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UNILATERAL CONTACT OF ELASTIC BODIES
(MOMENT THEORY)


R. GACHECHILADZE


Abstract. Boundary contact problems of statics of the moment (couple-
stress) theory of elasticity are studied in the case of a unilateral contact of
two elastic anisotropic nonhomogeneous media. A problem, in which during
deformation the contact zone lies within the boundaries of some domain, and
a problem, in which the contact zone can extend, are given a separate treat-
ment. Concrete problems suitable for numerical realizations are considered.
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The theory of variational inequalities is one of the most successful methods
used to investigate problems of the unilateral contact of elastic bodies. In this
paper, using the general theory of variational inequalities, we study the unilat-
eral contact of two anisotropic nonhomogeneous elastic bodies in the moment
theory of elasticity. We also study questions of the existence and uniqueness
of a weak solution and consider concrete problems suitable for numerical real-
izations. A problem in which the contact zone lies within some domain and a
problem in which the contact zone extends are treated separately.


I. A Problem with a Bounded Contact Zone


Let Ωq ⊂ R3 (q = 1, 2) be the contacting bounded domains with Lipshitz
piecewise smooth boundaries filled up with different elastic materials. The ba-
sic equations of statics of the couple-stress theory of elasticity for anisotropic
nonhomogeneous elastic media theory can be written in terms of stress compo-
nents as follows (see [1]):


∂σ
(q)
ij (x)/∂xi + F


(q)
j (x) = 0,


∂µ
(q)
ij (x)/∂xi + εikjσ


(q)
ik (x) + G


(q)
j (x) = 0, x ∈ Ωq, q = 1, 2,


(1)


where εikj is the Levy-Cività symbol, F (q) : Ωq → R3 is mass force, G(q) : Ωq →
R3 is mass moment; σ


(q)
ij , µ


(q)
ij : Ωq → R, where


σ
(q)
ij (x) = a


(q)
ijlk(x)u


(q)
lk (x) + b


(q)
ijlk(x)ω


(q)
lk (x)
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is the stress force tensor, and


µ
(q)
ij (x) = b


(q)
lkij(x)u


(q)
lk (x) + c


(q)
ijlk(x)ω


(q)
lk (x)


is the moment stress tensor (here and in what follows the repetition of the
symbol without brackets means summation over this index from 1 to 3),


u
(q)
lk (x) = ∂u


(q)
k (x)/∂xl − εlkmω(q)


m (x)


are strain components, ω
(q)
lk (x) = ∂ω


(q)
k (x)/∂xl are torsion-bending components,


u(q) : Ωq → R3 is the displacement vector, ω(q) : Ωq → R3 is the rotation


vector, and the real-valued functions a
(q)
ijlk, b


(q)
ijlk, c


(q)
ijlk (called the elastic constants)


belong to the class C1(Ωq) and satisfy the usual requirements for symmetry and


ellipticity, i.e., a
(q)
ijlk = a


(q)
lkij, c


(q)
ijlk = c


(q)
lkij, q = 1, 2, and there exists α0 > 0


such that


a
(q)
ijlk(x)ξijξlk + 2b


(q)
ijlk(x)ξijηlk + c


(q)
ijlk(x)ηijηlk ≥ α0(ξijξij + ηijηij) (2)


for all x ∈ Ωq and ξij, ηij ∈ R.
Let n(q)(x), q = 1, 2 be the unit normal at a point x of the surface ∂Ωq which


is external with respect to Ω(q), and
(q)


M(x, ∂) be the 6 × 6 matrix differential
operator of statics of the couple-stress theory of elasticity which corresponds to


system (1) (see [2], [3]), and
(q)


N (x, ∂, n(q)) be the 6× 6 matrix differential stress
operator (see [2], [3]). Clearly, in such notation, system (1) takes the form


(q)


M(x, ∂)U (q)(x) + F (q)(x) = 0, x ∈ Ωq, q = 1, 2, (3)


where U (q) = (u(q), ω(q)) and F (q) = (F (q), G(q)).
We will use the following notation:
(q)
σU (q) ≡


(q)


N 1(x, ∂, n(q))u(q)(x)+
(q)


N 2(x, ∂, n(q))ω(q)(x) is the force stress vector;
(q)
µU (q) ≡


(q)


N 3(x, ∂, n(q))u(q)(x)+
(q)


N 4(x, ∂, n(q))ω(q)(x) is the stress moment vec-


tor, where
(q)


N j, j = 1, 2, 3, 4, are the 3× 3 matrix differential operators partici-


pating in the definition of the operator
(q)


N (x, ∂, n(q)) (see [2], [3]).
The total strain energy of the respective media has the form


B(q)(U (q),V(q)) =
∫


Ωq


{
a


(q)
ijlk(x)ξij(U (q))ξlk(V(q)) + c


(q)
ijlk(x)ηij(U (q))ηlk(V(q))


+ b
(q)
ijlk(x)ξij(U (q))ηlk(V(q)) + b


(q)
ijlk(x)ξij(V(q))ηlk(U (q))


}
dx,


where


ξij(U (q)) =
∂u


(q)
j


∂xi


− εijkω
(q)
k and ηij(U (q)) =


∂ω
(q)
j


∂xi


, q = 1, 2.
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Let us assume that Γu, Γ0, Γc and Γ
(q)
T are pairwise nonintersecting smooth


open subsurfaces of the boundary ∂Ω1 ∪ ∂Ω2; (∂Ω1 ∩ ∂Ω2 = Γc), while ∂Ω1 =
Γu ∪ ΓT


(1) ∪ Γc, ∂Ω2 = Γ0 ∪ ΓT
(2) ∪ Γc and Γc and Γu have a positive measure.


Let (v)n and (v)t denote the normal and the tangential component of the vector
v ∈ R3, respectively. Below we will use the spaces Hs(Ωq) and Hs(∂Ωq), s ∈ R,
whose definitions and main properties can be found in [4], [5].


Definition 1. A vector function U (q) ∈ (H1(Ωq))
6 is called a weak solution


of equation (3) for F (q) ∈ (L2(Ωq))
6 if B(q)(U (q), Φ) = (F (q), Φ)0,Ωq , ∀Φ ∈


(C∞
0 (Ωq))


6, where as usual


(f, ϕ)0,Ω =
∫


Ω


fϕdx (ϕ is complex conjugate to ϕ).


Note that if U (q) ∈ (H1(Ωq))
6 and


(q)


MU (q) ∈ (L2(Ωq))
6, then


(q)


NU (q)|∂Ωq can


be defined as an element of the space (H−1/2(∂Ωq))
6 by using the relations:


〈(q)


NU (q), Φ
〉


∂Ωq
= B(q)(U (q),V) + (


(q)


MU (q),V)0,Ωq , V ∈ (H1(Ωq))
6, V


∣∣∣
∂Ωq


= Φ


which take place for all Φ ∈ (H1/2(∂Ωq))
6; here and in what follows the symbol〈


., .
〉


denotes the duality relation between the corresponding dual spaces.


Let us introduce the space


(H̃1/2(Γ
(q)
T ))6 =


{
Φ ∈ (H1/2(∂Ωq))


6 : Φ
∣∣∣
∂Ωq\Γ(q)


T


= 0
}


and let (H−1/2(Γ
(q)
T ))6 be the dual space of this space. Now


(q)


NU (q)
∣∣∣
Γ


(q)
T


can be


defined as an element of the space (H−1/2(Γ
(q)
T ))6 by means of the formula


〈(q)


NU (q)
∣∣∣
Γ


(q)
T


, Φ
〉


Γ
(q)
T


=
〈(q)


NU (q), Φ
〉


∂Ωq
, ∀Φ ∈ (H̃1/2(Γ


(q)
T ))6.


Similarly, we can define (
(q)
σU (q))n(q)


∣∣∣
Γc


as an element of the space H−1/2(Γc):


〈
(
(q)
σU (q))n(q)


∣∣∣
Γc


, (v)n(q)


〉
Γc


= B(q)(U (q),V) + (
(q)


MU (q),V)0,Ωq ,


V = (v, w) ∈ (H1(Ωq))
6, w


∣∣∣
Γc


= (v)t(q)


∣∣∣
Γc


= 0, V
∣∣∣
∂Ωq\Γc


= 0.


We will consider the folowing boundary-contact problem.


Problem 1. Find a vector function U (q) = (u(q), w(q)) ∈ (H1(Ωq))
6 which is


a weak solution of equation (3) and satisfies the conditions


U (1)
∣∣∣
Γu


= 0; (4)


u(2) · n(2)
∣∣∣
Γ0


= ω(2) · n(2)
∣∣∣
Γ0


= 0, (
(2)
σ U (2))t(2)


∣∣∣
Γ0


= (
(2)
µU (2))t(2)


∣∣∣
Γ0


= 0; (5)
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(q)


N (x, ∂, n(q))U (q)(x)
∣∣∣
Γ


(q)
T


= P(q)(x); (6)


(u(1) ·n(1)+u(2) ·n(2))Γc≤0, (
(2)
σ U (2))n(2)


∣∣∣
Γc


=(
(1)
σ U (1))n(1)


∣∣∣
Γc
≤0; (7)1


〈
(
(1)
σ U (1))n(1)


∣∣∣
Γc


, u(1) · n(1) + u(2) · n(2)
〉


Γc
= 0; (7)2


(
(1)
σ U (1))t(1)


∣∣∣
Γc


= (
(2)
σ U (2))t(2)


∣∣∣
Γc


= 0; (7)3


ω(1)
∣∣∣
Γc


= ω(2)
∣∣∣
Γc


,
(1)
µU (1)


∣∣∣
Γc


= −(2)
µU (2)


∣∣∣
Γc


, (7)4


where n(2) = −n(1) on Γc, F (q) ∈ (L2(Ωq))
6 and P(q) ∈ (H−1/2(∂Ωq))


6 such that〈
P(q), Φ


〉
∂Ωq


= 0, ∀Φ ∈ (H1/2(∂Ωq))
6, Φ


∣∣∣
Γ


(q)
T


= 0.


A similar problem in the classical theory of elasticity is considered in [6].
Let us introduce the following notation:


H1(Ω) =
{
U


∣∣∣ U = (U (1),U (2)) ∈ (H1(Ω1))
6 × (H1(Ω2))


6
}
,


‖U‖2
1,Ω =


2∑


q=1


‖U (q)‖2
1,Ωq


; B(U ,V) =
2∑


q=1


B(q)(U (q),V(q)), ∀U ,V ∈ H1(Ω);


V =
{
U ∈H1(Ω)


∣∣∣ U (1)
∣∣∣
Γu


=0, u(2) ·n(2)
∣∣∣
Γ0


=ω(2) ·n(2)
∣∣∣
Γ0


=0, ω(1)
∣∣∣
Γc


=ω(2)
∣∣∣
Γc


}
;


K =
{
U ∈ V


∣∣∣ (u(1) · n(1) + u(2) · n(2))Γc ≤ 0
}
;


L(V) = (F ,V)0,Ω +
〈
P ,V


〉
∂Ω


=
2∑


q=1


[
(F (q),V(q))0,Ωq +


〈
P(q),V(q)


〉
∂Ωq


]
;


L(V) =
1


2
B(V ,V)− L(V), ∀V ∈ H1(Ω).


It is easy to prove that U ∈ K minimizes the functional L on the convex
closed set K if and only if


B(U ,V − U) ≥ L(V − U), ∀V ∈ K. (8)


Definition 2. We call a vector function U ∈ K a variational solution of
Problem 1 if the variational inequality (8) is fulfilled.


Proposition 1. Each solution of Problem 1 is a variational one and vice
versa.


Proof. Let U ∈ H1(Ω) be a solution of Problem 1. By virtue of the internal
regularization theorems (see [7]) we have U ∈ H2


loc(Ω) and (3) holds. Now,
applying the Green’s formula,


0 =
2∑


q=1


[
(


(q)


MU (q),V(q))0,Ωq + (F (q),V(q))0,Ωq


]
= −B(U ,V) + L(V)







UNILATERAL CONTACT OF ELASTIC BODIES 757


+
〈(2)


NU (2)
∣∣∣
Γ0


,V(2)
〉


Γ0


+
2∑


q=1


〈(q)


NU (q)
∣∣∣
Γc


,V(q)
〉


Γc
, ∀ V ∈ V.


Since U is a solution of Problem 1 and V ∈ V , the duality relation on Γ0 is
equal to zero, whereas the last term of the equality gives


2∑


q=1


〈(q)


NU (q)
∣∣∣
Γc


,V(q)
〉


Γc
=


2∑


q=1


[〈
(
(q)
σU (q))n(q)


∣∣∣
Γc


, v(q) · n(q)
〉


Γc


+
〈
(
(q)
σU (q))t(q)


∣∣∣
Γc


, (v(q))t(q)


〉
Γc


+
〈(q)
µU (q)


∣∣∣
Γc


, w(q)
〉


Γc


]


=
〈
(
(1)
σ U (1))n(1)


∣∣∣
Γc


, v(1) · n(1) + v(2) · n(2)
〉


Γc


by virtue of the contact conditions of Problem 1.
Thus eventually we obtain


B(U ,V)− L(V) =
〈
(
(1)
σ U (1))n(1)


∣∣∣
Γc


, v(1) · n(1) + v(2) · n(2)
〉


Γc
, ∀V ∈ V.


Let W ∈ K, W = (W(1),W(2)), W(q) = (ϕ(q), ψ(q)). Then V = W − U ∈ V


and, by virtue of conditions (7)2, we have (
(1)
σ U (1))n(1) = 0 at the points Γc where


u(1) · n(1) + u(2) · n(2) < 0 whereas the inequality


v(1) · n(1) + v(2) · n(2) = ϕ(1) · n(1) + ϕ(2) · n(2) ≤ 0 and (
(1)
σ U (1))n(1) ≤ 0


is fulfilled if u(1) · n(1) + u(2)n(2) = 0.


Thus
〈
(
(1)
σ U (1))n(1)


∣∣∣
Γc


, v(1) · n(1) + v(2) · n(2)
〉


Γc
≥ 0 and therefore ∀W ∈ K :


B(U ,W −U)− L(W −U) ≥ 0.
Conversely, let now U ∈ K be a solution of the variational inequaliy (8). After


replacing in (8) U (q) ± Φ(q) by V(q), where Φ(q) ∈ (C∞
0 (Ωq))


6, we obtain


B(q)(U (q), Φ(q)) = (F (q), Φ(q))0,Ωq , q = 1, 2,


i.e., U (q) is a weak solution of equation (3) and equation (3) is fulfilled again
by virtue of the internal regularization theorems. Hence, applying the Green’s
formula and inequality (8), we get


2∑


q=1


〈(q)


NU (q)
∣∣∣
Γ


(q)
T


− P (q),V(q) − U (q)
〉


Γ
(q)
T


+
2∑


q=1


〈(q)


NU (q)
∣∣∣
Γc


,V(q) − U (q)
〉


Γc


+
〈(2)


NU (2)
∣∣∣
Γ0


,V(2) − U (2)
〉


Γ0


≥ 0. (9)


On replacing in (9) U (q) ± Φ(q) by V(q), where Φ(q) ∈ (C∞(Ωq))
6 is such that


supp Φ(q)
∣∣∣
∂Ωq


⊂ Γ
(q)
T , we have


〈
NU − P , Φ


〉
Γ


(1)
T ∪Γ


(2)
T


= 0.


This gives us (6). Condition (4) and the first conditions of (5), (7)1 and (7)4


are fulfilled automatically since U ∈ K.
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Let us now replace in (9) V by U ±Φ, where Φ = (Φ(1), Φ(2)) ∈ (C∞
0 (Ω1))


6 ×
(C∞(Ω2))


6 is such that Φ(q) = (ϕ(q), ψ(q)), supp Φ(2)
∣∣∣
∂Ω2


⊂ Γ0, ψ(2)
∣∣∣
Γ0


= 0 and


ϕ(2) · n(2)
∣∣∣
Γ0


= 0. Then
〈
(
(2)
σ U (2))t(2)


∣∣∣
Γ0


, (ϕ(2))t(2)


〉
Γ0


= 0. Hence because of the


arbitrariness of (ϕ(2))t(2) it follows that (
(2)
σ U (2))t(2)


∣∣∣
Γ0


= 0.


In a similar manner we conclude that the condition (
(2)
µU (2))t(2)


∣∣∣
Γ0


= 0 is


fulfilled on Γ0.
The above reasoning enables us to rewrite (9) as


2∑


q=1


〈
(
(q)


NU (q))
∣∣∣
Γc


,V(q) − U (q)
〉


Γc
≥ 0. (10)


Choose V = U ± Φ such that Φ = (Φ(1), Φ(2)) ∈ H1(Ω), supp Φ(q)
∣∣∣
∂Ωq


⊂
Γc, Φ(q) = (ϕ(q), ψ(q)), ψ(1)


∣∣∣
Γc


= ψ(2)
∣∣∣
Γc


= (ϕ(1))t(1)


∣∣∣
Γc


= (ϕ(2))t(2)


∣∣∣
Γc


= 0, and


ϕ(1) · n(1)
∣∣∣
Γc


= −ϕ(2) · n(2)
∣∣∣
Γc


= ψ, where ψ ∈ H̃1/2(Γc). Then


〈
(
(1)
σ U (1))n(1)


∣∣∣
Γc
− (


(2)
σ U (2))n(2)


∣∣∣
Γc


, ψ
〉


Γc
= 0, ∀ψ ∈ H̃1/2(Γc),


i. e., (
(1)
σ U (1))n(1)


∣∣∣
Γc


= (
(2)
σ U (2))n(2)


∣∣∣
Γc


. In a similar way we establish condition


(7)3 and the second condition of (7)4.
With the above arguments taken into account we can rewrite (10) as follows:


∀V ∈ K :
〈
(
(1)
σ U (1))n(1)


∣∣∣
Γc


, ((v(1)−u(1))·n(1)+(v(2)−u(2))·n(2))Γc


〉
Γc
≥0. (11)


If we choose U = U + Φ, where Φ = (Φ(1), Φ(2)) ∈ H1(Ω) is such that


supp Φ(q)
∣∣∣
∂Ωq


⊂ Γc, Φ(q) =(ϕ(q), ψ(q)), ψ(q)
∣∣∣
Γc


=0 and (ψ(1))t(1)


∣∣∣
Γc


=(ϕ(2))t(2)


∣∣∣
Γc


=


0, ϕ(2) · n(2)
∣∣∣
Γc


= 0 and ϕ(1) · n(1)
∣∣∣
Γc


= ϕ, where ϕ ∈ H̃1/2(Γc) is arbitrary


with the condition ϕ ≤ 0, then V ∈ K and
〈
(
(1)
σ U (1))n(1)


∣∣∣
Γc


, ϕ
〉


Γc
= 0. Hence


(
(1)
σ U (1))n(1)


∣∣∣
Γc
≤ 0 as a distribution of the class H−1/2(Γc). Therefore the sec-


ond condition of (7)1 holds.
It remains to prove (7)2.
Since V = 0 and V = 2U belongs to the convex closed set K substituting


V = 0 into (11) and then doing the same with V = 2U , we obtain that (7)2 is
fulfilled everywhere on Γc. Proposition 1 is proved.


As is known, in the moment theory of elasticity the space of rigid displacement
vectors is written as


R(q) =
{
(ρ(q), a(q))


∣∣∣ρ(q) = [a(q) × x] + b(q), a(q), b(q) ∈ R3, q = 1, 2
}
,


where [a(q) × x]i = εijka
(q)
j xk; R = R(1) ×R(2).
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It is easy to verify that B(U ,V) = 0, ∀U ∈ R and ∀V ∈ H1(Ω).
The converse is also true: if U ∈ H1(Ω) and ξij(U (q)) = 0, ηij(U (q)) =


0, i, j = 1, 2, 3, then U ∈ R.
Let U ∈ K be a variational solution of Problem 1. Then if in (8) V is


replaced by U + Y , where Y ∈ K ∩ R (note that U + Y ∈ K), then we have
0 = B(U , Y ) ≥ L(Y ), i. e., the condition


L(Y ) ≤ 0, ∀Y ∈ K ∩R, (12)


is the necessary one for the existence of a variational solution of Problem 1.


Lemma 1. Let V ∩ R = {0} or L(Y ) 6= 0, ∀Y ∈ V ∩ R\{0}. Then there
exists at most one variational solution of Problem 1.


Proof. Assume that
1


U and
2


U are solutions of inequality (8). Then


B(
1


U ,
2


U −
1


U) ≥ L(
2


U −
1


U), B(
2


U ,
1


U −
2


U) ≥ L(
1


U −
2


U).


Hence B(
1


U −
2


U ,
1


U −
2


U) ≤ 0.
This condition together with (2) implies that ξij(Y ) = 0, ηij(Y ) = 0, Y =


1


U −
2


U , i, j = 1, 2, 3, i.e., Y ∈ V ∩R. If by the assumption V ∩R = {0}, then


Y = 0 and the solution is unique. Let now Y ∈ V ∩ R\{0}. Denoting
2


U by
U , we can write another arbitrary solution of (8) as U + Y , where Y ∈ V ∩R.
Since the energy functional L has the same minimal value for the vectors U and
U + Y , we obtain


[
L(U) = L(U + Y )


]
=⇒


[
L(U) = L(U + Y )


]
=⇒ L(Y ) = 0,


which contradicts the condition of the lemma. Therefore Y = 0 and the solution
of (8) is unique.


As an example let us consider a plane contact problem, in which Γ0 consists
of segments parallel to the x1-axis. In that case


V ∩R=
{
Y =(Y (1), Y (2))∈H1(Ω) : Y (1) =((0, 0); 0), Y (2) =((b


(2)
1 , 0); 0), b


(2)
1 ∈R


}


(it should be noted that in the two-dimensional case the space of rigid displace-
ment vectors has the form


R =
{
Y = (Y (1), Y (2)) ∈ H1(Ω) : Y (q) = ((b


(q)
1 + a(q)x2, b


(q)
2 − a(q)x1); a


(q))
}
,


where a(q) ∈ R and b(q) = (b
(q)
1 , b


(q)
2 ) ∈ R2, q = 1, 2).


Let us assume that n
(2)
1 ≥ 0 throughout Γc and n


(2)
1 (x) > 0 for some point


x ∈ Γc. Then it is clear that K ∩R = {Y ∈ V ∩R : b
(2)
1 ≤ 0}.


Condition (12), which is necessary for the existence of a variational solution,
takes the form


U
(2)
1 ≡


∫


Ω2


F
(2)
1 dx +


〈
P(2)


1 , 1
〉


Γ
(2)
T


≥ 0.
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By virtue of Lemma 1, if U
(2)
1 6= 0, then there exists at most one solution


of inequality (8) (indeed, ∀Y ∈ V ∩ R\{0}, L(Y ) = b
(2)
1 U


(2)
1 , b


(2)
1 6= 0, and if


U
(2)
1 6= 0, then we have L(Y ) 6= 0).
To obtain a general result of the existence of a variational solution of Problem


1, we have to introduce the set of “bilateral” rigid displacement vectors


R∗ =
{
Y ∈ K ∩R : Y (1) = (0; 0), Y (2) = (b(2); 0), b(2) ∈ R3, 0 ∈ R3,


b(2) · n(2)
∣∣∣
Γ0


= b(2) · n(2)
∣∣∣
Γc


= 0
}
.


The next theorem is an immediate corollary of Fichera’s theorem on the
existence of solutions of abstract variational inequalities (see [7], Theorem 1.II).


Theorem 1. Let L(Y )) ≤ 0, ∀Y ∈ K ∩ R. If this condition is fulfilled in
a strong sense, i.e., if the equality sign holds if and only if Y ∈ R∗, then there
exists a variational solution U ∈ K of Problem 1. Any other solution has the
form U + Y , where Y ∈ V ∩R is such that U + Y ∈ K and L(Y ) = 0.


We will prove


Theorem 2. Let


V ∩R = RV , K ∩R = RV , (13)


L(Y ) = 0, ∀Y ∈ RV (14)


and V = RV ⊕H.
Then there exists a unique solution Û ∈ K̂ = K ∩H of the problem


L(Û) ≤ L(Z), ∀Z ∈ K̂, (15)


and each variational solution of Problem 1 can be represented as U = Û +
Y, Y ∈ RV .


If Û ∈ K̂ is a solution of problem (15), then U = Û + Y , where Y is any
element from RV , is a variational solution of Problem 1.


Proof. We begin by remarking that, in the case of a spatial problem, condition
(13) is fulfilled if and only if Γ0 is not a part of the plane (a part of the straight
line in the two-dimensional case) or Γ0 and Γc are parallel plane subsulfaces
(parallel segments). In the former case, RV = {0} and condition (14) is fulfilled


automatically, whereas in the latter case it holds if and only if U
(2)
1 = U


(2)
2 = 0,


where


U
(2)
j =


∫


Ω2


F
(2)
j dx +


〈
P(2)


j , 1
〉


Γ
(2)
T


, j = 1, 2.


Let H = V ª RV , and the PH be the operator of orthogonal projection (in
the sense of H1) of the space V onto H. Using the second Korn inequality in
the moment theory of elasticity (see [8]), we can prove that (see also [9])


∀V ∈ H : B(V ,V) ≥ c0‖PHV‖2
1,Ω = c0‖V‖2


1,Ω, (16)
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where


‖V‖2
1,Ω =


2∑


q=1


‖V (q)‖2
1,Ωq


.


Hence we have


L(V) =
1


2
B(V ,V)− L(V) ≥ c0


2
‖V‖2


1,Ω − ‖L‖ ‖V‖1,Ω, ∀V ∈ H.


This proves the coercivity of the functional L on H.
Therefore problem (15) has a solution since L is a convex coercive functional


on the convex closed set K̂ = K∩H. Let
1


U and
2


U be such two solutions. Then


Z =
1


U −
2


U ∈ RV ∩H, i. e., the solution is unique.
By (14) we have


L(V) = L(V + Y ), ∀Y ∈ RV . (17)


Moreover, we can prove that


PH(K) = K̂. (18)


Let now U be a variational solution of Problem (1). By (14)


L(PHV) = L(PHV + PRV
V)L(V), ∀V ∈ V.


Since by (18) PHU ∈ K and L(PHU) = L(U) ≤ L(V) = L(PHV), ∀V ∈ K, we
conclude with (18) taken into account that PHU is a solution of problem (15).


Since we have already shown that problem (15) has a unique solution, we


have PHU = Û and the representation U = Û + Y , Y ∈ RV is obvious.
Conversely, let U = Û+Y , where Û is a solution of problem (15), and Y ∈ RV .


Since R∗ = RV , we obtain


(u(1) · n(1) + u(2) · n(2))
∣∣∣
Γc


= (û(1) · n(1) + û(2) · n(2) + y(1) · n(1) + y(2) · n(2))
∣∣∣
Γc


= (û(1) · n(1) + û(2) · n(2))
∣∣∣
Γc
≤ 0


and therefore U ∈ K.
By (17)


L(U) = L(Û) ≤ L(Z), ∀Z ∈ K̂. (19)


Clearly, PHV ∈ K̂, ∀V ∈ K, and L(V) = L(PHV +PRV
V) = L(PHV). Hence,


by virtue of (19) it follows that L(U) ≤ L(V), ∀V ∈ K, i. e., U is a variational
solution of Problem 1.


The following theorem is true.


Theorem 3. Let


R∗ = {0} 6= RV , L(Y ) 6= 0, ∀Y ∈ RV \{0}, (20)


and either K ∩R = {0} or


L(Y ) < 0, ∀Y ∈ K ∩R\{0}. (21)







762 R. GACHECHILADZE


Then L is coercive on K and there exists a unique variational solution of
Problem 1.


Proof. Assume that K ∩R = {0}. Then the proof of the theorem immediately
follows from the following lemma (see [10]).


Lemma 2. Let a semi-norm | · | be given on the Hilbert space H with norm
‖ · ‖H , and R = {v ∈ H : |v| = 0} be a finite-dimensional subspace of H. It is
assumed that for some ci > 0, i = 1, 2,


c1‖u‖H ≤ |u|+ ‖PRu‖H ≤ c2‖u‖H , ∀ u ∈ H, (22)


where PR is the operator of orthogonal (in the sense of H) projection onto R.
K is a convex closed subset of H such that K ∩ R = {0}, and β : H → R1 is
the penalty functional for which ker β = K and


Dβ(tu, v) = tDβ(u, v), ∀ t > 0, ∀u, v ∈ H, (23)


where D is the Gateaux differential.
Then


|u|2 + β(u) ≥ c‖u‖2
H , ∀u ∈ H. (24)


In our case, assuming that H = V , R = V ∩R = RV , we have


|V| =
2∑


q=1


∫


Ωq


[
ξij(V(q))ξij(V(q)) + ηij(V(q))ηij(V(q))


]
dx


and


β(V) =
∫


Γc


[
(v(1) · n(1) + v(2) · n(2))+


]2
ds,


where ϕ+ = min(ϕ, 0).
To check (22) we have to use the decomposition V = RV ⊕Q and inequality


(16). We have


‖V‖2
1,Ω = ‖PQV‖2


1,Ω + ‖PRV
V‖2


1,Ω ≤ c|PQV|2 + ‖PRV
V‖2


1,Ω


= c|V|2 + ‖PRV
V‖2


1,Ω, ∀V ∈ V,


which gives the left-hand side of inequality (22). The right-hand side is obvious.
It is also easy to check the fulfilment of (23) and ker β = K. Now it is clear
that (24) implies that |V|2 ≥ c‖V‖2


1,Ω, ∀V ∈ K. Hence the coercivity of the
function L on K is obvious:


L(V)=
1


2
B(V ,V)−L(V)≥ c0


2
|V|2−L(V) ≥ c1‖V‖2


1,Ω−‖L‖ ‖V‖1,Ω, ∀V ∈K.


Therefore Problem 1 has a variational solution.


Let now
1


U and
2


U be solutions of the problem. Then Z =
1


U −
2


U ∈ RV and


L(
1


U) = L(
2


U) =⇒ L(
1


U) = L(
2


U) =⇒ L(Z) = 0. By virtue of (20) we conclude
that Z = 0.
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Finally, if (21) is fulfilled, then the existence of a variational solution of
Problem 1 is guaranteed by Theorem 1 (in our case R∗ = {0}). The uniqueness
is proved similarly to the previous case.


Remark 1. If V ∩R = {0}, then an equality of the Korn type |V| ≥ c‖V‖1,Ω,
∀V ∈ V, is valid and therefore L is coercive on the space V , which fact in its
turn enables one to assert the existence and uniqueness of a variational solution
of Problem 1.


II. Problems with an Expanding Contact Zone


We have considered the contact problem in which during deformation the
contact zone does not extend beyond the boundary of some domain. However
in some cases the contact zone may expand. Such a situation occurs when the
domains Ω1 and Ω2 possess smooth boundaries in some neighborhood of the
intersection ∂Ω1 ∩ ∂Ω2.


Let Q ∈ ∂Ω1∩∂Ω2 be an arbitrary point in the contact zone in the undeformed
state. We introduce the local Cartesian system (ξ, η) so that the ξ-axis be
directed along n(1), and the η-axis along the tangent to the point Q. Let,
furthermore, the parts of the boundary ∂Ω1 and ∂Ω2 which might come into
contact during deformation be described in terms of local coordinates as Γ(q)


c ={
(ξ, η) | ξ = f (q)(η), a ≤ η ≤ b


}
, q = 1, 2, where f (q) are the continuous


functions on [a, b] (this segment is chosen so that it includes the projection of a
possible contact zone onto the η-axis).


To avoid repetition, we do not formulate completely the contact problem
which we are going to consider below (referred to as Problem 2) because it is
formulated exactly like Problem 1 with the only difference that conditions (7)1,
(7)2 and (7)3 are replaced (see [6]) by the conditions


u
(2)
ξ −u


(1)
ξ ≤ε(η), −(


(1)
σ U (1))ξ(cos α(1))−1 =(


(2)
σ U (2))ξ(cos α(2))−1≤0; (7)′1


〈
(
(2)
σ U (2))ξ, u


(2)
ξ − u


(1)
ξ − ε(η)


〉
= 0; (7)′2


(
(1)
σ U (1))η = (


(2)
σ U (2))η = 0, (7)′3


where ε(η) = f (1)(η)−f (2)(η), η ∈ [a, b], is a distance between the boundaries of


the elastic bodies prior to deformations, u
(q)
ξ are components of the dispacement


vectors along the ξ-axis, α(q) is the angle formed by the η-axis and the tangent
to Γ(q)


c , and cos α(q) = [1 + (df (q)/dη)2]−1/2.
Let us again introduce the space V and the convex closed set Kε as follows:


V =
{
V ∈ H1(Ω);V(1)


∣∣∣
Γu


= 0, v(2) · n(2)
∣∣∣
Γ0


= w(2) · n(2)
∣∣∣
Γ0


= 0,


w(1)
∣∣∣
Γ


(1)
c


= w(2)
∣∣∣
Γ


(2)
c


with the same coordinate η ∈ [a, b]
}
,


Kε =
{
V ∈ V ; v


(2)
ξ − v


(1)
ξ ≤ ε(η), η ∈ [a, b]


}
.


The functionals L and L are the same as before.
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Definition 3. A function U ∈ Kε is called a variational solution of Problem
2 if L(U) ≤ L(V), ∀V ∈ Kε.


Our next proposition below is proved quite similarly to Proposition 1.


Proposition 2. Each solution of Problem 2 is a variational solution of this
problem and vice versa.


Let formulate without proving a result similar to Theorem 2.


Theorem 4. Let


K0 =
{
V ∈ V ; v


(2)
ξ − v


(1)
ξ ≤ 0, ∀ η ∈ [a; b]


}


L(Y ) = 0, ∀Y ∈ RV ≡ K0 ∩R.


and V = H ⊕RV be the orthogonal decomposition of the space V .
Then L is coercive on H and there exists a unique solution Û ∈ K̂ε = Kε∩H


of the problem


L(Û) ≤ L(Z), ∀Z ∈ K̂ε. (25)


Moreover, each variational solution of Problem 2 can be written in the form
U = Û +Y , where Û is a solution of (25) and Y ∈ RV . If Û ∈ RV is a solution


of (25), then Û + Y is a variational solution of Problem 2 for any Y ∈ RV .


The proof of this theorem repeats that of Theorem 2. Finally, the following
theorem is valid.


Theorem 5. Let Γ0 consist of segments parallel to the x1-axis, cos(ξ, x1) > 0
and


U
(2)
1 =


∫


Ω2


F
(2)
1 dx +


〈
P(2)


1 , 1
〉


> 0. (26)


Then L is coercive on Kε and there exists a unique solution of Problem 2.


Proof. Let


Q(V) =


b∫


a


(v
(2)
ξ − v


(1)
ξ )dη and VQ =


{
V ∈ V ; Q(V) = 0


}
.


Then


R∩ VQ = {0}. (27)


Indeed,


R∩VQ⊂RV =
{
Y =(Y (1), Y (2)); Y (2) =((0, 0); 0), Y (2) =((b1, 0); 0), b1∈R1


}
.


Since Q(Y ) = 0, we have


0 = b1


b∫


a


cos(ξ, x1)dη =⇒ b1 = 0.
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Using (27) and the second Korn inequality, one can prove that


|V| ≥ c‖V‖1,Ω, ∀V ∈ VQ. (28)


Let V ∈ V . Choosing Y ∈ RV such that Y (1) = ((0, 0); 0), Y (2) =
((Q(V)d−1, 0); 0), where


d =


b∫


a


cos(ξ, x1)dη,


observing that the equality


Q(PV) = Q(V)−Q(Y ) = Q(V)−
b∫


a


Q(V)d−1 cos(ξ, x1)dη = 0


holds for the difference PV = V − Y , we find that PV ∈ VQ. By (28) we have


L(V) =
1


2
B(PV , PV)− L(PV)− L(Y )


≥ c1‖PV‖2
1,Ω − c2‖PV‖1,Ω −Q(V)d−1U


(2)
1 . (29)


Clearly, if ‖V‖1,Ω −→ ∞, then at least one of the norms ‖PV‖1,Ω or ‖Y ‖1,Ω


tends to infinity. Moreover,


V ∈ Kε =⇒ Q(V) ≤
b∫


a


ε(η)dη < +∞, (30)


‖Y ‖1,Ω = |Q(V)|d−1
( ∫


Ω2


dx
)1/2


= |Q(V)|d−1(mes Ω2)
1/2. (31)


1. Let ‖Y ‖1,Ω −→∞. From (30) and (31) it follows that −Q(V) −→ +∞.
Since c1‖PV‖2


1,Ω−c2‖PV‖1,Ω ≥ c3 > −∞, (29) and (26) imply that L(V) −→
+∞.


2. Let now ‖PV‖1,Ω −→∞. Then (30) yields


c1‖PV‖2
1,Ω − c2‖PV‖1,Ω −→ +∞, −Q(V)d−1U


(2)
1 ≥ −d−1U


(2)
1


b∫


a


εdη > −∞.


Hence, by (29), we obtain L(V) −→ +∞. Thus we have proved the coercivity of
the functional L on Kε, which in its turn guarantees the existence of a solution


of Problem 2. Let
1


U and
2


U be any two solutions. Then Z =
1


U −
2


U ∈ RV and


L(Z) = 0. On the other hand, L(Z) = bU
(2)
1 , b ∈ R1, and (26) implies that


b = 0 , i. e., Z = 0. The uniqueness and, accordingly, Theorem 5 is proved.
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