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Since the work of Lawvere [16] it is well known that many algebraic categories
(like the categories of monoids, groups, algebras, Lie algebras, etc.) are actually
categories of models of a theory. In topology there are fundamental examples
of theories as in (1) and (2) below in which also suspension objects ΣX or loop
objects ΩX are defined. Such theories with suspension objects are also endowed
with a partial suspension operator E and dually theories with loop objects are
endowed with a partial loop operator L, compare for example Baues [5, 4, 2].


For example the homotopy category S of one point unions of spheres


Sn1 ∨ ... ∨ Snk (1)


with n1, ..., nk ≥ 1, k ≥ 0, is a theory with suspension objects and partial
suspension operator E. Moreover the homotopy category K(Z/2) of products
of Eilenberg–Mac Lane spaces


Kn1 × ...×Knk (2)


with n1, ..., nk ≥ 0, k ≥ 0 and Kn = K(Z/2, n) is a theory with loop objects
and partial loop operator L.


In this paper we introduce a complete system of axioms defining a theory
with suspension objects and partial suspension operator termed a Σ-theory.
The categorical dual of a Σ-theory is a theory with loop objects and partial
loop operator termed Ω-theory.


The theory S given by spheres in (1) is a Σ-theory and the theory K(Z/2)
given by Eilenberg–Mac Lane spaces in (2) is an Ω-theory. These examples
show the crucial significance of such theories. In [10] we show that the Ω-theory
K(Z/2) is completely determined by the Steenrod algebra.


We introduce the Σ-cohomology H∗
Σ(T) of a Σ-theory T and dually the Ω-


cohomology H∗
Ω(T) of an Ω-theory T. The universal Toda brackets of Baues


and Dreckmann [6] yield for the theories S and K(Z/2) above the cohomology
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classes
〈S〉 ∈ H3


Σ(S),


〈K(Z/2)〉 ∈ H3
Ω(K(Z/2)).


(3)


The cohomology class 〈S〉 determines all secondary homotopy operations in
S like triple Toda brackets. The cohomology class 〈K(Z/2)〉 determines all
secondary cohomology operations like triple Massey products or operations of
Adams [1].


In [9] we study the concept of suspenders and loopers in groupoid enriched
categories termed track categories. As a main result in this paper we show that
a Σ-theory T together with an element α ∈ H3


Σ(T) determines up to equivalence
a track category which has the property of a “track theory with suspenders”
and vice versa such track theories are classified by the Σ-cohomology H3


Σ.
Dually an Ω-theory T together with an element α ∈ H3


Ω(T) determines up to
equivalence a track category which has the properties of a “track theory with
loopers” and vice versa such track theories are classified by the Ω-cohomology
H3


Ω.
For example the topological track category given by spaces in (1) and maps


between such spaces (1-cells) and by homotopy classes of homotopies between
such maps (2-cells) is a track theory with suspenders corresponding to the pair
(S, 〈S〉). Similarly the topological track category given by spaces in (2) is a
track theory with loopers corresponding to the pair (K(Z/2), 〈K(Z/2)〉).


1. Theories


A theory for us is a category S in which finite sums exist. We assume that
a collection of generating objects Xi in S is given such that all objects of S
are finite sums of objects from the collection. A model M of the theory S in
a category C is a contravariant functor M : Sop → C which carries sums to
products. Hence a model can be thought of as a collection of objects Mi of C
together with certain morphisms (“operations”) Mi1 × ... × Min → Mi which
satisfy certain “identities”, i. e. fit in certain commutative diagrams, according
to the structure of S. In most cases we consider models of S in the category
Set of sets, so that a model is a collection of sets with algebraic structure.


1.1. Example. Let S be the full subcategory of the homotopy category (Top∗)'
consisting of finite one point unions of spheres Sn with n ≥ 1. Then S is a
theory. Homotopy groups πn(X) = [Sn, X] of a space X together with homo-
topy operations given by maps in S yield a model of S. Such models are also
termed π-algebras in the work of Blanc [12], Stower [18], Dwyer–Kan–Stower
[13], Baues–Goerss [7].


The categorical dual of a theory termed a theory with products is a category
P with finite products denoted A × B. A model of P is a covariant functor
P → C which preserves products. Originally Lawvere used such theories with
products. But the example of homotopy groups above shows that also theories
with coproducts arise naturally.
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1.2. Example. Let K(Z/2) be the full subcategory of the homotopy category
(Top∗)' consisting of finite products of Eilenberg–MacLane spaces K(Z/2, n)
with n ≥ 1. Then K is a theory with products. The cohomology groups
Hn(X; A) = [X,K(A, n)] of a space X together with cohomology operations
given by maps in K(Z/2) yield a model of K(Z/2). For example, the cohomol-
ogy of X as a module over the Steenrod algebra or the cohomology ring of X
can be deduced from the model; see Gray [14].


Each object in S is a cogroup object and objects in K are group objects.
Therefore S is a “theory of cogroups” as defined below and dually K is a “theory
of groups”.


1.3. Definition. A theory of cogroups is a theory T all of whose objects S are
equipped with a cogroup structure (0S : S → ∗,mS : S → S ∨ S, nS : S → S)
in a way which is compatible with sums, i. e.


0S∨T =


(
0S


0T


)
: S ∨ T → ∗,


S ∨ S ∨ T ∨ T
idS∨(iS


iT
)∨idT


))SSSSSSSSSSSSSS


S ∨ T


mS∨mT


77oooooooooooo mS∨T // S ∨ T ∨ S ∨ T,


nS∨T = nS ∨ nT : S ∨ T → S ∨ T.


We shall deal more generally with the following theories of coactions which
are fundamental in development of homotopy theory in [3]. Principal coactions
are defined as in [9, Section 4].


1.4. Definition. A theory of coactions is a theory T all of whose objects X are
assigned a cogroup SX and a principal coaction with structure maps aX : X →
X ∨ SX , dX : SX → X ∨ X. These structures are required to be compatible
with sums, i. e. SX∨Y = SX ∨ SY , etc.


Clearly a theory of cogroups is a special case of a theory of coactions, with
SX = X, aX = mX , dX = (nX ∨ idX)mX , where mX and nX are the comulti-
plication and the coinverse respectively of the cogroup X.


1.5. Definition. Let S and T be cogroups in a category C. We say that
f : S → T is linear if f is compatible with the cogroup structure, i. e. mT f =
(f ∨ f)mS. More generally a map f : S → X ∨ T is called linear in T if the
diagram


S
f //


mS


²²


X ∨ T


idX∨mT


²²
S ∨ S


f∨f
// X ∨ T ∨X ∨ T


0
B@


iX
i1,T


iX
i2,T


1
CA


// X ∨ T ∨ T
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commutes.


We point out that in a theory of cogroups T, morphisms in T are not required
to be linear.


2. Theories with suspension


In this section we introduce and study “theories with suspension objects and
partial suspension operator” termed Σ-theories. There are three different ways
to characterize a Σ-theory. The categorical dual of a Σ-theory is termed a
Ω-theory.


Let T be a theory of cogroups or more generally a theory of coactions.
For an object X of T we define the category T(X) as follows. Objects of


T(X) are the objects of T having a cogroup structure. A morphism s from S
to T in T(X) is given by a commutative diagram


(2.1)


X
iX


yyssssssssss
iX


%%KKKKKKKKKK


X ∨ S
s //


idX∨0S %%KKKKKKKKK X ∨ T


idX∨0Tyysssssssss


X ∨ ∗ .


Note that each map f : X → Y induces a functor T(f) : T(X) → T(Y )
which is identity on objects and carries a : X ∨ S → X ∨ T to


(
iY


(f ∨ T )aiS


)
: Y ∨ S → Y ∨ T.


In particular T(∗) is the category whose objects are cogroups in T and whose
morphisms are maps respecting counits. It is thus a theory of cogroups, and
it is easy to see that the functor T(!X) : T(∗) → T(X) induced as above
preserves finite coproducts. Hence also T(X) is a theory of cogroups with the
same structure on objects as T(∗).


There is an alternative description of morphisms in T(X) as follows: assigning
to s : X ∨ S → X ∨ T the map siS : S → X ∨ T gives an exact sequence of
groups


0 → homT(X)(S, T ) // homT(S, X ∨ T )
homT(S,idX∨0T )


// homT(S,X ∨ ∗),
where the group structures are induced by the cogroup structure of S. In other
words, there are isomorphisms


(2.2) homT(X)(S, T ) ∼= [S, X ∨ T ]X


where by definition [S, X ∨ T ]X = homPair(T)(0S, idX ∨ 0T ). This is the set of
those maps S → X∨T which are “trivial on X”, i. e. those maps g : S → X∨T







SUSPENSION AND LOOP OBJECTS IN THEORIES AND COHOMOLOGY 701


which render the diagram


S
g //


0S


²²


X ∨ T


idX∨0T


²²
∗ ! // X ∨ ∗


commutative. The inverse isomorphism [S, X ∨ T ]X ∼= homT(X)(S, T ) carries
such a map g to (


iX
g


)
: X ∨ S → X ∨ T.


It is easy to see that s : X∨S → X∨T is linear as a morphism of T(X) iff siS :
S → X ∨ T is linear in T as a morphism in T; see 1.5. The following definition
of a Σ-theory is canonically derived from the notion of a Σ-representable track
category as we shall see in our main result 4.2 below.


2.1. Definition. A theory with suspensions (or a Σ-theory for short) is a theory
of coactions T together with a system of functors


EX : T(X) → T(X)


which preserve finite sums and carry each map to a linear map. These functors
must be natural in the sense that for all maps f : X → Y the diagram of
functors


T(X)
EX //


T(f)
²²


T(X)


T(f)
²²


T(Y )
EY // T(Y )


commutes. In particular for X = ∗ one has the suspension functor


Σ = E∗ : T(∗) → T(∗).
Hence for each cogroup S in T the suspension ΣS is defined and is a cogroup in
T. Considering the above diagram for f =!X : ∗ → X one sees that all functors
EX coincide with Σ on objects. Moreover using the identification (2.2) above
one may describe the effect of EX on morphisms by maps which we will call
partial suspension maps


(2.3) E : [S, X ∨ T ]X → [ΣS, X ∨ ΣT ]X


so that


EX


(
iX
g


)
=


(
iX
Eg


)
.


By definition, for any map f : S → T in T(∗), the map Σf is linear. More
generally for any g : S → X ∨ T with (idX ∨ 0T )g = i∗0S : S → X ∨ ∗, the
map Eg : ΣS → X ∨ ΣT is linear in ΣT . Considering the comultiplication
mS : S → S ∨ S as a morphism in T(∗) one sees that


ΣmS : ΣS → Σ(S ∨ S) = ΣS ∨ ΣS


is linear. This implies that the cogroup structure on ΣS is coabelian.
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2.2. Remark. The categorical dual of a theory with suspensions (Σ-theory) is
a theory with loop objects termed an Ω-theory for short. Hence an Ω-theory T
is a category with finite products in which each object X is endowed with an
action of a group object G, X ×G → X, so that T is a theory of actions with
properties dual to 1.4. Moreover T(X) is the category of diagrams


X


X ×G


pX


99ssssssssss
X ×H


pX


eeKKKKKKKKKKK
oo


X × ∗


eeKKKKKKKKKK


99ssssssssss


(1)


dual to (2.1) and a system of functors


LX : T(X) → T(X) (2)


is given with properties dual to 2.1. The loop functor is given by


Ω = L∗ : T(∗) → T(∗) (3)


which carries a group object G to the group objectΩG in T. Moreover partial
loop operations


L : [X ×H,G]X → [X × ΩH, ΩG]X (4)


are defined dually to (2.3) by LX in (2) above.


There are alternative ways to characterize a Σ-theory:


2.3. Lemma. Equipping a theory of coactions T with the structure of a Σ-
theory is equivalent to assigning a cogroup ΣS to each cogroup S in T and
functions


E : [S, X ∨ T ]X → [ΣS, X ∨ ΣT ]X


to each object X and cogroups S, T in such a way that the following conditions
are satisfied.


E


((
f


b


)
a


)
=


(
f


Eb


)
Ea


for any f : X → Y , a ∈ [S,X ∨ T ]X , b ∈ [T, Y ∨ U ]Y , and furthermore Ea is
linear in ΣT . The functor Σ obtained from the particular case of this condition
when X = Y = ∗, must preserve sums. And, for iS : S → X ∨S one must have
EiS = iΣS : ΣS → X ∨ ΣS.


Proof. We already saw how to derive partial suspension maps from the Σ-struc-
ture and the maps EX from E. Conditions that they must obey are equivalent,
to properties of EX , namely, to preservation of composition, sums and identities,
respectively.


Conversely, given the maps E, one defines EX as above and then the required
properties will correspond to properties of E as indicated. ¤
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For any Σ-theory T one has the functor


(2.4) Σ∗ : T → T,


termed the suspender of T, as follows. For an object X of T with the coaction
structure (SX , aX , dX) let Σ∗(X) = X ∨ ΣSX . Moreover define the difference
map ∇(f) ∈ [SX , Y ∨ SY ]Y for any map f : X → Y by


∇(f) = (SX
dX //X ∨X


f∨f //Y ∨ Y
(iY


aY
)


//Y ∨ SY ).


Then the partial suspension in T yields E∇(f) ∈ [ΣSX , Y ∨ ΣSY ] and one
defines


Σ∗(f) =


(
iY f


E∇(f)


)
: X ∨ ΣSX → Y ∨ ΣSY .


This indeed defines a functor Σ∗ which also can be used to characterize the
Σ-theory completely.


2.4. Lemma. Let T be a theory of coactions. Then structures of a Σ-theory
on T are in a one-to-one correspondence with sum-preserving endofunctors


Σ∗ : T → T


equipped, for each coaction (X, SX , aX , dX) in T, with isomorphisms


ϑX : Σ∗(X) ∼= X ∨ ΣSX


for some cogroups ΣSX depending only on the cogroups SX . These isomorphisms
must be natural in the sense that the inclusions


jX = ϑ−1
X iX : X → Σ∗(X)


and the projections


pX =


(
idX


0ΣSX


)
ϑX : Σ∗(X) → X


are natural in X. Moreover the composite maps


ΣSX


iΣSX// X ∨ ΣSX


ϑ−1
X // Σ∗(X)


Σ∗(f)
// Σ∗(Y )


ϑY // Y ∨ ΣSY


must be linear in ΣSY .


Proof. Given the functor Σ∗ as above, for any cogroup S consider S as a coaction
via SS = S coacting on itself via its own comultiplication; let ΣS = ΣSS. These
come equipped with maps qS : Σ∗(S) → ΣS given by


qS = ( Σ∗(S)
ϑS // S ∨ ΣS


0S∨idΣS// ∗ ∨ ΣS ∼= ΣS ).
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We call Σ the suspension and define the partial suspension Eg for g ∈ [S, X∨T ]X
by


Eg =


(
ΣS


iΣS // S ∨ ΣS
ϑ−1


S // Σ∗(S)
Σ∗(g)


// Σ∗(X ∨ T )


∼= Σ∗(X) ∨ Σ∗(T )
pX∨qT // X ∨ ΣT


)
.


It is clear that Eg is linear in ΣT and also other properties required of E and Σ
are all satisfied. The converse procedure has been already described above. ¤


3. Cohomology of Σ-theories and Ω-theories


Recall that a natural system D on a category T is a functor D : FT →
Ab where FT is the category of factorizations of T; see [8, 2.1]. Here D
carries the object f : A → B in FT to an abelian group Df and carries
maps g


oo
f


oo
h


oo to induced action maps g∗ : Df → Dgf , ξ 7→ gξ, and


h∗ : Df → Dfh, ξ 7→ ξh.


For objects A, B in T let


[A,B] = hom(A,B)


be the set of morphisms A → B in T. If T is a Σ-theory we have for the
coaction on each object X in T the structure maps{


aX : X → X ∨ SX


dX : SX → X ∨X


as in 1.4.


3.1. Proposition. Each Σ-theory T comes equipped with a canonical natural
system DT defined as follows: For a map f : X → Y let


DT
f = [ΣSX , Y ],


with the abelian group structure induced by the abelian cogroup ΣSX . Left action
of a map y : Y → Y ′ on a : ΣSX → Y is given by


y∗(a) = ya.


The right action of x : X ′ → X on a is given by the composite


ΣSX′
E∇(f)


// X ∨ ΣSX


(f
a) // Y,


where ∇(f) is the composite


∇(f) = ( SX
dX // X ∨X


f∨f // Y ∨ Y
(iY


aY
)


// Y ∨ SY ).
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Proof. It turns out that naturality of actions is evident if one uses the functor
Σ∗ in (2.4) above, whereas the fact that this is indeed the natural system of
abelian groups and not just sets is clear if one uses the suspensions Σ. So let
us first define the actions using the former and then transform them using the
latter.


For any morphism f : X → Y , put


DT
f = {a : Σ∗(X) → Y | ajX = f},


as in the diagram


X


jX


²²


f


{{ww
ww


ww
ww


ww


Y Σ∗(X).
aoo_ _ _


Actions of this natural system are defined as follows: for y : Y → Y ′ let the
induced action DT


f → DT
yf be given by a 7→ ya, as in the diagram


X


jX


²²


f


{{ww
ww


ww
ww


ww


Y ′ Y
yoo Σ∗(X);


aoo
ya


ll


whereas for x : X ′ → X let the action DT
f → DT


fx be given by a 7→ aΣ∗(x), as
in the diagram


X


jX


²²


f


||xxxxxxxxx
X ′xoo


jX′
²²


Y Σ∗(X)
aoo Σ∗(X ′),


Σ∗(x)
oo


x∗(a)


ll


where the square commutes by 2.4.
Now let us use the isomorphisms


ϑX : Σ∗(X) ∼= X ∨ ΣSX


inducing bijections


DT
f ≈ [ΣSX , Y ],


where the latter sets have the group structure induced by the canonical cogroup
structure on ΣSX . In fact as we have seen ΣSX is an abelian cogroup (see 2.1),
so the groups DT


f are indeed abelian. Moreover the linearity conditions imply
that the actions are indeed homomorphisms.


For convenience let us give explicit expressions for the actions in these new
terms. Left actions are again given by composition: for y : Y → Y ′ the induced
homomorphism is


[ΣSX , Y ] → [ΣSX , Y ′], given by a 7→ ya


for any a : ΣSX → Y .
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Right actions are more involved. For x : X ′ → X and a : ΣSX → Y the map
x∗(a) : ΣSX′ → Y is given by the lower horizontal composition in the diagram


Σ∗(X)


∼=ϑX


²²


Σ∗(X ′)
Σ∗(f)


oo


∼=ϑX′
²²


Y X ∨ ΣSX


(f
a)oo X ′ ∨ ΣSX′oo ΣSX′ .


iΣSX′oo


x∗(a)


ll


This yields the result by use of the definition of Σ∗ in (2.4). ¤


For each category C with natural system D the cohomology Hn(C; D) is
defined as in [11]. This leads to the following notion of Σ-cohomology.


3.2. Definition. Let T be a Σ-theory and let DT be the natural system de-
termined by T as in 3.1. Then the Σ-cohomology of T is given by the abelian
group (n ≥ 0)


Hn
Σ(T) = Hn(T; DT).


The categorical dual of a Σ-theory is an Ω-theory T for which we have accord-
ingly the Ω-cohomology


Hn
Ω(T) = Hn(T; DT),


where DT is the natural system associated to T with DT
f = [A, ΩB] for f : A →


B in T.


4. Track theories with suspensions.


A track theory T is a track category with sums A ∨ B in the weak sense so
that for hom-groupoids in T the map


[[A ∨B,X]]
∼ // [[A,X]]× [[B, X]]


is an equivalence of groupoids; see [8, §4]. Moreover T is Σ-representable if
suspenders (Σf , if , υf ) as defined in [9] exist for all maps f : A → B in T .


4.1. Definition. A Σ-track theory is a track theory T which is Σ-representable
and for which the homotopy category T' is a theory of coactions.


Recall that linear track extensions are defined as in [8, 2.2]. It is clear that
a Σ-track theory T has abelian hom-groupoids so that T is a linear track
extension of its homotopy category T' as in [8].


4.2. Theorem. For any Σ-track theory T its homotopy category carries a
canonical structure of a Σ-theory and T is a linear track extension of T' by
the canonical natural system DT' associated to the Σ-theory T'. Conversely,
any linear track extension of a Σ-theory by its canonical natural system is a
Σ-track theory.
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Proof. Consider a track category T satisfying the hypothesis. To equip T' with
a structure of a Σ-theory it suffices, according to 2.1, to define the functor Σ∗.
We do this by declaring Σ∗(X) = ΣidX


for all objects X and Σ∗(f) = Σ∗(f, f)
for all maps f : X → Y , where (f, f) is considered as a morphism in Pair(T )
from idX to idY . By [9, 2.1] this indeed defines an endofunctor, equipped with
natural maps jX = iidX


: X → Σ∗(X). Σ∗ preserves sums by [9, 2.4]. Moreover
the isomorphisms ϑ are obtained, in view of [9, 2.2], by virtue of [9, 4.3]. The
latter also implies that under these isomorphisms the maps jX correspond to the
coproduct inclusions iX : X → X ∨ΣSX . To prove naturality of the projections


pX =


(
idX


0ΣSX


)
ϑX : Σ∗(X) → X


it suffices to construct, for any map f : X → Y , a track fpX ' pY Σ∗(f). By the
universal property of the suspender ΣidX


, such track exists iff there is a track in
GidX


between fpXυX ∈ Aut(fpXjX) and pY Σ∗(f)υX ∈ Aut(pY Σ∗(f)jX). By
[9, 2.1], one may take ζ(f,f) for this purpose. Finally, linearity condition from
2.1 means commutativity in T' of the diagram


ΣSX
E //


ΣmSX


²²


Y ∨ ΣSY


idY ∨ΣmSY
²²


ΣSX ∨ ΣSX E∨E
// Y ∨ ΣSY ∨ Y ∨ ΣSY


0
B@


iY
i1,ΣSY


iY
i2,ΣSY


1
CA


// Y ∨ ΣSY ∨ ΣSY ,


for f : X → Y , where E is the composite


ΣSX


iΣSX// X ∨ ΣSX


ϑ−1
X // Σ∗(X)


Σ∗(f)
// Σ∗(Y )


ϑY // Y ∨ ΣSY ,


as in 2.1. In other words, for any object Z the induced diagram


[ΣSX , Z] [Y, Z]× [ΣSY , Z]
E∗oo


[ΣSX , Z]2


+


OO


([Y, Z]× [ΣSY , Z])2E∗2oo [Y, Z]× [ΣSY , Z]2
(id[Y,Z]×p1,id[Y,Z]×p2)
oo


id[Y,Z]×+


OO


must commute. Now using universal property of suspenders, the entries [Σ?, Z]
may be replaced by the isomorphism classes of groupoids G?(Z), thus obtaining


π0G0SX
(Z) [Y, Z]× π0G0SY


(Z)oo


π0G0SX
(Z)2


OO


([Y, Z]× π0G0SY
(Z))2oo [Y, Z]× π0G0SY


(Z)2oo


OO


Calculating actions of maps in this diagram in the same way as in [9, 4.3], we
see that commutativity of the diagram amounts to conjugatedness of the tracks


idzf\(idz · ω1)f + idzf\(idz · ω2)f and idzf\(idz · (ω1 + ω2))f
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in Aut(!Z0SX
) for an element (z, ω1, ω2) ∈ [Y, Z] × G0SY


(Z)2 given by a map


z : Y → Z and two tracks in Aut(!Z0SY
), where · and \ denote coaction and


division maps, as in [9, 4.3]. But in fact these tracks are easily seen to be equal.
We now turn to the converse statement. Given a linear track category T


with a structure of a Σ-theory on T', we know from [8, 4.6] that T has weak
sums compatible with the sums in T'. Moreover as T' is a theory of coactions,
it is clear that each object of T has a structure of a weak principal coaction.
Thus to have all suspenders it suffices by [9, 4.3] to construct suspenders of
the maps 0S : S → ∗, for weak cogroups S in T . For i0 : ∗ → Σ0, take the
suspension ΣS = E∗(0S : S → ∗). Define the universal track


υ0 ∈ Aut( S
0S // ∗ !ΣS // ΣS )


by υ0 = σ!ΣS0S
(id), utilizing the linear track extension action


DT'
!ΣS


= [ΣS, ΣS]
σ0S // Aut(!ΣS0S) ,


where the equality follows from 3.1. To show that this indeed has the universal
property of a suspender, we have to show the following:


• for any object Z and any track η ∈ Aut(!Z0S) there exists a map Ση :
ΣS → Z with η = Σηυ0;


• for any h, h′ : ΣS → Z with hυ0 = h′υ0 there is a track δ : h → h′.


Using 3.1, the first condition becomes a tautology, whereas in the second one
obtains h = h′, so trivially one can take for δ the identity track. ¤


5. Classification of Σ-track categories


An equivalence between theories of coactions F : T → T′ is an equivalence of
the underlying categories which preserves sums and which carries the coaction
structure of an object X in T to the coaction structure of the object F (X) in
T′.


5.1. Definition. A weak equivalence between Σ-track theories is a weak equiv-
alence of the underlying track categories as in [8, 1.5] which preserves weak sums
and suspenders and for which the induced functor between homotopy categories
is an equivalence between theories of coactions.


5.2. Definition. An equivalence (F, Φ) between Σ-theories is an equivalence
F : T → T′ between the underlying theories of coactions which is compatible
with the suspension structure, that is for the diagram of functors


T(X)
FX //


EX


²²


T′(FX)


EFX


²²
T(X)


FX // T′(FX)


with FX induced by F one has a natural isomorphism ΦX : EFXFX
∼= FXEX .
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5.3. Definition. A classifying pair is a pair (T, τ) where T is a Σ-theory and
τ is an element in the Σ-cohomology H3


Σ(T). Two such pairs (T, τ) and (T′, τ ′)
are equivalent if there exists an equivalence (F, Φ) with F : T′ → T such that
F ∗τ = I∗τ ′ in H3(T′; F ∗DT). Here the natural isomorphism I : DT′ ∼= F ∗DT


is given by Φ.


Using [8, 4.8] and 4.2 we obtain the following classification result.


5.4. Classification. There is a 1-1 correspondence between weak equivalence
classes of Σ-track theories and equivalence classes of classifying pairs.


6. Examples


Since the track category associated to a Quillen model category is both Σ-
representable and Ω-representable (see [9, 1.6]) we get the following result.


6.1. Proposition. Let Qcf be the track category of cofibrant and fibrant objects
in a Quillen model category and let T ⊂ Qcf be a full track subcategory. If T'
is a theory of coactions then T is a Σ-track theory and if dually T' is a theory
of actions then T is an Ω-track theory. In particular T' is a Σ-theory and a
Ω-theory respectively.


A similar result is available for a cofibration category and a fibration category
in the sense of Baues [4]. This, in particular, yields the following examples.


6.2. Example. Let S (k) be the track subcategory of Top∗ consisting of one-
point unions of spheres Sn with n ≥ k. Then S (k) is a Σ-track theory and
hence the homotopy category S (k)' is a Σ-theory, see 1.1. The partial suspen-
sion in S (k)', in fact, coincides with the partial suspension used in [5, 4, 2].
The partial suspension can be described totally by the ordinary suspension for
homotopy groups of spheres and by Whitehead products. The Σ-track theory
S (k) is classified by an element τ ∈ H3


Σ(S (k)') in the Σ-cohomology. This is
the universal Toda bracket 〈S (k)〉 = τ also considered in [6] and Baues [2].


6.3. Example. Let K (k) be the track subcategory of Top∗ consisting of prod-
ucts of Eilenberg-MacLane spaces K(A, n), n ≤ k, and A a finitely generated
abelian group. Then K (k) is an Ω-track theory and hence the homotopy cate-
gory K (k)' is an Ω-theory. The partial loop operation in K (k)', in fact, coin-
cides with the loop operation L used in [5, 4, 2]. Here L can be described totally
by the ordinary loop operation (suspension) in cohomology and by cup products,
see [4]. The Ω-track theory K (k) is classified by an element τ ∈ H3


Ω(K (k)')
in the Ω-cohomology. This is the universal Toda bracket 〈K (k)〉 = τ also
considered by Baues and Dreckmann [6] and Baues [2].


Recall that an additive category A is a category enriched in abelian groups
which has sums. These sums are then also products (termed direct sums)
denoted A⊕B; see [17]. Each object is canonically an abelian group object by
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(1, 1) : A ⊕ A → A and all maps in A are linear. A functor between additive
categories is additive if it preserves biproducts.


6.4. Lemma. An additive category A together with an additive functor σ :
A → A has canonically the structure of both a Σ-theory and a Ω-theory.


Proof. We simply define the suspender in 2.4 by Σ∗(X) = X ⊕ σ(X). Dually
we define a looper by Ω∗(X) = X ⊕ σ(X). One readily checks the properties in
2.4 and the dual properties respectively. ¤


The Σ-cohomology of the Σ-theory (A, σ) in 6.4 is the cohomology


Hn
Σ(A, σ) = Hn(A; Hom(σ,−)),


where Hom(σ,−) is the bifunctor Aop × A → Ab which carries (X, Y ) to
Hom(σX, Y ). Moreover the Ω-cohomology of the Ω-theory (A, σ) is the coho-
mology


Hn
Ω(A, σ) = Hn(A; Hom(−, σ)),


where the bifunctor Hom(−, σ) carries (X,Y ) to Hom(X, σY ). Here Hom de-
notes the set of morphisms in A which is an abelian groups since A is an additive
category. The cohomology groups above are special cases of those by Baues and
Wirsching [2] which are in particular studied by Jibladze and Pirashvili [15].


Let R be a commutative ring with unit and let Mod∗(R) be the category of
Z-graded R-modules X = (Xi)i∈Z with the graded tensor product X ⊗ Y given
by


(X ⊗ Y )n =
⊕


i+j=n


Xi ⊗R Yj.


Here X is non-negatively graded if Xi = 0 for i < 0. A non-negatively graded
R-module A which has the structure of a monoid in (Mod∗(R),⊗) is termed
a graded algebra. Let R be the graded R-module concentrated in degree 0 and
given by the ring R. Then of course R is also a graded algebra; in fact, the
initial object in the category of graded algebras. A map ε : A → R between
graded algebras is termed an augmentation of A.


6.5. Example. Let A be a graded algebra and let TA be the category of Z-
graded finitely generated free left A-modules. Objects are direct sums of objects
A[n] with n ≥ 0, where A[n] is the free left A-module generated by a single
element [n] in degree n. The elements of A[n] are of the form a · [n] with a ∈ A
and degree |a · [n]| = |a|+n. Morphisms f : A[n] → A[m] are determined by the
element α ∈ A with f [n] = α · [m] and we write f = α∗ if f(a · [n]) = a ·α · [m].
We define the shift functor


σ : TA → TA


to be the unique additive functor which carries A[n] to A[n + 1] and carries
f = α∗ : A[n] → A[m] to α∗ : A[n + 1] → A[m + 1]. Hence by 6.4 the category
TA together with σ is canonically both a Σ-theory and a Ω-theory.







SUSPENSION AND LOOP OBJECTS IN THEORIES AND COHOMOLOGY 711


Acknowledgement


The second author gratefully acknowledges hospitality of the Max Planck
Institut für Mathematik, Bonn and of the Université Catholique de Louvain,
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