sigma'_f$  in the following diagram

The composite  $v_f = jv'_f : IA \to \Sigma'_f \to \Sigma_f$  yields the track  $v_f : i_f \Rightarrow i_f$ . We now check that the properties (a) and (b) in 1.1 are satisfied. For a map  $g : B \to C$ in  $\mathbf{C}_{cf}$  let  $\eta : gf \simeq gf$  be a homotopy  $\eta : IA \to C$ . Then the pushout property of  $\Sigma'_f$  yields a map  $g \cup \eta : \Sigma'_f \to C$  which admits an extension  $\Sigma_\eta : \Sigma_f \to C$ so that  $\Sigma_\eta i_f = g$  and  $\eta = \Sigma_\eta v_f$ . Hence we can actually choose the track  $\zeta_\eta$  in (a) to be the identity isomorphism of g. This proves (a). Now we check (b) as follows. Let  $\gamma : h'i_f \simeq hi_f$  with

$$h'\upsilon_f = (h\upsilon_f)^{\gamma f} = -\gamma f + hf + \gamma f \tag{(*)}$$

as in (b). Here (\*) is an equation of tracks. Now (\*) implies that there is a map

$$\delta': IIA \to C$$

with  $\delta' i_0 = h \upsilon_f$ ,  $\delta' i_1 = h' \upsilon_f$  and  $\delta' I i_0 = \delta' I i_1 = \gamma I f$ . Here we choose the cylinder IB to be a fibrant object so that  $If : IA \to IB$  is defined; see [3]. Now consider the following pushout diagram where  $I(A \lor A) = IA \lor IA$ .

Here the pushout  $I\Sigma'_f$  is actually a cylinder for  $\Sigma'_f$  and we define a cylinder  $I\Sigma_f$  for  $\Sigma_f$  by the pushout diagram



Now the map  $\delta' \cup \gamma : I\Sigma'_f \to C$  is defined with  $(\delta' \cup \gamma)i_0 = h'j$  and  $(\delta' \cup \gamma)i_1 = hj$ . Hence a map  $\delta = (\delta' \cup \gamma) \cup (h', h) : I\Sigma_f \to C$  is defined. The track defined by  $\delta$  satisfies  $\delta : h' \Rightarrow h$ . Moreover  $\delta i_f = \gamma$  since  $\delta i_f$  is represented by  $(\delta' \cup \gamma)(Ii'_f) = \gamma$ .

For a model category  $\mathbf{Q}$  as in [11] let  $\mathbf{Q}_c$  and  $\mathbf{Q}_f$  denote the full subcategory of cofibrant and fibrant objects, respectively. Then  $\mathbf{Q}_c$  is a cofibration category and  $\mathbf{Q}_f$  is a fibration category in the sense of Baues [3]. Here fibration category is the categorical dual of cofibration category. Therefore 1.5 above shows:

# 1.6. Corollary. Let $\mathbf{Q}_{cf}$ be the track category of cofibrant and fibrant objects in a Quillen model category. Then $\mathbf{Q}_{cf}$ is $\Sigma$ -representable and $\Omega$ -representable.

The examples in 1.4 are also consequences of 1.5 since  $\mathbf{Top}^*$  is a cofibration category and also a fibration category in which all objects are cofibrant and fibrant, compare [3]. Moreover using [3, Remark I.8.15] we see that also  $\mathbf{Top}_0^*$  is a fibration category in which all objects are fibrant and cofibrant. Here we use the structure [3, I.3.3] and [3, I.4.6].

#### 2. Functorial properties of suspenders

We consider functorial properties of suspenders. This implies a kind of uniqueness and compatibility with sums. For a category  $\mathbf{T}$  the category  $\operatorname{Pair}(\mathbf{T})$ is the usual category of pairs in  $\mathbf{T}$ . Objects of  $\operatorname{Pair}(\mathbf{T})$  are morphisms  $A \to B$ and morphisms from  $(A \to B)$  to  $(X \to Y)$  are commutative diagrams in  $\mathbf{T}$ 



#### 2.1. Lemma. For any commutative diagram of unbroken arrows



there exist a map  $\Sigma_*(p,q)$  and a track  $\zeta_{(p,q)}$  as indicated, with

$$\Sigma_*(p,q)\upsilon_f = (\upsilon_g p)^{\zeta_{(p,q)}f}.$$
 (a)

Choosing such maps for each commutative square as above gives a functor

 $\Sigma_{-}: \operatorname{Pair}(\mathscr{T}) \to \operatorname{Pair}(\mathscr{T}_{\simeq})$ 

carrying  $f : A \to B$  to  $[i_f] \in [B, \Sigma_f]$  and the commutative square  $(p,q) : f \to g$  as above to  $([q], [\Sigma_*(p,q)]) : [i_f] \to [i_g].$ 

*Proof.* By the definition of suspenders, the track  $v_g p$  considered as an automorphism of  $i_g g p = i_g q f$  produces a map  $\Sigma_{v_g p} : \Sigma_f \to \Sigma_g$  and a track  $\zeta_{v_q p} : \Sigma_{v_q p} i_f \Rightarrow i_g q$  such that (a) holds. So one can define

$$\Sigma_*(p,q) = \Sigma_{\upsilon_g p}, \quad \zeta_{(p,q)} = \zeta_{\upsilon_g p}.$$

Then the injectivity condition for suspenders guarantees that there are tracks

$$\Sigma_*(\mathrm{id}_A,\mathrm{id}_B)\simeq\mathrm{id}_{\Sigma_f}$$

and

$$\Sigma_*(p,q)\Sigma_*(p',q')\simeq \Sigma_*(pp',qq')$$

for any two matching commutative squares. The lemma follows.

2.2. Lemma. Let  $(\Sigma_f, i_f, v_f)$  and  $(\Sigma'_f, i'_f, v'_f)$  be two suspenders of a map  $f: A \to B$ . Then they are equivalent in  $\mathscr{T}$ . More precisely, there exist maps  $l: \Sigma_f \to \Sigma'_f$  and  $l': \Sigma'_f \to \Sigma_f$  such that  $li_f = i'_f$ ,  $l'i'_f = i_f$ ,  $lv_f = v'_f$ , and  $l'v'_f = v_f$ . Moreover there exist tracks  $\lambda : l'l \simeq \mathrm{id}_{\Sigma_f}, \lambda' : ll' \simeq \mathrm{id}_{\Sigma'_f}$  with  $\lambda i_f = \mathrm{id}_{i_f}, \lambda' i'_f = \mathrm{id}_{i'_f}$ .

*Proof.* Existence of  $l = \Sigma_{v'_f}$  and  $l' = \Sigma_{v_f}$  satisfying the required identities is clear from the definition of suspenders. Then further by the uniqueness property of suspenders, for the identity track  $\Sigma_{v'_f} \Sigma_{v_f} i_f = \Sigma_{v'_f} i'_f = i_f = \mathrm{id}_{\Sigma_f} i_f$ one has  $\Sigma_{v'_f} \Sigma_{v_f} v_f = \Sigma_{v'_f} v'_f = v_f$ , hence there is a track  $\lambda : \Sigma_{v'_f} \Sigma_{v_f} \simeq \mathrm{id}_{\Sigma_f}$  with  $\lambda i_f = \mathrm{id}_{i_f}$ . In an exactly symmetric way one has  $\lambda'$  with required properties.  $\Box$ 

Also the converse is true:

2.3. Lemma. Let  $(\Sigma_f, i_f, v_f)$  be a suspender for the map  $f : A \to B$  and let the maps  $l : \Sigma_f \to \Sigma$ ,  $l' : \Sigma \to \Sigma_f$  and tracks  $\lambda : l'l \simeq id_{\Sigma_f}$ ,  $\lambda' : ll' \simeq id_{\Sigma}$  realise a homotopy equivalence. Then  $(\Sigma, li_f, lv_f)$  is another suspender for f.

*Proof.* Consider the composite functor

$$\llbracket \Sigma, - \rrbracket \xrightarrow{\llbracket l, - \rrbracket} \llbracket \Sigma_f, - \rrbracket \xrightarrow{(i_f, v_f)^*} \mathbf{G}_f.$$

Clearly it coincides with  $(li_f, lv_f)^*$ . Moreover  $(i_f, v_f)^*$  induces bijection on isomorphism classes by the universal property of suspenders, and so does  $[\![l, -]\!]$  – in fact the latter is an equivalence, with inverse  $[\![l', -]\!]$ . Hence the lemma.  $\Box$ 

2.4. **Lemma.** For any object A, a suspender for the map  $!_A : * \to A$  from the (possibly weak) initial object to A is given by  $(A, id_A, id_{!_A})$ . Given suspenders  $(\Sigma_f, i_f, \upsilon_f)$  and  $(\Sigma_{f'}, i_{f'}, \upsilon_{f'})$  for the maps  $f : A \to B$  and  $f' : A' \to B'$ , respectively,  $(\Sigma_f \lor \Sigma_{f'}, i_f \lor i_{f'}, \upsilon_f \lor \upsilon_{f'})$  is a suspender for  $f \lor f' : A \lor A' \to B \lor B'$ .

*Proof.* The first assertion follows easily from the fact that the functor  $\mathbf{G}_{!_A}$  coincides with the covariant representable functor  $[\![A, -]\!]$ .

For the second, consider the functors

$$\llbracket \Sigma_f \vee \Sigma_{f'}, - \rrbracket \xrightarrow{\simeq} \llbracket \Sigma_f, - \rrbracket \times \llbracket \Sigma_{f'}, - \rrbracket \xrightarrow{(i_f, v_f)^* \times (i_{f'}, v_{f'})^*} \mathbf{G}_f \times \mathbf{G}_{f'} \to \mathbf{G}_{f \vee f'},$$

where the rightmost functor is the one assigning to  $((g, \alpha), (g', \alpha'))$  with  $g : B \to C, \alpha : gf \simeq gf, g' : B' \to C', \alpha' : g'f' \simeq g'f'$  the pair  $\binom{g}{g'}, \binom{\alpha}{\alpha'}$ , where  $\binom{g}{g'}: B \lor B' \to C$  and  $\binom{\alpha}{\alpha'}: \binom{gf}{g'f'} \simeq \binom{gf}{g'f'} \simeq \binom{g}{g'}(f \lor f')$  are obtained from the equivalences  $[B \lor B', C] \simeq [B, C] \times [B', C]$ . It is clear how to define this functor on morphisms. One sees directly that this functor induces bijection on isomorphism classes of objects; hence so does the composite, which is easily seen to coincide with  $(i_f \lor i_{f'}, v_f \lor v_{f'})^*$ . The lemma follows.

### 3. Suspensions

Let \* be the initial object of a track category  $\mathscr{T}$  in the strong sense so that the hom-groupoid  $[\![*, X]\!]$  is the trivial groupoid for any X. Then the suspender  $\Sigma_0 A$  of a map  $0: A \to *$  is termed a *suspension* (associated to 0) of A.

3.1. **Proposition.** For any map  $0: A \to *$  to the initial object, the corresponding suspension  $\Sigma_0(A)$  is canonically equipped with a cogroup structure in the homotopy category  $\mathscr{T}_{\simeq}$ . Moreover for any  $a: A' \to A$  the induced map (see 2.1)  $\Sigma_*(f, \mathrm{id}_*): \Sigma_{0a}(A) \to \Sigma_0(A)$  respects this cogroup structure.

*Proof.* Recall that the initial object is understood in the strong sense, so that [\*, X] is a trivial groupoid for any X. It then follows that the groupoid  $\mathbf{G}_0(X)$ has as many objects as there are tracks  $\alpha : !_X 0 \simeq !_X 0$ , and only identity morphisms. In other words, it is the discrete groupoid on the set  $Aut(!_X 0)$ . Let us equip this set with a group structure coming from the obvious one on  $\operatorname{Aut}(!_X 0)$ . Then moreover the functor  $\mathbf{G}_0(X) \to \mathbf{G}_0(Y)$  induced by a map  $f: X \to Y$ is given on objects by  $\alpha \mapsto f\alpha$ , hence is a homomorphism of groups. One so obtains a lifting of the functor  $G_0$  to groups. But by the universal property of the suspender, this functor coincides with  $[\Sigma_0, -]$ . So considered as an object of  $\mathscr{T}_{\simeq}$ , the suspension  $\Sigma_0$  has the property that its covariant representable functor lifts to the category of groups. It then follows by the standard categorical argument that this object has a cogroup structure in  $\mathscr{T}_{\simeq}$ . Explicitly, the cozero of this cogroup is  $\Sigma_{id_0}$ , i. e. the map  $\Sigma_0 \to *$  induced by the pair  $(\mathrm{id}_*:*\to*,\mathrm{id}_0:\mathrm{0id}_*=0\simeq 0=\mathrm{0id}_*)$ . The coaddition map  $+:\Sigma_0\to\Sigma_0\vee\Sigma_0$ is induced by the pair  $(!_{\Sigma_0 \vee \Sigma_0} : * \to \Sigma_0 \vee \Sigma_0, i_1 v_0 + i_2 v_0)$ , where  $v_0 \in \operatorname{Aut}(!_{\Sigma_0} 0)$ is the universal track and  $i_1, i_2 : \Sigma_0 \to \Sigma_0 \lor \Sigma_0$  are the coproduct inclusions. The inverse map  $\Sigma_0 \to \Sigma_0$  is induced by  $(!_{\Sigma_0}0, -v_0)$ .

Now given any  $a: A' \to A$ , it obviously respects counit. To show that it respects coaddition, one must find a track  $+\Sigma_*(a, \mathrm{id}_*) \simeq (\Sigma_*(a, \mathrm{id}_*) \vee \Sigma_*(a, \mathrm{id}_*))+$ . According to the uniqueness property of the suspender  $\Sigma_{0a}$ , for this it is enough to find a track  $\alpha : +\Sigma_*(a, \mathrm{id}_*)i_{0a} \simeq (\Sigma_*(a, \mathrm{id}_*) \vee \Sigma_*(a, \mathrm{id}_*)) + i_{0a}$  satisfying  $+\Sigma_*(a, \mathrm{id}_*)v_{0a} = ((\Sigma_*(a, \mathrm{id}_*) \vee \Sigma_*(a, \mathrm{id}_*)) + v_{0a})^{\alpha 0a}$ . There is a unique choice for such  $\alpha$  – namely the identity track, as \* is initial in the strong sense. Then  $+\Sigma_*(a, \mathrm{id}_*)v_{0a} = +v_0a = (i_1v_0 + i_2v_0)a = i_1v_0a + i_2v_0a = i_1\Sigma_*(a, \mathrm{id}_*)v_{0a} + i_2\Sigma_*(a, \mathrm{id}_*)v_{0a} = ((\Sigma_*(a, \mathrm{id}_*) \vee \Sigma_*(a, \mathrm{id}_*))i_1v_{0a} + (\Sigma_*(a, \mathrm{id}_*) \vee \Sigma_*(a, \mathrm{id}_*))i_2v_{0a} = (\Sigma_*(a, \mathrm{id}_*) \vee \Sigma_*(a, \mathrm{id}_*))(i_1v_{0a} + i_2v_{0a}) = (\Sigma_*(a, \mathrm{id}_*) \vee \Sigma_*(a, \mathrm{id}_*)) + v_{0a}$  as required.

3.2. Corollary. Suppose that an object A has a co-H-structure, i. e. a coaddition  $a: A \to A \lor A$  with a two-sided cozero  $0: A \to *$  in  $\mathscr{T}_{\simeq}$ . Then the above canonical cogroup structure on  $\Sigma_0$  (see 3.1) is coabelian.

*Proof.* By 2.1 and 2.4, there are maps  $0' = \Sigma_*(0, \mathrm{id}_*) : \Sigma_0 \to *$  and  $+' = \Sigma_*(a, \mathrm{id}_*) : \Sigma_0 \to \Sigma_0 \lor \Sigma_0$  which equip  $\Sigma_0$  with a co-*H*-structure in  $\mathscr{T}_{\simeq}$ . On the other hand it has a canonical cogroup structure  $(\Sigma_{\mathrm{id}_0}, +, -)$  in  $\mathscr{T}_{\simeq}$  by 3.1.

But in fact  $\Sigma_{id_0}$  and  $\Sigma_*(0, id_*)$  coincide in  $\mathscr{T}_{\simeq}$ , so it follows that these cogroup structures have the same cozero.

Moreover the fact that  $+^\prime$  respects the cogroup structure means commutativity of



in  $\mathscr{T}_{\simeq}$ , where  $+_2$  is the coaddition for the canonical cogroup structure on  $\Sigma_0 \vee \Sigma_0$ considered as  $\Sigma_{\begin{pmatrix} 0\\0 \end{pmatrix}}$ . It is clear that this cogroup structure coincides with the coproduct of cogroup structures on  $\Sigma_0$ . In general, for two cogroups X and Y the coaddition on their coproduct is given by

$$X \vee Y \xrightarrow{+_X \vee +_Y} X \vee X \vee Y \vee Y \bigvee Y \xrightarrow{X \vee \binom{i_X}{i_Y} \vee Y} X \vee Y \vee X \vee Y,$$

so that  $+_2$  is given by the composite

$$\Sigma_0 \vee \Sigma_0 \xrightarrow{+\vee +} \Sigma_0 \vee \Sigma_0,$$

where (23) denotes the map permuting second and third summands.

Composing the above diagram with

$$\mathrm{id}_{\Sigma_0} \vee \begin{pmatrix} 0' \\ 0' \end{pmatrix} \vee \mathrm{id}_{\Sigma_0} : \Sigma_0 \vee \Sigma_0 \vee \Sigma_0 \vee \Sigma_0 \vee \Sigma_0 \to \Sigma_0 \vee * \vee * \vee \Sigma_0 \cong \Sigma_0 \vee \Sigma_0$$

then gives that there is a track  $+' \simeq +$ , whereas composing it with

$$\begin{pmatrix} 0' \lor \mathrm{id}_{\Sigma_0} \\ \mathrm{id}_{\Sigma_0} \lor 0' \end{pmatrix} : \Sigma_0 \lor \Sigma_0 \lor \Sigma_0 \lor \Sigma_0 \lor \Sigma_0 \lor \times \Sigma_0 \lor \Sigma_0 \lor \times \cong \Sigma_0 \lor \Sigma_0$$

gives that there is a track  $+' \simeq (12)+$ . This means that + is coabelian in  $\mathscr{T}_{\simeq}$ .

### 4. Suspenders of coactions

We show that the suspender  $\Sigma_f$  of a map  $f : A \to B$  splits as a coproduct if A has the structure of a principal coaction in the homotopy category. Recall that a *theory* **C** is a category with finite sums  $A \vee B$ .

4.1. **Definition.** A principal coaction in a theory  $\mathbf{C}$  consists of an object A together with a cogroup object S in  $\mathbf{C}$  and a right coaction

$$a: A \to A \lor S$$

on A such that the map

$$(i_A, q): A \lor A \to A \lor S$$

is an isomorphism in **C**. The cogroup structure of S is given by maps  $\mu : S \to S \lor S$ ,  $\nu : S \to S$  and  $e : S \to *$ . The inverse of  $(i_A, a)$  yields the map  $d: S \to A \lor A$ .

A principal coaction is *trivial* if A is isomorphic to S in such a way that  $\mu$  corresponds to the cogroup structure of S. It is well known that a principal coaction (A, a) is trivial if and only if there exists a map  $A \to *$  in **C**, where \* is the initial object of **C**.

4.2. **Remark.** A principal action in a category with finite products consists of an object T together with an internal group G in this category and a right action  $a: T \times G \to T$  of G on T such that the map  $(p_T, a): T \times G \to T \times T$  is an isomorphism  $(p_T$  being the product projection). Of course a principal action is the categorical dual of a principal coaction.

For our purposes we need a weaker notion which we call principal quasi action or quasi torsor. It consists of objects T, G and morphisms  $T \times G \to T$ , d:  $T \times T \to G$ ,  $1 \to G$ , denoted via  $(x, g) \mapsto x \cdot g$ ,  $(x, y) \mapsto x \setminus y$ , and e respectively, for  $x, y :? \to T$ ,  $g :? \to G$ , such that the following identities hold:

- $x \setminus x = e;$
- $x \cdot (x \setminus y) = y.$

(Note that the above conditions imply also  $x \cdot e = x$ .)

Clearly, any principal action is a particular case of this, as one can define d to be the composite map

$$T \times T \xrightarrow{(p_T, a)^{-1}} T \times G \xrightarrow{p_G} G$$

The categorical dual of a principal quasi action is a *principal quasi coaction* which generalizes the principal coaction in 4.1.

Recall that a *track theory* is a track category with coproducts  $A \vee B$  in the weak sense (see [5]) so that for all X one has the equivalence of hom-groupoids

$$\llbracket A \lor B, X \rrbracket \xrightarrow{\sim} \llbracket A, X \rrbracket \times \llbracket B, X \rrbracket.$$

Let  $\omega$  be an inverse of this equivalence.

4.3. **Theorem.** Let  $\mathscr{T}$  be a track theory and let  $f : A \to B$  be a map in  $\mathscr{T}$ . Assume A has the structure of a principal (quasi)coaction in the homotopy category  $\mathscr{T}_{\simeq}$  represented by a map  $a : A \to A \lor S$  in  $\mathscr{T}$ , where S is a cogroup in  $\mathscr{T}_{\simeq}$ . Let  $\Sigma S = \Sigma_e S$  be a suspension of S in  $\mathscr{T}$  associated to a map  $e : S \to *$  in  $\mathscr{T}$  representing the counit of S. Then there is a suspender of f with

$$\Sigma_f = B \vee \Sigma S$$

and  $i_f = i_B : B \to B \lor \Sigma S$  the coproduct inclusion and  $v_f : i_B f \Rightarrow i_B f$  a certain canonically defined track.

The theorem shows that existence of certain suspensions in a track category implies existence of a wider class of suspenders. Moreover by 2.2 we get the following corollary.

4.4. Corollary. Let  $\mathscr{T}$  be a  $\Sigma$ -representable track theory and let  $f : A \to B$ be a map in  $\mathscr{T}$  where A admits the structure of a principal (quasi)coaction  $A \to A \lor S$  in  $\mathscr{T}_{\simeq}$ . Then there exists a homotopy equivalence  $\Sigma_f \simeq B \lor \Sigma S$ where  $\Sigma S$  is a suspension associated to a map  $S \to *$  representing the counit of S.

*Proof of* 4.3. To simplify exposition, let us introduce the following notation. The given principal coaction gives rise, for each object X, to functors

$$\llbracket A, X \rrbracket \times \llbracket S, X \rrbracket \xrightarrow{\omega} \llbracket A \lor S, X \rrbracket \xrightarrow{\llbracket a, X \rrbracket} \llbracket A, X \rrbracket$$

and

$$\llbracket A, X \rrbracket \times \llbracket A, X \rrbracket \xrightarrow{\omega} \llbracket A \lor A, X \rrbracket \xrightarrow{\llbracket d, X \rrbracket} \llbracket S, X \rrbracket,$$

whose actions on both objects and morphisms will be denoted by

$$(x,s) \mapsto a \cdot s, \quad (x,y) \mapsto x \setminus y,$$

respectively. The principal coaction structure in  $\mathscr{T}_{\simeq}$  implies existence of tracks  $\varkappa, \lambda$  which for any  $x, y : A \to X$  induce tracks

$$x\varkappa: e \Rightarrow x \backslash x,$$
$$\binom{x}{y} \lambda: x \cdot (x \backslash y) \Rightarrow y$$

Let us define another track  $\iota$  by



We now turn to the construction of the universal track  $v_f$ . It is the composite track in the diagram



where the two parallelograms commute. More formally,  $v_f = (va)^{-i_B f\iota}$ , where the track

 $v = (\mathrm{id}_{\mathrm{id}_B} \lor v_e)(f \lor \mathrm{id}_S) \in \mathrm{Aut}((\mathrm{id}_B \lor (!_{\Sigma S} e))(f \lor \mathrm{id}_S))$ 

is considered as an automorphism of the map

$$i_B \begin{pmatrix} f \\ !_B e \end{pmatrix} = (\mathrm{id}_B \lor !_{\Sigma S})(f \lor e)$$
$$= (\mathrm{id}_B \lor !_{\Sigma S})(\mathrm{id}_B \lor e)(f \lor \mathrm{id}_S)$$
$$= (\mathrm{id}_B \lor (!_{\Sigma S} e))(f \lor \mathrm{id}_S).$$

To show that  $v_f$  is indeed universal, we must show that, for each object X, the functor

$$\llbracket B, X \rrbracket \times \llbracket \Sigma S, X \rrbracket \cong \llbracket B \lor \Sigma S, X \rrbracket \overset{(i_B, v_f)^*}{\longrightarrow} \mathbf{G}_f(X)$$

induces bijection on isomorphism classes of objects. Now  $v_f$  is chosen in such a way that given  $x: B \to X$  and a track  $\varepsilon \in \operatorname{Aut}(!_X e)$  with the corresponding map  $\Sigma_{\varepsilon}: \Sigma S \to X$ , one has

$$(i_B, v_f)^*(x, \Sigma_{\varepsilon}) = (\mathrm{id}_{xf} \cdot \varepsilon)^{-xf\iota} : xf \simeq xf.$$

Taking into account the universal property of  $\Sigma S$ , we may replace isomorphism classes of  $[\![\Sigma S, X]\!]$  by those of  $\mathbf{G}_e(X)$ . We thus must show

- For any  $x : B \to X$  and any track  $\alpha \in \operatorname{Aut}(xf)$  there is a track  $\varepsilon \in \operatorname{Aut}(!_X e)$  such that  $\operatorname{id}_{xf} \cdot \varepsilon = \alpha^{xf\iota}$ ;
- For any  $x, x' : B \to X$ , any  $\varepsilon, \varepsilon' \in \operatorname{Aut}(!_X e)$  and any  $\chi : x \simeq x'$  with  $\operatorname{id}_{x'f} \cdot \varepsilon' = (\operatorname{id}_{xf} \cdot \varepsilon)^{\chi f}$  there is a track  $\eta : \Sigma_{\varepsilon'} \to \Sigma_{\varepsilon}$ .

For the first, define, for  $\alpha \in \operatorname{Aut}(xf)$ , the track  $\varepsilon = (\operatorname{id}_{xf} \setminus \alpha)^{xf\varkappa}$ . Then because of our special choice of  $\iota$  the required identity will be satisfied.

For the second, note that if  $\chi : x \simeq x'$  satisfies the hypothesis, then in the diagram



all inner squares commute, hence the outer square commutes too, i. e. actually  $\varepsilon = \varepsilon'$ .

#### Acknowledgement

The second author gratefully acknowledges hospitality of the Max Planck Institut für Mathematik, Bonn and of the Université Catholique de Louvain, Louvain-la-Neuve.

#### References

- 1. W. D. BARCUS and M. G. BARRATT, On the homotopy classification of the extensions of a fixed map. *Trans. Amer. Math. Soc.* 88(1958), 57–74.
- H.-J. BAUES, Obstruction theory. Lecture Notes in Math., 628, Springer, Berlin–N. Y. 1977.
- 3. H.-J. BAUES, Algebraic homotopy. Cambridge studies in advanced mathematics, 15, Cambridge University Press, Cambridge 1989.
- H.-J. BAUES, On the cohomology of categories, universal Toda brackets and homotopy pairs. *K*-theory 11(1997), 259–285.
- 5. H.-J. BAUES and M. JIBLADZE, Classification of abelian track categories. Preprint.
- H.-J. BAUES and M. JIBLADZE, Suspension and loop objects in theories and cohomology. Georgian Math. J. 8(2001), No. 4, 697–712.
- P. GABRIEL and M. ZISMAN, Calculus of fractions and homotopy theory. Ergebnisse der Math. und ihrer Grenzgebiete 35, Springer, N. Y. 1967.
- 8. K. A. HARDIE, K. H. KAMPS and R. W. KIEBOOM, A homotopy category of maps and tracks. *Preprint*.
- 9. K. A. HARDIE, K. H. KAMPS and R. W. KIEBOOM, A homotopy bigroupoid of a topological space. *Preprint*.
- 10. K. A. HARDIE, H. J. MARCUM and N. ODA, Bracket operations in the homotopy theory of a 2-category. *Preprint*.
- 11. D. G. QUILLEN, Homotopical algebra. Lecture Notes in Math. 43 Springer, Berlin–N. Y. 1967.
- J. W. RUTTER, A homotopy classification of maps into an induced fibre space. *Topology* 6(1967), 379–403.

(Received 28.11.2000)

Authors' addresses:

H.-J. Baues
Max-Planck-Institut fuer Mathematik
Vivatsgasse 7, D-53111 Bonn
Germany
E-mail: baues@mpim-bonn.mpg.de
M. Jibladze
A. Razmadze Mathematical Institute
Georgian Academy of Sciences

1, M. Aleksidze St., Tbilisi 380093

Georgia

E-mail: jib@rmi.acnet.ge