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1. Introduction


As is well known, the classical Riemann–Hilbert (transmission) problem has
deep and far reaching connections with many important problems in analysis
and geometry (see, e.g., [21], [1], [2], [3]). Thus in addition to a comprehensive
analytic theory [21], it also has some natural global geometric aspects. In partic-
ular as was suggested in [2] (see also [3]) the totality of elliptic Riemann–Hilbert
problems permits a visual geometric description in terms of Fredholm pairs of
subspaces of an appropriate functional space. This interpretation enables one
to study various global aspects of the Riemann–Hilbert problem in an abstract
setting, which eventually led to some conceptual developments [4], [5], [15], [16]
and non-trivial geometric results about the so-called Fredholm Grassmanian [2],
[4], [17], [18], [24]. Closely related concepts and constructions appeared useful
in the geometric theory of loop groups of compact Lie groups [22], [16]. The
goal of this paper is to present a coherent exposition of those geometric results
and discuss some new developments in the same direction.


In particular, we describe the homotopy type of Fredholm Grassmanians,
show that they can be endowed with smooth manifold structures and explain
how one can put them in the context of Fredholm structures. We also indi-
cate some perspectives steming from such an approach and formulate several
seemingly interesting problems.
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2. The Riemann–Hilbert Transmission Problem


The classical formulation of the Riemann–Hilbert problem is related to the
decomposition of the extended complex plane C (Riemann sphere) into two
complementary domains with a smooth common boundary Γ. In the simplest
case


C = D+ ∪ T ∪D−,


where D+ is the unit disc, T stands for the unit circle, and D− is the comple-
mentary domain containing the infinite point ∞ (the North Pole of Riemann
sphere). Let A(D±) = C(D±) ∩ H(D±) denote the set of all complex valued
(vector) functions which are continuous in the closure of the corresponding do-
main and holomorphic inside.


The problem, known as Riemann–Hilbert transmission problem or linear con-
jugation problem, is to describe the totality of piecewise holomorphic (vec-
tor) functions (X+, X−) ∈ A(D+) × A(D−) with the normalizing condition
X−(∞) = 0, whose boundary values satisfy the transmission condition


X+(t) = G(t)X−(t) + h(t), t ∈ T, (1)


where h(t) is a given (vector) function and G(t) is a (matrix) function of the
corresponding size.


The same problem can be of course formulated on any Riemann surface but
we stick here to the zero genus case (Riemann sphere) as above. Solutions may
be considered in various functional spaces. For example, the problem can be
placed in a Hilbert space context by working with square-integrable functions
and this is well-suited for studying global geometric aspects of the problem.


Solvability and other properties of this problem are very well understood
(see, e.g., [21]). For example, the problem is Fredholm if the coefficient matrix
G(t) is non-degenerate at every point of the unit circle and belongs to some
Hölder class. The index of this problem appears to be equal to the winding
number (topological degree) of the determinant detG(t), i.e., it is equal to the
divided by 2π increment of the argument of detG(t) along the unit circle [21].
One can also express the kernel and cokernel dimension in terms of the so-
called partial indices of the matrix function G(t) which are defined in terms
of Birkhoff factorization of non-degenerate matrix functions on the circle [21],
[1]. The partial indices exhibit quite non-trivial behaviour closely related to the
properties of holomorphic vector bundles over the Riemann sphere [1], [3].


It turns out that it is also possible to describe some global properties of the
set of all such problems, which will be our main concern in the sequel. We
begin by recalling an abstract geometric model for this set suggested in [2]. For
simplicity and brevity we work in the framework of Hilbert spaces. However
most of our constructions and results apparently remain valid for a wide class of
Banach spaces. They can be also generalized in the context of Hilbert modules
over C∗-algebras [18].
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3. Fredholm Pairs and Grassmanians


Let H be a complex Hilbert space and M,N be its closed infinite-dimensional
subspaces. A pair P = (M, N) is called a Fredholm pair (FP) if M + N is a
closed subspace of finite codimension bP, and dim(M ∩ N) = aP is also finite.
In such a case the difference aP− bP = i(M,N) is called the index of Fredholm
pair P.


The concept of Fredholm pair was introduced in 60-ties by T.Kato [14] who
established in particular that such pairs and their indices are stable with re-
spect to continuous deformations of the subspaces in question. For a precise
formulation of this property see [14] or [2].


In order to characterize Fredholm pairs, certain classes of bounded linear
operators in H were introduced in [2]. Let L(H) denote the algebra of bounded
linear operators in H and GL(H) denote the group of operators possessing a
bounded inverse. Let J be a fixed two-sided ideal in L(H). For example, one can
take the (unique closed two-sided) ideal K of compact (completely continuous)
operators or the subideal K0 consisting of finite rank operators.


For a given operator S ∈ L(H), let C(S, J) denote the subalgebra of operators
A ∈ L(H) such that the commutator [A, S] = AS − SA belongs to the ideal J .
The intersection C(S, J) ∩ GL(H) will be denoted by GL(S, J), clearly it is a
subgroup of GL(H) (not necessarily a closed one).


As was explained in [2] the classical singular integral operators and linear
conjugation problems can be interpreted as elements of the algebra C(P, K),
where P is an orthogonal projector with infinite-dimensional image and kernel.
Many topological properties of such operators and related Grassmanians remain
valid if one changes the ideal K by certain subideal J as above.


Definition 1 ([2]). Let P be an orthogonal projection on a closed subspace
in H such that dim im P = dim ker P = ∞. The algebra C(P, J) is called the
algebra of abstract singular operators associated with an ideal J , K0 ⊂ J ⊂ K.


In the sequel we will be mainly interested in the group of invertible (abstract)
singular operators GL(P, J). If M is a closed linear subspace of H and A ∈
GL(H) an invertible operator in H, then A(M) denotes the image of M under A
and we think of it as a subspace M rotated by A. Let PM denote any projection
onto M , i.e., the range of PM is M and (PM)2 = PM . Of course there exist
many projectors with the given range M but, in a Hilbert space, the condition
that PM is self-adjoint (or orthogonal) specifies it in a unique way. We now
introduce the complementary projections P = PM , Q = Id − P and present a
very precise characterization of Fredholm pairs which was obtained in [2].


Theorem 1 ([2]). A pair (M,N) of closed subspaces of a Hilbert space is
a Fredholm pair if and only if it has the form (M, A(M⊥)) for some operator
A ∈ G(P, K). The operator Φ ∈ L(H) defined by the formula


Φ(x) = Px + AQx (2)
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is a Fredholm operator with ind Φ = i(M, N). Any operator of this form in
L(H) is a Fredholm operator.


It turns out that in many problems it becomes necessary to consider the set
of all Fredholm pairs with a fixed first subspace. In other words, one chooses a
closed infinite-dimensional and infinite-codimensional subspace M and consid-
ers the so-called Fredholm Grassmanian consisting of all subspaces N such that
(M, N) is a Fredholm pair (cf. [22], Ch.7). This is actually a “leaf” in the Grass-
manian of all Fredholm pairs and one may represent the whole Grassmanian as
a fibration with a fiber isomorphic to this leaf.


This definition permits several useful modifications which we present follow-
ing [22]. Consider a complex Hilbert space decomposed in an orthogonal direct
sum H = H+ ⊕H− and choose a positive number s. For further use we need a
family of subideals in K(H) which is defined as follows (cf. [13]).


Recall that for any bounded operator A ∈ L(H) the product A∗A is a non-
negative self-adjoint operator, so it has a well-defined square root |A| = (A∗A)1/2


(see, e.g., [23]). If A is compact, then A∗A is also compact and |A| has a discrete
sequence of eigenvalues


µ1(A) ≥ µ2(A) ≥ . . .


tending to zero. The µn(A) are called singular values of A. For a finite s ≥ 1
one can consider the expression (sth norm of A)


||A||s = [
∞∑


j=1


(µj(A))s]1/s (3)


and define the sth Schatten ideal Ks as the collection of all compact operators
A with a finite sth norm (s-summable operators) [23].


Using elementary inequalities it is easy to check that Ks is really a two-
sided ideal in L(H). These ideals are not closed in L(H) with its usual norm
topology but if one endows Ks with the sth norm as above then Ks becomes a
Banach space [23]. Two special cases are well-known: K1 is the ideal of trace
class operators and K2 is the ideal of Hilbert–Schmidt operators. For s = 2,
the above norm is called the Hilbert–Schmidt norm of A and it is well known
that K2(H) endowed with this norm becomes a Hilbert space (see, e.g., [23]).
Obviously K1 ⊂ Ks ⊂ Kr for 1 < s < r so one obtains a chain of ideals starting
with K1. For convenience we set K∞ = K and obtain an increasing chain of
ideals Ks with s ∈ [1,∞].


Of course one can introduce similar definitions for a linear operator A acting
between two different Hilbert spaces, e.g., for an operator from one subspace
M to another subspace N of a fixed Hilbert space H. In particular we can
consider the classes Ks(H±, H∓). Let us also denote by F (M,N) the space of
all Fredholm operators from M to N .


Definition 2 ([22]). The sth Fredholm Grassmanian of a polarized Hilbert
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space H is defined as


Grs
F (H) = {W ⊂ H : π+|W is an operator from F (W,H+),


π−|W is an operator from Ks(W,H−)}.
These Grassmanians are of the major interest for us. Actually, many of their


topological properties (e.g., the homotopy type discussed in the next section)
do not depend on the number s appearing in the definition. On the other hand,
more subtle properties like manifold structures and characteristic classes of Grs


F


do depend on s in a quite essential way. As follows from the discussion in [12]
this is a delicate issue and we circumvent it by properly choosing the context.


As follows from the results of [22], it is especially convenient to work with
the Grassmanian Gr2


F (H) defined by the condition that the second projection
π− restricted to W is a Hilbert–Schmidt operator. Following [22] we denote it
by Grr(H) and call the restricted Grassmanian of H.


Fredholm Grassmanians appear to have interesting analytic and topological
properties. It turns out that Grassmanian Grs


F can be turned into Banach
manifolds modelled on Schatten ideal Ks. In particular Grr(H) has a natu-
ral structure of a Hilbert manifold modelled on the Hilbert space K2(H) [22].
All these Grassmanians have the same homotopy type (see Theorem 2 below).
Moreover certain natural subsets of Grassmanians Grs


F can be endowed with so-
called Fredholm structures [9], which suggests in particular that one can define
various global topological invariants of Grs


F (H).
Definition 1 also yields a family of subgroups GLs =GL(π+, Ks) of GL(π+, K)


(s ≥ 1). For our purposes especially important is the subgroup GL(π+, K2)
which naturally acts on Grr(H).


Definition 3 ([22]). The restricted linear group GLr(H) is defined as the
subgroup of GL(π+, K) consisting of all operators A such that the commutator
[A, π+] belongs to the Hilbert–Schmidt class K2(H).


From the very definition it follows that GLs acts on Grs and by merely an
examination of the proof of Theorem 1 given in [2] (cf. also [22], Ch.7) one
finds out that these actions are transitive. In order to give the most convenient
description of the isotropy subgroups of these actions, we follow the presentation
of [22] and introduce a subgroup U s(H) = U(H) ∩ GLs(H) consisting of all
unitary operators from GLs. For s = 2 this subgroup is denoted by Ur. Now
the description of isotropy groups is available by the same way of reasoning
which was applied in [22] for s = 2.


Proposition 1. The subgroup U s(H) acts transitively on Grs(H) and the
isotropy subgroup of the subspace H+ is isomorphic to U(H+)× U(H−).


From the existence of a polar decomposition for a bounded operator on H
it follows that subgroup U s(H) is a retract of GLs and it is straightforward to
obtain similar conclusions for the actions of GLs.
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Corollary 1. The group GLs acts transitively on the Grassmanian Grs(H)
and the isotropy groups of this action are contractible.


Thus such an action obviously defines a fibration with contractible fibers and
it is well known that for such fibrations the total space (GLs) and the base
(Grs) are homotopy equivalent [9].


Corollary 2. For any s ≥ 1, the Grassmanian Grs and the group GLs have
the same homotopy type. In particular, GLr is homotopy equivalent to Grr.


Remark 1. As we will see in the next section, all the groups GL(π+, J) have
the same homotopy type for any ideal J between K0 and K. In particular, this
is true for every Schatten ideal Ks. Thus all the above groups and Grassmanians
have the same homotopy type.


We are now ready to have a closer look at the topology of Grs and GLs which
will be our main concern in the next section.


4. The Topology of Fredholm Grassmanians


The homotopy type of GLr and Grr is described in the following statement
which was obtained in [16] and [24]. This gives an answer to a question posed
in [2].


Theorem 2. For any s ∈ [1,∞], the homotopy groups of the group GLs and
Fredholm Grassmanian Grs are given by the formulae


π0
∼= Z; π2k+1


∼= Z, π2k+2 = 0, k ≥ 0. (4)


Proof. In virtue of Corollary 2, it is sufficient to determine the homotopy type
of GLs which we denote simply by G. To this end let us consider a certain
fibration


p1 : GLs → F (H+, H+)×Ks(H+, H−)


defined in the following way.
Write any element (operator) A ∈ GLs as a (2× 2)-matrix of operators


(
a b
c d


)


corresponding to the given polarization of H (thus a is a bounded operator from
to H+ to H+ and so on).


Then define p1(A) as the first column of this matrix, i.e., p1(A) = (a, c). It
is evident that the image X = Imp1 is an open subset of the target space.
Introduce now a subgroup G1 ⊂ G of elements of G defined by upper-triangular
matrices of the form (


I+ b
0 d


)


where I+ denotes the identity operator on H+.


Lemma 1. The subgroup G1 is contractible.
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Indeed, notice first that in this representation the operator d is always in-
vertible, in other words the set of possible d-s appearing in the last formula is
exactly GL(H−). As to b it can be an arbitrary operator from Ks(H−, H+).
Thus the subgroup G1 as a topological space is homeomorphic to the product
GL(H−)×Ks(H−, H+). By Kuiper’s theorem [19], the first factor is contractible
and the second factor, being a vector space, is also contractible. Thus we con-
clude that G1 is contractible.


Now it is straightforward to verify our next claim.


Lemma 2. p1(A) = p1(A
′) if and only if there exists a T ∈ G1 such that


A = A′T .


Thus we conclude that X is the homogeneous space G/G1 which is apparently
a fibration with the fibers isomorphic to G1. As was already explained in the
previous section, this implies that G is homotopy equivalent to X.


Consider now the mapping π1 : X → F (H+, H+) defined as the restriction
of the first projection, i.e., π1(a, c) = a. We want to show that this is also
a surjective mapping with contractible fibers. Then, by the same reasoning as
above, we will be able to conclude that G is homotopy equivalent to F (H+, H+).
Since it is well known that the homotopy groups of the latter space are exactly
those as were given in the statement of the theorem, this would complete the
proof.


Thus we see that it remains to verify next two lemmas.


Lemma 3. Each a ∈ F (H+, H+) can appear as an left-upper element of a
two-by-two matrix above.


Lemma 4. For each a ∈ F (H+, H+), the set of all c such that (a, c)∗ can
appear as the first column of a matrix representing an element of G, coincides
with the set of all c ∈ Ks(H+, H−) such that c| ker a is injective. The set of all
such c is a contractible subset in Ks(H+, H−).


The first of these two lemmas follows from a well-known procedure of regular-
izing of a Fredholm operator. One takes any embedding c of ker a into H− and
takes b to be a finite rank operator from H− onto (ima)⊥. Then one can obtain
an appropriate d by taking any epimorphism of H− onto ker b with the kernel
imc. It is trivial to check that this really defines an operator from GL(π+, K0)
so this construction does the job simultaneously for all ideals Ks with s ≥ 1
and the first lemma is proved.


Moreover, from this argument it becomes evident that the only restriction
on c in order that it could “accompany” a given a in GLs is that it maps ker a
injectively into H− (again no matter which ideal Ks is considered). On the
other hand if c appears as the lower-left corner element of such a matrix then
its kernel should be trivial.


The last statement of the last lemma follows from the fact that the set of all
such c is apparently homeomorphic to the set of all n-tuples of linearly indepen-
dent vectors (i.e., n-frames) in H−, where n = dim ker a. As is well known all
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spaces of frames are contractible [9] so we obtain the desired conclusion. This
completes the proof of the theorem.


As was shown in [22], the restricted Grassmanian has also a remarkable struc-
ture of a cellular complex (CW-complex) which is closely related to the so-called
partial indices [1] and gives a visual interpretation of certain phenomena dis-
cussed in [1], [2]. Moreover, Fredholm Grassmanians can be turned into differ-
entiable manifolds, which enables one to construct an analogue of the Morse
theory and recover in this way the cellular structure obtained from the par-
tial indices [22], [17]. We describe here a simple explicit way of introducing
differentiable manifold structures on Fredholm Grassmanians Grs.


Theorem 3. For any finite s ≥ 1, the Grassmanian Grs(H) is a differen-
tiable manifold modelled on Banach space Ks(H).


Proof. We first construct a natural atlas on Grs (cf. [22] for s = 2). Notice that
the graph of every s-summable operator w : H+ → H− belongs to Grs. Since
the sum of a Fredholm operator and an s-summable operator is a Fredholm
operator, one concludes that, for every W ∈ Grs, the graph of any s-summable
operator from W to W⊥ also belongs to Grs. Such graphs constitute an open
subset UW ∈ Grr consisting of all W ′ such that the orthogonal projection
W ′ → W is an isomorphism. Obviously this open subset is in a one-to-one
correspondence with the space Ks(W,W⊥) of s-summable operators from W to
W⊥, which defines an atlas on Grs.


We now describe an explicit form of the transition diffeomorphisms of this
atlas and verify that this atlas really defines a structure of a differentiable
manifold, i.e., differentials D(gi◦g−1


j )(p) are bounded operators in Ks(H). This
would apparently complete the proof.


Let UV and UW be the open sets in Grs corresponding to the spaces H1 =
Ks(V, V ⊥) and H2 = Ks(W,W⊥). Let us show that the images H12 and H21


of the intersection UV ∩ UW in these spaces are open and the corresponding
“change of coordinates” H12 → H21 is continuously differentiable.


Let us consider the identity transformation of H as an operator


V ⊕ V ⊥ → W ⊕W⊥


and write it in the form of a two-by-two matrix of operators
(


a b
c d


)


corresponding to these direct sum decompositions. Here a is an operator from
V to W , and so on (cf. the proof of Theorem 2).


From the fact that both V and W belong to Grs it follows easily that the
diagonal terms a, d are Fredholm operators while b and c are operators of Ks


class. Suppose now that a subspace L ∈ UV ∩ UW is simultaneously the graph
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of operators T1 : V → V ⊥ and T2 : W → W⊥. Then operators
(


a b
c d


) (
1
T1


)
and


(
1
T2


)
q


should coincide as operators from V to W ⊕W⊥ for some isomorphism q : V →
W . This implies that


T2 = (c + dT1)(a + bT1)
−1. (5)


The last relation apparently shows that T2 is a continuous function of T1 on
the open set H12 = {T1 ∈ H1 : a + bT1 is invertible}.


This means that the atlas UW really defines on Grs a structure of a topological
manifold and it remains to verify that the differentials of coordinate changes
in this atlas do exist and they are bounded linear operators as operators in
Ks(H). To this end let us compute the differential of T2 as a function of T1. By
a standard application of Leibniz rule for operator-valued functions one obtains:


DT2(T1) = d(a + bT1)
−1 − (c + dT1)(a + bT1)b(a + bT1)


−1.


Now one can make a straightforward examination the linear operator in
Ks(H) defined as the multiplication by the right hand side of this formula,
using the Neumann series for the inverse (a+bT1)


−1, and verify that it defines a
bounded linear operator on Ks(H). Thus this atlas really defines a differentiable
manifold structure on Grs and the proof is complete.


Remark 2. In the case s = 2 the same atlas defines a holomorphic Hilbert
manifold structure on Grr (modelled on the Hilbert space K2(H) with its
Hilbert–Schmidt norm) (cf. [22]).


Remark 3. Apparently one can introduce similar operator groups and Grass-
manians in any Banach space. The above results remain valid for wide classes
of separable Banach spaces with basis and contractible general linear group but
here we cannot dwell upon that issue.


5. Loop Groups and Fredholm Structures


In order to obtain a proper framework for discussing more subtle geometric
properties of Fredholm Grassmanians we proceed by describing some connec-
tions with the Fredholm structures theory [10]. As was observed in [16], [17],
certain dense subsets of these Grassmanians can be endowed with Fredholm
structures. This fact seems to be quite remarkable since a Fredholm structure
on an infinite-dimensional manifold enables one to introduce non-trivial global
geometric and topological invariants of this manifold. The reason for this cir-
cumstance is that Fredholm Grassmanians are closely related to loop groups
of compact Lie groups [22] and such loop groups can be endowed with some
natural Fredholm structures [15], [16], [12]. Our discussion of this issue is based
on the results of [16] and [12] but we present them with a view to Fredholm
Grassmanians.
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For simplicity we only consider the classical case corresponding to the loop
group of unitary group Un. Recall that Riemann–Hilbert problems for arbitrary
compact Lie groups were studied in [16]. The discussion below is applicable for
arbitrary compact Lie groups.


Recall that a Fredholm structure on an (infinite-dimensional) Banach mani-
fold M modelled on a Banach space E is defined as by an atlas (Ui, gi) on M
such that for any point p ∈ gj(Ui∩Uj) the differential (Fréchet derivative) of the
transition diffeomorphism D(gi ◦ g−1


j )(p) is an invertible operator of the form
“identity + compact” [9].


Existence of a Fredholm structure on an infinite-dimensional Banach manifold
is a rare event and such manifolds possess various interesting global geometric
and topological invariants (curvatures, characteristic classes) [10]. An important
result due to J.Elworthy and A.Tromba states that a Fredholm structure on M
can be constructed from a Fredholm mapping M → H with zero index and also
from certain smooth families of zero index Fredholm operators parametrized by
the points of M [11]. These facts were used in [15], [17] to construct Fredholm
structures on loop groups. The following statement follows from the results of
[15], [17].


Proposition 2. With any (complex) linear representation γ of Un one can
associate a Fredholm structure Fγ on the group L1Un of H1-loops on Un.


Here the loop group L1Un is endowed with the usual H1-norm [20]. It is easy
to verify that with this norm it becomes a Hilbert Lie group.


Remark 4. Another proof of the same result may be derived from the results
of [20] which yield in particular that the exponential map of the group of H1-
loops on a compact Lie group G is a Fredholm map of index zero. Indeed, this
local result enables one to obtain a Fredholm atlas on the loop group by merely
taking the inverses of the exponential maps at every point composed with the
natural identification of the tangent spaces with the Lie algebra of L1Un (as
always this can be done using differentials of right shifts on L1Un which appear
to have the form “identity + compact”). Details of this general argument will
appear in a forthcoming paper by G. Khimshiashvili and G. Misiolek.


Remark 5. Actually Fredholm structures on loop groups come from several
different sources. An interesting geometric way of constructing Fredholm struc-
tures on loop groups was suggested by D. Freed [12]. It is an intriguing open
problem to investigate whether those “Fredholm” structures are compatible
(concordant [11]) with the ones obtained from parameterizing the loop groups
by families of Riemann–Hilbert problems as in [16], [17].


Such results can be interpreted in terms of Fredholm Grassmanians using the
so-called Grassmanian models of loop groups [22]. As was explained in Section
2, the realization of a loop as a coefficient of Riemann–Hilbert problem gives a
natural mapping of an appropriate loop group LUn into the group GL(π+, K).
In virtue of the above discussion (cf. also [22]) it is clear that by posing proper
regularity conditions on a loop f one can achieve that the rotation of subspace
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H+ by the operator of multiplication by f gives a subspace in one of Grassma-
nians Grs. In this way one obtains a natural mapping of LG into Grs which is
called the Grassmanian model (or embedding) of a loop group [22].


Some properties of these models follow from the preceding discussion, others
were established in [22], basically for the case of the restricted Grassmanian
Grr(H). In particular it is well known that the group of continuously differen-
tiable loops can be embedded in Grr [22]. In general it is an interesting and
difficult analytical problem to find exact regularity conditions which guaran-
tee that the corresponding loop group can be realized in Grs (see examples
presented in [22], Ch.7).


We avoid discussion of this problem by concentrating our attention on the
group of smooth (infinitely differentiable) loops L∞Un which is the smallest of
interesting groups of that kind. Its image under the above embedding is called
the smooth (Fredholm) Grassmanian Gr∞. It is easy to check that it lies in
each Fredholm Grassmanian Grs. A more interesting circumstance is that it
is homotopy equivalent to each of them [22] so it captures important global
properties of these Grassmanians.


Now one can transport various structures from L∞Un to Gr∞. In particular it
is evident that L∞Un can be endowed with Fredholm structures which are just
the restrictions of the Fredholm structures on H1-loops provided by Proposition
2 so we obtain the same conclusion for the smooth Grassmanian.


Proposition 3. With each linear (finite dimensional) representation of Un


one can associate a Fredholm structure on the smooth Grassmanian Gr∞(H).


Of course one may ask whether it is possible to extend these structures to
ambient Grassmanians Grs but this problem involves some delicate analytic
issues which will be discussed elsewhere.


As an example of perspectives suggested by these results let us formulate
another natural problem. From the mentioned result of Elworthy and Tromba
and Proposition 2 it follows that there exists an index zero Fredholm mapping
of the loop group L1Un in Hilbert space. It would be interesting and instructive
to find an explicit construction of such a mapping. The same problem can be
formulated for all compact Lie groups. It would be also interesting to find such
a mapping from the smooth Grassmanian Gr∞(H) in its model space.


Also, it is well known that for a Fredholm manifold M one can define its
characteristic classes chk(M) ∈ H2k(M,Z). A natural and important problem
is to identify these classes in the cohomology of M . In our setting this problem
permits a particularly nice formulation.


As was already mentioned, the smooth Grassmanian has the same homotopy
type as Fredholm Grassmanians Grs(H) so their cohomology rings are isomor-
phic and the structure of these rings is well-known [10]. It is also well known (see
[10], [12]) that any Fredholm Hilbert manifold has well-defined Chern classes chj


which are classes in the even-dimensional cohomology of this manifold. Com-
bining these two observations we conclude that a Fredholm structure on the
smooth Grassmanian defines certain classes in H2j(Grs(H)). Thus we come to
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the problem of computing these classes for the structures Fγ described above.
Some results in this direction were obtained in [12], [13]. It is remarkable that
such Chern classes can be represented by some differential forms defined using
traces of appropriate products of operators from Schatten classes [13], which in-
dicates an intriguing analogy with the non-commutative geometry of A.Connes
[7].


It seems worthy of noting that some properties of the so-called partial indices
[21], [1] of Riemann–Hilbert problems can be also formulated in the language
of Fredholm structures. As is well known (see [3]) the collections of matrix
functions with the fixed partial indices, usually called Birkhoff strata [3], [22],
define an interesting stratification of the loop group. Using the Grassmanian
model of the loop group and Riemann–Hilbert problems described above, one
obtains the corresponding strata in the smooth Grassmanian Gr∞ and restricted
Grassmanian Grr (cf. [22]). Using the known properties of partial indices [2],
one can show that Birkhoff strata are complex analytic submanifolds of the
finite codimension in Grr [8]. Combining this observation with Theorem 2 one
becomes able to show that Birkhoff strata can be also treated in the context of
Fredholm structures.


Proposition 4. The Birkhoff strata are Fredholm submanifolds of Gr∞(H)
and, in virtue of the above discussion, each of them has a well defined funda-
mental class in the even-codimensional cohomology of Grr(H).


Some computations of the fundamental classes of Birkhoff strata can be found
in [8].


Using the same approach as above for loop groups and Fredholm Grassma-
nians associated with compact Lie groups [22] one can generalize Proposition
2 in this context. The formulation which we present follows from the results
of [17] which in turn are based on the Fredholm theory for Riemann–Hilbert
problems developed in [15], [17]. The existence follows from the Fredholmness
of the corresponding linear conjugation problem for G [16]. Recall that for any
compact Lie group one can naturally define the smooth Grassmanian GrG


∞ lying
in GrG


r (H).


Proposition 5. For each linear representation γ of a compact Lie group
G, the smooth Grassmanian GrG


∞(H) has a canonical Fredholm structure Fγ


induced by γ.


As was already mentioned for any Fredholm structure on a complex Banach
manifold one can define its Chern classes [12], so we become able to introduce
some global topological invariants of such Grassmanians.


Corollary 3. For each even k, there exists a canonical cohomology class in
H2k(GrG


∞(H)) which can be defined as the Chern class of the canonical Fredholm
structure Fγ.
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It is evident that one can now formulate a number of natural questions related
to such Fredholm structures.


In the conclusion we would like to express a hope that the approach described
in this paper can lead to new insights about global properties of Riemann–
Hilbert problems and geometric objects naturally associated with them.
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