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APPLICATION OF SINGULAR INTEGRAL EQUATIONS IN
THE BOUNDARY VALUE PROBLEMS OF
ELECTROELASTICITY

L. BITSADZE

Abstract. The purpose of this paper is to consider the three-dimensional
versions of the theory of electroelasticity for a transversally esotropic body.
Applying the potential method and the theory of singular integral equations,
the normality of singular integral equations corresponding to the boundary
value problems of electroelasticity are proved and the symbolic matrix is
calculated. The uniqueness and existence theorem for the basic BVPs of
electroelasticity are given.
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INTRODUCTION

In this paper we consider the three-dimensional versions of the theory of elec-
troelasticity for a transversally isotropic body which is the simplest anisotropic
one and for which we can do explicit computations.

The idea to apply singular integral equations in the boundary value problem
(BVP) is due to Basheleishvili and Natroshvili [1]. In [1] the normality of singu-
lar integral operators and also existence and uniqueness theorems for the BVPs
are proved by applying the potential method and the theory of singular integral
equations. The present paper is an attempt to extend this result to bound-

ary value problems of electroelasticity for a transversally isotropic electroelastic
body.

1. SOME PREVIOUS RESULTS

The following notations are used throughout the paper. Let E3 be the
3-dimensional real Euclidean space, D* € FE3 be a finite domain bounded by
the surface S. Suppose that S belongs to the Lyapunov class Lo(«) of order
a > 0 (see, e.g., [1]), D~ = E3\D*, where D* = DY U S, 2 = x(x1, 79, 73) €
Es3,u(xr) = u(uq, ug, ug, ug) is a four-dimensional vector function.

Basic Equations of Electroelasticity. A basic equation of statics of a
transversally isotropic electroelastic body can be written in the form [2, 3]

C(0z)U(x) =0, (1)
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where C(0x) =

» o » P >
O =cugm + g +eugg: Cro=len =)z 5
o o
Cis = (c13 + C44)83:j3x3’ J=1,2, Cjys = (e15 + 615)%7 7=12,
o? o? o? ? 0 0’
022 — Cnax% + Cgg al’% + Cyq4q 81%7 034 = €15 (81’% + 8%) + €337 aZL’%’
2 o o2 9 0?
C33:C44<(9 5 8:E2>+C338 3 C44:_€H<@I%+0x%>_6333$§’

Crj = Cji, U = Ul(uq, ug, ug, ug),

U1, Ug, uz are the displacement vector components, uy is an electrostatic poten-
tial, si;, ex;, €x; are the elastic, piezoelastic and dielectric constants, respectively.

Definition 1. A vector-function U(x) defined in the domain D* (D) is
called regular if it has integrable continuous second derivatives in D (D™), and
U(z) itself and its first derivatives are continuously extendable at every point
of the boundary of D* (D7), i. e., u € C?*(D*) N CY(D™). For the domain D~
the conditions at infinity are added:

auk B

upe=0(|z| ™), =O0(|z|™?), |z|*=2% + 25+ 23, k=1,2,3,4, j=1,2,3.(2)

ij

The Electroelastic Stress Vector. Now let us write an expression for the
components of the electromechanical stress vector. Denoting the stress vector

by T(0x,n)U, we have [4]
T(0x,n)U = ((Tu)1, (Tu)a, (Tu)s, (Tu)s),

3
(TU)k = ZTkjnj, k= 1,2,3<TU)4 = (TL,D),

=i
where T'(0z,n) = ||T;;(0x,n)| 4.4 is the stress tensor with the elements
Tn(al’ n) = 611711871 + STl ax + CagMg—— 81}3
0 0 0 0
Ti9(0x,n)= (011—2066)711(% + o627 — By’ T13(0z,n) =ci3ng =— B2s +Caanz—— Bz’
T14(0z,n) n —|—naT(8)cna—|—( 2)a
r.,n)=e —+te — T, )= —— (11 —2c66)10
140z, 13 18m3 1535~ dnl0T, 66715~ 11 66)1275
0 0 0 0 0
T22(8x, n) 2066”/1871‘1—’_811”2871?24_044”3 a:L‘3 ng(ax n) —=C13NM2—~— 8]} +C44n3 81132
0 0 0 0
T54(0x,n) = 613”287% + 615”38762, T51(0x,n) = 04471187% + Cl3n387x17



APPLICATION OF SINGULAR INTEGRAL EQUATIONS 3

Tos(0,n) = cuama—+ rana—, Tia(0,m) = (nl(fl+n2 ai) +eqsns 883
Tyu(0,m) = 615<n1£1 4 nggm) + eqgns 823 Tis,

Ty (0z,n) = el5n18—3 + e13n3 8?51’ Tie(0x,n) = ewma—s + e13ns 5~ =
Tu(02,n) = —ens (”1881 + ai) ey 8‘93 (3)

Throughout this paper n(z) denotes the exterior to DT unit normal vector
at the point x € S. D = (Dy, Dy, D3) is an induction vector, 75, are the stress
tensor components

ouy ny 5 >8 N Ous n Ouy
T = c11—— + (c11 — 2¢ c e
11 1181 11 6682 1383 B )’
( 5 )8 N Ous N Ous n Ouy
Too = (€11 — 2¢ c c e
22 11 6661 11(32 13(93 B )
e <0u1 Ouy 5, 8u4 B <8u1 3u2>
AN R 330 vy Oy Ny ' 02y
ou; Ou
Tj3 = C44<a ; x3>+615 = 1,2.75 = T,
J
ou; 8U3
D; '} ) =1,2.
8u4 ouyq 8u2) Ous
Dy = —€35—— -4 = s
3 633 + 613(8551 + 8;52 €33 8.2?3

The Basic BVPs. For equation (1) we pose the following BVPs. Find in
DT (D7) a regular solution U(z) to equation (1), satisfying on the boundary S
one of the following boundary conditions:

Problem (1)*. U = f(y),y € S (D~ is vacuum),

Problem (1)~. (U)~ = f(y),y € S (D7 is vacuum),

Problem (2)*. (TU)* = f(y),y € S (D~ is vacuum),

Problem (2)~. (TU)™ = f(y),y € S (DT is vacuum),
where ()* denotes the limiting value from D*, and f(y) is a given function

on S.

The Uniqueness Theorems. In this subsection we investigate the question
of the uniqueness of solutions of the above-mentioned problems.

Let the first BVP have in the domain DT two regular solutions u(!) and
u?. We write u = v — u®. Evidently, the vector u(z) satisfies (1) and the
boundary condition u™ = 0 on S. Note that, if u is a regular solution of the
equation (1), we have the following Green’s formula

/E(u,u)do = /u+(Tu)+ds, / E(u,u)do = —/u_(Tu)_ds, (4)
D+ s D- s



4 L. BITSADZE

where E(u,u) is a potential energy:

1 ou Ous ou
E(u,u) = [cnl + (c11 — 2666)8 + ¢13 a;’}
T2 3

Oz

C11

4611066 {(C c ) aUQ 013 8u5
P 11 — C66
611066(611 — 066) 81‘2 2 6233

n cs3(c11 — cos) — Ciy <8U3> e 44[<8U1+3U3) +<8U2 L 5“3) ]

C11 — Cgg (91'3 8ZE3 al’l 8x3 81'2

Ouy  Ous Ouy Ouy Ouy
4 Y2
+ 066(8@ + 8351) * 611K8xl> + <3x1> ] e 33(81’3) (5)

For the positive definiteness of the potential energy the inequalities

c11 >0, cua>0, ce6>0, €1>0, €33>0,
2
csg(cin —ces) — 13 >0, 11 —ce6 > 0

are necessary and sufficient.

Using (4) and taking into account the fact that the potential energy is positive
definite, we conclude that u = const,z € D*. Since u™ = 0, we have u = 0,z €
D*. Thus the first BVP has, in the domain D", at most one regular solution.

The vectors u(!) and u® in the domain D~ must satisfy condition (2). In
this case the regular vector u = u™™ —u® satisfies (1) and thus formulae (4) are
valid and u(x) = const,x € D~. But u(x) satisfies (u)~ = 0 on the boundary,
which implies that w = 0,z € D~. Thus the first BVP has, in the domain D™,
at most one regular solution.

Let (TU)™ =0 on S. Then applying (4) to a regular solution we have

(uy,ug,u3) = a+ [b,x], wuy=const, x€ DT,

where a, b are arbitrary real constants.

The vector w in the domain D~ must satisfy condition (2). In that case, from
(4) we obtain u = 0.

Therefore we shall formulate the final results.

Theorem 1. Problems (1)* and (2)~ have at most one regular solution.

Theorem 2. A regular solution of BVP (2)" is not unique in the domain
D*. Two regular solutions may differ by a rigid displacement.

Matrix of Fundamental Solutions. The basic matrix of fundamental
solutions of equation (1) has the form [4]

P Z T3 |4, (6)

where

e o 0% ® 02D
77 - + 673 &c y ] ) “y 12 693 8%18%2 5

SN
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0*Py, (k) 0Py, Mk Ok my,
axj 81‘3 ’ 4 ﬁk 8IJ8.ZU3 y J ) 34 T y 133 T ; 144 T )

(I)k = (273 - ?/3) 1D(£L‘3 — Y3 + Tk) — Tk, k= 17273a47
i = agl(z = y1)? + (22 — )] + (23 — y3)%, F;(;’;) = Fgﬁ),

P -

—1 —1
Ak = _51k066 ;0= —Cyy,
_ 2l k=234
ap = o (c33 — casay) (€33 — €nnax) + (ess — esar)”|, k=2,3,4,
k

Vi = dy, [(633—611ak)(013+C44)+(€13+615)(633—615%)}, k=2,3,4, =0,
ﬁkz—dk[(013+C44)(€33—€15ak) (6134—615)(033—044%)}, k=2,3,4, (=0,
O = di [(613 + e15)°ay, — (caa — cn1ay) (€33 — 611%)}, k=234, 6, =0,
e = di [Cb criay — caa)(e33 — eizay,)

— ag(e13 + e15)(c13 + 044)}, k=234 m=0,
my = dj, [(044 — cnrag)(cs3 — cagay) + ap(cis + c44)2}, k=234 m; =0,
dit = (=1)*bo(as — az)(as — ap), k=2,3, d;' = bo(ay — as)(as — as),
bo = c11(errcas + €35) > 0, g:lﬁk = Iizlak = kﬁ:l% =0, a; = cucs,

ar, k = 2,3,4, are the positive roots of the characteristic equation
boCL3 — b1a2 + bQCL — b3 = 0,
where

bi = cric — €q1(cis + caa)? + caalers + e15)’
— 2e15(c13 + caa)(e13 + €15) + caabo,
by = c11bs + caso — €33(ci3 + caa)” + cazlers + eg5)?
— 2e33(c13 + caq) (€13 + €15),
(g = C33€11 + Caa€33 + 2e15e33 > 0,
bs = cyu(cazess + e33) > 0.
Singular Matrix of Solutions. Using the basic fundamental matrix (6)

we shall construct the so-called singular matrix of solutions. By applying the
operator T'(0z,n) to the matrix I'(x — y) we get the matrix

[T'(9y,n)l(y — )" = —Z 1458 1.0, (7)

which is obtained from T'(0x,n)I'(x — y) by transposition of the columns and
rows and of the variables x and y. We can easily prove that every column of
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matrix (7) is a solution of system (1) with respect to the point x if x # y. The
elements AI()’;) are the following:

A = a0 OB e O
Agi 61]{8831;{ + a(()k)(;;aizzig Ce6 VK 88 a;(bk
Aﬁzgglé—mw%iiﬁ%wﬁkqﬁié— W%liﬁ&
A(:=—&w§31+2%“%§)%§5 “951522;’

2
Az :_ﬁngk a?§;£;2§+2%wﬂig§§;

2

A = %W%iiﬁa_%;;tA“ %W%liig_#gii
Ag? :%k)gzailzzza ~Caahi 88 1 A 0’“)3:; 6?;2);3 euds 821 le
e OB 615Aka§27}k, e Y
AR = (61577k+0445k+044%)g , A = (ersmu + cuf + 04477k)gn:k,

6 Op 1
Agf = (6155k — €k + 6’15%) A44 = (61577k —€n1my + 615@)**7
8n onry

Ok 0

% = 8y1 +ni— 8y2 + ngar5— 0?/3
9 _,0 90 90 _ 9 0
0s1 B 2(9?/3 33342’ 05y B 383/1 13y3’
0 0 0
—No-—. a(()k) = caa(ag + ) + €150k,

883 6y2 ayl
k
bé ) = C44(5k + €157k + Ca4Vk,
k k
e = cum + ersmy, + e, 1Y = —en B + ersan + €1,
4

4 4 4
Zaék) = Zlék) = Zc&k) =0, Zbék) = —1,agl) =—1.
1 1

1 1

Note that all elements AI()’;) have a singularity of type |z|72.
First we introduce the following definitions:

Definition 2. The vector defined by the equality

= o [T~ phi)s
S



APPLICATION OF SINGULAR INTEGRAL EQUATIONS 7

where h is a real vector density, is called a simple-layer potential.

Definition 3. The vector defined by the equality
1 *
W(@) = o [0, mr - o) gl)ds,
s

is called a double-layer potential.

These potentials are solutions of system (1) both in the domain D" and in
D~.

Theorem 3. IfS € Li(a) and g € C9(S), 0 < B < a < 1, then the vector
W (z) is a regular function in D*. When the point x tends to any point of

the boundary z (from the inside or from the outside) we have the discontinuity
formula

vwzmm+;ﬂﬁ@mmw@M@m ces.®)

Theorem 4. If S € Li(a) and h € C*P(S) 0 < 3 < a < 1, then the vector
V() is a reqular function in D* and

[T(0,,n)V]* = £h(2) + 217T // T(9y,n)'(y — x)h(y)ds, =z€S. 9)
S

Integral Equations of BVPs. A solution of the BVP (1)* is sought in the
form of a double-layer potential, while the solution of BVP (2)* is sought in
the form of a simple-layer potential. Then for determining the unknown real

vector functions ¢ and h, we obtain the following integral equations of second
kind:

() + 5 [[[0@, T~ 0ew)ds = 1), zeS (0)
+h(z) + 217r // T(0y,n)T(y —x)h(y)ds = f(z), =ze€S. (11)
S

2. CALCULATION OF A SYMBOLIC MATRIX

Consider the operator
K (9)(2) = ~9(2) + 5 [[[T@0. T~ 0 gw)ds.  (12)
s

We follow the results obtained in [1]. According to [1] we have (see [1] for
details)

a 4 aQCDk 4 82<I>k
— — i,
5s; 2= Trom, T 2 ( 2 G o, ) oyt

k=1
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—27”515253 Z akai

= pr(pr +&3)% (13)

where
& =ajpcosl —aysinf, j=1,2,3, pi=an(&+&)+E&, k=1,2,34.

Direct calculations lead to the equality

24: apaz B 5 ap(ar — ag)(aspr + agps) (14)
= pr(pr + D =1 Papr(pr + pa)?
Now we can construct symbolic matrix for the operator K+, We have
—1+i€1€2§3A1, —iés(B1+&1Ay), —i60, —ifaAs
1+ | &(Bit+E A, —(1+i668A), 60, i A,
7 == e, —i&.D;, S A
i§a by, —i§1 B4 0 -1
where
3 —_—
Al _ (ak a4) [a(()k’) — 200.C6 (a’4pk + akp4):|
i1 Papr(px + pa) Pi + pa
1 4 b(k) 3 -
B,= *+2066Z‘ak aki%)v D1:ZL+206’6€§ > el s —ax) ;
p1 = (prtpa) = Pk i Papk(prtpa) (16)
E 24: C(k) 5 62 Z 6k:(ak — 0/4)
1= — — 2Cg6 —
k=1 Pk ’ =5 Papr(pr + pa)
Z (k: @4) A, — €15 l(lc ( a4)
9= —— 0 ———=
p1 el Pk + P4 066p1 =1 Pr+ pa

From (15) we have
deto'¥(2,0) =1 = & B — (6§ + &)*(CiDy + A By + A1 Bigi). (17)
Since £#+&24+E2=1, it is possible to take £ + &3 = cos,£3 = sinf and we get
det o'*(2,0) =1 — Bisin?0 — (C1D; + Ay By + Ay By sin® §)cos®0.  (18)
3. ON SOME AUXILIARY FORMULAS

A general representation of a regular solution of equation (1) in the half-space
1 > 0 have the form

_17r_/O[[T(ay’”)F(y_x)]*“+(y)d3—r(y—fﬂ)(TU)ﬂdyzdyg, (19)

where I'(y — x)) and (T'(0y, n)I'(y — x))* are given by the formulas (6), (7), if
we substitute n = n(1,0,0).
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Taking into account the identities [1]
1 exp(—1y/p3+arpi

+oo 1 3 ) 3
o // — exp (injyj)dyzdy3= 5 > (injwj),
TSl Tk =2 +axp3) =2

1 7 & exp(—r1\/p3+arpd) 1 3
or // ®y, exp (Zzpjyj>d92dy3=— <Zzpﬂ’j>’
e =2

where
i = apr + (22 — y2)?] + (z3 — u3)?, Pr = (23 — y3) In(z3 — y3 + 7%) — 78,

from (19), after performing the Fourier transform and substituting z; = 0, we
obtain

pA(@)* + B(Tu)* =0, (21)

where (@)t and (Tu)* are the Fourier transforms of functions (u)™ and
(Tu)*, p* = p3 + 3,

1 —iBycos, iCysinf, iA,siné
| i(By + Ay sin®6) cos 6, 1 0 0
A= —iDy sin), 0 1 0 - (22)
—1Fsinf, 0 0 1
)\k oszk
—— 4 — 0 0 0
Ry, + sin®
0 \e g coth?6 coth 6 coth 6
S T 5 Tk — Pk
_ R R R R
B_]; 0 ’ coth§ 5k ’ Nk ’ ’ (23)
TR Re Ry
0 cotﬁ@ s my
F Rk Rk Rk
where
3 . _ _
/_11 = Z M {a(()k) - 20%066W]
= Papr(Pr + Pa) P+ Pa
_ 1 S ap(ap—as) = 4 bék) 2 ve(ag—ay)
By =—+2cg6 —, D= _7“‘206‘62 —— - -
' P1 6; (Pr+pa) ! ; Pk ‘ 3%@1%(%4—04)
- 4 (k) 3 . . 3 . 24
B=Y 0 aegy, ) g o (e 2
= Pr 1= PaPk(Prtpa) PSS Pt
_ e 3 A — a
N e R S

Ce601  j—1 O pr+pa

R? = cos® 0 + ay sin” 0.
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After certain simplifications we obtain
detA=1-— B% COS2 0 — (CIDI + AzEl +pr1Al) Sin2 9,
C11 o RlA%1 (25)

det B = — -1
€ bo Y RiRsRy
where
R R R R,Tb
All — ! + 22_ 3 + 4 [bg SiIl4 9 + CL1R2R3R4(R2 + R3 + R4)
0 0

+ a; cos® O(R3 + aysin® 9)]
ay RyR3R4(R3 + Ry) + Ri(Ry + Ry) cos? 0
Ry (R1 4+ R2)(Rs + Ry)(Ry + R3)(Ry + Ry)
n (R34 Rs) Ry4-cos? 0+ Ry Rs)bo+c11(Csz€er1 +Caa€ss+2€15€33) ay,
c11bo(Rs+ Ry) (Ry+ R2) (R + Rs)
Ag=(R1+Rs)(R1+R3)(Ry + Ry)(Rs + Ro)(Ry + Ry)(R3 + Ry)

—1
>0, ap = C44Cgg -

c44>0,

If =¢+7%, then Bi(¢p+ 5) =By, Ao+ 5)=Ax, k= 1,2, Ci(¢ + 3) = (),
Dl(d) + g) = Dl, El(gb + g) = El, and det A(gb + g) = det 0'1+.
Since det B # 0, from (21) we get

(Tu)* = —B~'A(a)*p. (26)

We rewrite (5) as the bilinear form with respect to the vectors v and v (v is
the complex conjugate of vector v), we rewrite

2 6114 8774 (91)4 81_}4
R0 =520 2]+ 2] s
( ) ; (%j 6118% 15%3( ) Oz €33 B3 13(’711 ’722)
2 2 _ _ _
+ (|71 ] + [732) + (11 — 2¢66) (711722 + Y22711) + 13712733
+ 6137(%3 (Y11 + Y22) + ces (| Vi3] + |7asl) + e1s {%%3
o0v B _ B ov
+ 84%3} + 733 {013(%1 + Ya2) + 33733 + 6334] > 0, (27)
T2 03
where
0113 8vj . 81)2 81)1 8vj

i3 — & s :1727 = 5 a0 ] — . -:17273'

Let us assume that

3
o(a) = M(@s,papo)oxp (=Y pyo ), M = (My, Mo, My, Ma). - (25)

Jj=2
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Then (26) implies

dM, |?
dxy
dM; |?
dzq

E(v,v) =

—€11

+ Cﬁ6<

—633P3|M4’ —611PQ‘M4‘ +011<P2’M2’2+‘

+p§]M1|2> + C44[

dM,

)

dMs;
T B(MP (A P) +p31M3\2]

(9x1

+ 033p§|]\/[3\2 + (c13 + 044)p2p3(J\7[2M3 + M:st)

_ _ ) d -
+ (e13 + e15)paps (Mo My + MyMs) + 2202012%@\/[2]\/[1 -
1

M1M2>

dM. dM. _ _
+ (€11 — Co6)ip2 <M1 dr 2 _ M, I 2) + (633]?% + 615P§)(M4M3 + M3My)
1 1
d - _ dM,dMs;  dM, d]%)
— (M M, — M{M.

+ €13'P3 dl’l( - ! 4) + 615< d T del dl’l d(L’l

o /dM, - dM
+ (e13 + 615)2]93( . 14 1— dx14 M1)

‘ dM'_ ww dM, - dM
+ (c13 + 644)lp3< > > M1> + 2p3013< . Mz — - Mg)-

d:xl 1 dxy

Let
1 3
u(r) = o / M($1,p2,p3)eXP<—izljjxj)dp2 dps.
7o j=2

In order that the vector u(z) be a solution of system (1) it is necessary and
sufficient that

d
C(d _Zp27 _Zp?))M('rlap%p?)) = 07 Ty > 07
X1
d7 M,
[ F} =0, j=0,1, k=1,...,4.
d[Ejl xr1=00

Consider the expression [I'SF_, ]\/[k[C(dx1 —ipg, —ip3) M|pdz,, where h is an
arbitrary positive number. After some transformation we obtain

/ E(v,0)dz; = " (Tu)*, (29)
0

where

—ips(e1sMy + c13Ms3),

— . dM
(Tw)y = —cr2ipaMs + c11 d !

X1
— . dM.
(Tw)y = —cepip2 My + Cog dr 27
1
_ , dM. dM.
(Tu)s = —caaips My + caa E + ei5—— 4

dz, dz,
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= . dM. dM
(Tu)s = —e15ips My + €15 dxf —€n dx14'
Substituting (25) into (28), we get
/ E(v,0)dz; = p(@)* B~ A®@)*. (30)
0

Taking into account the fact that the energy E(v,v) is positive definite, from
(29) we conclude that the matrix B~!A is positive definite.
In particular from (29) we have

det(B'A) = det B"'det A > 0

which gives det A < 0. Hence det o'™ # 0.
Analogously, we obtain det o'~ # 0, det o® # 0.
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