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ESTIMATES OF A STABILIZATION RATE AS t →∞ OF
SOLUTIONS OF A NONLINEAR INTEGRO-DIFFERENTIAL

EQUATION

T. JANGVELADZE 1 AND Z. KIGURADZE

Abstract. The asymptotic behavior as t → ∞ of solutions of a nonlinear
integro-differential equation is studied. The equation arises as a model de-
scribing the penetration of the electromagnetic field in to a substance.
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1. Introduction. The main result. This paper is devoted to the study of
the stabilization of solutions of the first boundary value problem in a cylindrical
domain Q = (0, 1) × {t > 0} for the system of nonlinear integro-differential
parabolic equations

∂U

∂t
=

∂

∂x

[
a(S)

∂U

∂x

]
,

∂V

∂t
=

∂

∂x

[
a(S)

∂V

∂x

]
, (x, t) ∈ Q, (1)

U(0, t) = V (0, t) = 0, U(1, t) = ψ1, V (1, t) = ψ2, t ≥ 0, (2)

U(x, 0) = U0(x), V (x, 0) = V0(x), x ∈ (0, 1), (3)

where

S(x, t) = 1 +

t∫

0

[(
∂U

∂x

)2

+
(

∂V

∂x

)2]
dτ, (4)

or

S(t) = 1 +

t∫

0

1∫

0

[(
∂U

∂x

)2

+
(

∂V

∂x

)2]
dx dτ. (5)

Here ψ1 = Const, ψ2 = Const, a(S), U0(x) and V0(x) are given functions.
The characteristic feature of equations (1), (4) and (1), (5) is the appearance

of nonlinear members depending on the integral of searched functions in the
coefficients of higher derivatives.

System (1), (4) arises as a model describing the penetration of the electro-
magnetic field into a substance [1].

1 In the literature this author is frequently referred to as T. A. Dzhangveladze.
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A lot of scientific works are devoted to the investigation of the problem given
in [1] and to some of its generalizations. These questions are considered in
[2]–[9] and in a number of other works as well.

The study of equations of type (1), (4) began started in [1]. In this work,
in particular, theorems of the existence of a generalized solution of the first
boundary value problem for a(S) = S and the uniqueness for more general
cases are proved. The case a(S) = Sp, 0 < p ≤ 1, is studied in [2], where
a theorem of the existence and uniqueness of a solution of problem (1)–(4) is
proved. Investigations for multidimensional space cases are carried out in [3]
for the first time.

In [4], [5] an operational scheme with the so-called conditionally closed oper-
ators is proposed. This scheme is applied for the solution of problems of (1)–(4)
type [4], [5].

Note that investigations of equations of (1), (4) type are also carried out in
[6], [7].

In the work [5] some generalization of equations of type (1), (4) is proposed.
In particular, assuming the temperature of the considered body to be constant
throughout the material, i.e., depending on time, but independent of the space
coordinates, the process of penetration of the magnetic field into the material
is modelled by averaged integro-differential equations of type (1), (5).

The purpose of this note is to continue the study of the asymptotic behavior
of solutions of the equations (1), (4) which began in [8], [9]. In the present
paper estimates of stabilization rate as t → ∞ of solutions of problems (1)–
(4) and (1)–(3), (5) are obtained for the case a(S) = Sp, 0 < p ≤ 1. We
will use the scheme of [10] in which the adiabatic shearing of incompressible
fluids with temperature-dependent viscosity is studied. We should note that
boundary conditions (2) are used here taking into account the physical problem
considered in [11].

We assume that (U, V ) = (U(x, t), V (x, t)) is a solution of (1)–(4) on [0, 1]×
[0,∞) such that U, V,

∂U

∂x
,
∂V

∂x
,
∂U

∂t
,
∂V

∂t
,
∂2U

∂x2
,
∂2V

∂x2
are all in C0([0,∞); L2(0, 1)),

while
∂2U

∂t ∂x
,

∂2V

∂t ∂x
are in C0((0,∞); L2(0, 1)) and

∂2U

∂t2
,
∂2V

∂t2
are in L2,loc((0,∞);

L2(0, 1)) (see [1], [2], [4], [5], [10]).
The main purpose of this work is to prove the following statement.

Theorem. Assume

a(S) = Sp, 0 < p ≤ 1,

U0(0) = V0(0) = 0, U0(1) = ψ1, V0(1) = ψ2,

ψ2
1 + ψ2

2 6= 0, U0, V0 ∈ W 2
2 (0, 1).

Then for the solution of problem (1)–(4) the following estimates are true as
t →∞:

∂U(x, t)

∂x
= ψ1 + O(t−1−p),

∂V (x, t)

∂x
= ψ2 + O(t−1−p), (6)
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∂U(x, t)

∂t
= O(t−1),

∂V (x, t)

∂t
= O(t−1), (7)

uniformly in x on [0, 1].
The proof of the theorem is based on a priori estimates which are obtained

with the help of a number of identities derived below.

2. Proof of the theorem. Now let us proved to obtaining a priori estimates.

Lemma 1. For solving problem (1)− (4) the following estimations are true:

t∫

0

1∫

0

(
∂U

∂τ

)2

dx dτ ≤ C,

t∫

0

1∫

0

(
∂V

∂τ

)2

dx dτ ≤ C, t ≥ 0. (8)

Proof. Let us differentiate the first equation of system (1) with respect to t:

∂2U

∂t2
=

∂

∂x

[
Sp ∂2U

∂t ∂x
+ pSp−1

([
∂U

∂x

]3

+
∂U

∂x

[
∂V

∂x

]2)]
. (9)

Multiplying equation (9) by ∂U/∂t and integrating with respect to x on the
interval (0, 1), we have

1

2

d

dt

1∫

0

(
∂U

∂t

)2

dx +

1∫

0

Sp
(

∂2U

∂t ∂x

)2

dx + p

1∫

0

Sp−1
(

∂U

∂x

)3 ∂2U

∂t ∂x
dx +

+p

1∫

0

Sp−1∂U

∂x

(
∂V

∂x

)2 ∂2U

∂t ∂x
dx = 0. (10)

Integration from 0 to t gives the identity

1

2

1∫

0

(
∂U

∂t

)2

dx +

t∫

0

1∫

0

Sp
(

∂2U

∂τ ∂x

)2

dx dτ +
p

4

1∫

0

Sp−1
(

∂U

∂x

)4

dx−

−p(p− 1)

4

t∫

0

1∫

0

Sp−2
(

∂U

∂x

)4[(
∂U

∂x

)2

+
(

∂V

∂x

)2]
dx dτ +

+
p

2

t∫

0

1∫

0

Sp−1
(

∂V

∂x

)2 ∂

∂τ

(
∂U

∂x

)2

dx dτ =
1

2

1∫

0

(
∂U(x, 0)

∂t

)2

dx +
p

4

1∫

0

(
∂U0

∂x

)4

dx.

It follows that

1∫

0

(
∂U

∂t

)2

dx + 2

t∫

0

1∫

0

(
∂2U

∂τ ∂x

)2

dx dτ + p

t∫

0

1∫

0

Sp−1
(

∂V

∂x

)2 ∂

∂τ

(
∂U

∂x

)2

dx dτ ≤ C.

Here and below c, C and Ci denote the positive constants dependent only on
ψi = Const, i = 1, 2, U0(x), V0(x) and consequently independent of t.
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Similarly, using the second equation of system (1), we get

1∫

0

(
∂V

∂t

)2

dx + 2

t∫

0

1∫

0

(
∂2V

∂τ ∂x

)2

dx dτ + p

t∫

0

1∫

0

Sp−1
(

∂U

∂x

)2 ∂

∂τ

(
∂V

∂x

)2

dx dτ ≤ C

and, therefore

1∫

0

[(
∂U

∂t

)2

+
(

∂V

∂t

)2]
dx + 2

t∫

0

1∫

0

[(
∂2U

∂τ ∂x

)2

+
(

∂2V

∂τ ∂x

)2]
dx dτ

+p

t∫

0

1∫

0

Sp−1 ∂

∂τ

[(
∂U

∂x

)2(∂V

∂x

)2]
dx dτ ≤ C.

Note that

p

t∫

0

1∫

0

Sp−1 ∂

∂τ

[(
∂U

∂x

)2(∂V

∂x

)2]
dx dτ = p

1∫

0

Sp−1
(

∂U

∂x

)2(∂V

∂x

)2

dx

−p

1∫

0

(
∂U0

∂x

)2(∂V0

∂x

)2

dx− p(p− 1)

t∫

0

1∫

0

Sp−2
[(

∂U

∂x

)2

+
(

∂V

∂x

)2](
∂U

∂x

)2(∂V

∂x

)2

dx dτ.

We have

1∫

0

[(
∂U

∂t

)2

+
(

∂V

∂t

)2]
dx + 2

t∫

0

1∫

0

[(
∂2U

∂τ ∂x

)2

+
(

∂2V

∂τ ∂x

)2]
dx dτ ≤ C. (11)

From this, taking into consideration the relations

t∫

0

1∫

0

(
∂U

∂τ

)2

dx dτ ≤
t∫

0

1∫

0

(
∂2U

∂τ ∂x

)2

dx dτ,

t∫

0

1∫

0

(
∂V

∂τ

)2

dx dτ ≤
t∫

0

1∫

0

(
∂2V

∂τ ∂x

)2

dx dτ,

we get a priori estimates (8).

Lemma 2. The following estimations are true:

cϕ
1

1+2p (t) ≤ S(x, t) ≤ Cϕ
1

1+2p (t), 0 ≤ x ≤ 1, t ≥ 0, (12)

where

ϕ(t) = 1 +

t∫

0

1∫

0

S2p
[(

∂U

∂x

)2

+
(

∂V

∂x

)2]
dx dτ.
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Proof. From (4) it follows that

∂S

∂t
=

(
∂U

∂x

)2

+
(

∂V

∂x

)2

, S(x, 0) = 1.

Let us multiply this equation by S2p:

1

1 + 2p

∂S1+2p

∂t
=

(
∂U

∂x

)2

S2p +
(

∂V

∂x

)2

S2p.

Now let us introduce the notations:

σ1 = Sp ∂U

∂x
, σ2 = Sp ∂V

∂x
,

then (1) can be rewritten as

∂U

∂t
=

∂σ1

∂x
,

∂V

∂t
=

∂σ2

∂x
.

We have

1

1 + 2p

∂S1+2p

∂t
= σ2

1 + σ2
2, (13)

σ2
1(x, t) =

1∫

0

σ2
1(y, t)dy + 2

1∫

0

x∫

y

σ1(ξ, t)
∂U(ξ, t)

∂t
dξ dy,

σ2
2(x, t) =

1∫

0

σ2
2(y, t)dy + 2

1∫

0

x∫

y

σ2(ξ, t)
∂V (ξ, t)

∂t
dξ dy,

ϕ(t) = 1 +

t∫

0

1∫

0

(σ2
1 + σ2

2)dx dτ.

From (8) and (13) we get

1

1 + 2p
S1+2p =

t∫

0

(σ2
1 + σ2

2)dτ +
1

1 + 2p

=

t∫

0

1∫

0

(
σ2

1(y, τ) + σ2
2(y, τ)

)
dy dτ + 2

t∫

0

1∫

0

x∫

y

σ1(ξ, τ)
∂U(ξ, τ)

∂τ
dξ dy dτ

+2

t∫

0

1∫

0

x∫

y

σ2(ξ, τ)
∂V (ξ, τ)

∂τ
dξ dy dτ +

1

1 + 2p

≤ 2

t∫

0

1∫

0

(
σ2

1(y, τ) + σ2
2(y, τ)

)
dy dτ + C +

1

1 + 2p
≤ (2 + C1)ϕ(t),

i.e.,

S(x, t) ≤ Cϕ
1

1+2p (t). (14)
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Analogously,

1

1 + 2p
S1+2p =

t∫

0

1∫

0

(
σ2

1(y, τ) + σ2
2(y, τ)

)
(y, τ)dy dτ

+2

t∫

0

1∫

0

x∫

y

σ1(ξ, τ)
∂U(ξ, τ)

∂τ
dξ dy dτ + 2

t∫

0

1∫

0

x∫

y

σ2(ξ, τ)
∂V (ξ, τ)

∂τ
dξ dy dτ

+
1

1 + 2p
≥ 1

2

t∫

0

1∫

0

(
σ2

1(y, τ) + σ2
2(y, τ)

)
dy dτ − C2 ≥ 1

2
ϕ(t)− C3. (15)

From (4) it follows that S(x, t) ≥ 1. So

C3S
1+2p ≥ C3. (16)

Taking into account (15) and (16) we easily get
(

1

1 + 2p
+ C3

)
S1+2p ≥ 1

2
ϕ(t),

or

S(x, t) ≥ cϕ
1

1+2p (t). (17)

Finally, from (14) and (17) we obtain (12).

Lemma 3. The following esimates are true:

cϕ
2p

1+2p (t) ≤
1∫

0

(
σ2

1(x, t) + σ2
2(x, t)

)
dx ≤ Cϕ

2p
1+2p (t), t ≥ 0. (18)

Proof. Taking into account (12), we get

1∫

0

(σ2
1 + σ2

2)dx =

1∫

0

S2p
[(

∂U

∂x

)2

+
(

∂V

∂x

)2]
dx ≥ cϕ

2p
1+2p (t)

1∫

0

[(
∂U

∂x

)2

+
(

∂V

∂x

)2]
dx ≥ cϕ

2p
1+2p (t)

{[ 1∫

0

∂U

∂x
dx

]2

+

[ 1∫

0

∂V

∂x
dx

]2}
= (ψ2

1 + ψ2
2)cϕ

2p
1+2p (t),

or

1∫

0

(
σ2

1(x, t) + σ2
2(x, t)

)
dx ≥ cϕ

2p
1+2p (t). (19)

At the same time, from (11) we derive

1∫

0

(
∂U

∂t

)2

dx ≤ C,

1∫

0

(
∂V

∂t

)2

dx ≤ C, t ≥ 0. (20)
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Let us multiply the first and second equations of system (1) by U(x, t) and
V (x, t), respectively. Using the boundary conditions (2), we have

1∫

0

U
∂U

∂t
dx +

1∫

0

Sp
(

∂U

∂x

)2

dx = ψ1σ1(1, t),

1∫

0

V
∂V

∂t
dx +

1∫

0

Sp
(

∂V

∂x

)2

dx = ψ2σ2(1, t).

Using these equalities, (12), (19), (20) and the maximum principle

|U(x, t)| ≤ max
0≤y≤1

|U0(y)|, |V (x, t)| ≤ max
0≤y≤1

|V0(y)|, 0 ≤ x ≤ 1, t ≥ 0,

we have
{ 1∫

0

(
σ2

1(x, t) + σ2
2(x, t)

)
dx

}2

≤ 2

{ 1∫

0

σ2
1(x, t)dx

}2

+ 2

{ 1∫

0

σ2
2(x, t)dx

}2

≤ 2C1ϕ
2p

1+2p (t)

[{ 1∫

0

Sp
(

∂U

∂x

)2

dx

}2

+

{ 1∫

0

Sp
(

∂V

∂x

)2

dx

}2]

≤ 4C1ϕ
2p

1+2p (t)

[
(ψ1σ1(1, t))

2 +

( 1∫

0

U
∂U

∂t
dx

)2

+ (ψ2σ2(1, t))
2

+

( 1∫

0

V
∂V

∂t
dx

)2]
≤ 4C1ϕ

2p
1+2p (t)

[
(ψ2

1 + ψ2
2)

(
σ2

1(1, t) + σ2
2(1, t)

)

+C2

{(
max
0≤y≤1

|U0(y)|
)2

+
(

max
0≤y≤1

|V0(y)|
)2}]

≤ 8C1ϕ
2p

1+2p (t)

[
(ψ2

1 + ψ2
2)

{ 1∫

0

σ2
1dx +

1∫

0

(
∂σ1

∂x

)2

dx +

1∫

0

σ2
2dx

+

1∫

0

(
∂σ2

∂x

)2

dx

}
+ C3

]
≤ 8C1ϕ

2p
1+2p (t)

[
(ψ2

1 + ψ2
2)

1∫

0

(σ2
1 + σ2

2)dx + C4

]

≤ 8C1ϕ
2p

1+2p (t)

[
(ψ2

1 + ψ2
2)

1∫

0

(σ2
1 + σ2

2)dx +
C4

cϕ
2p

1+2p (t)

1∫

0

(σ2
1 + σ2

2)dx

]

≤ Cϕ
2p

1+2p (t)

1∫

0

(
σ2

1(x, t) + σ2
2(x, t)

)
dx,

i.e.,
1∫

0

(
σ2

1(x, t) + σ2
2(x, t)

)
dx ≤ Cϕ

2p
1+2p (t).

Finally, using this estimate and (19) we obtain (18).
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Lemma 4. The following inequalities take place:

ct2p ≤
1∫

0

(
σ2

1(x, t) + σ2
2(x, t)

)
dx ≤ Ct2p, t ≥ 1, (21)

ct ≤ S(x, t) ≤ Ct, 0 ≤ x ≤ 1, t ≥ 1. (22)

Proof. From (18) taking into account the relation

dϕ(t)

dt
=

1∫

0

(
σ2

1(x, t) + σ2
1(x, t)

)
dx

we get

cϕ
2p

1+2p (t) ≤ dϕ(t)

dt
≤ Cϕ

2p
1+2p (t).

From this we have ct1+2p ≤ ϕ(t) ≤ Ct1+2p, t ≥ 1. Now taking into account
(12) and (18) from the last inequality we obtain (21) and (22).

Lemma 5. ∂U/∂t and ∂V/∂t statisfy the inequality

1∫

0

[(
∂U

∂t

)2

+
(

∂V

∂t

)2]
dx ≤ Ct−2, t ≥ 1. (23)

Proof. By Schwarz’s inequality, (10) yields

d

dt

1∫

0

(
∂U

∂t

)2

dx +

1∫

0

Sp
(

∂2U

∂t ∂x

)2

dx ≤ 2p2

1∫

0

Sp−2
(

∂U

∂x

)6

dx

+2p2

1∫

0

Sp−2
(

∂U

∂x

)2(∂V

∂x

)4

dx. (24)

Now using (21), (22), the relations σ1 = Sp ∂U

∂x
, σ2 = Sp ∂V

∂x
and

1∫

0

(
∂σ1

∂x

)2

dx = −
1∫

0

σ1
∂2σ1

∂x2
dx,

1∫

0

(
∂σ2

∂x

)2

dx = −
1∫

0

σ2
∂2σ2

∂x2
dx,

from (24) we get

d

dt

1∫

0

(
∂U

∂t

)2

dx + ctp
1∫

0

(
∂2U

∂t ∂x

)2

dx ≤ C1
tp−2

t6p

1∫

0

(σ6
1 + σ2

1σ
4
2)dx

≤ C1t
−5p−2

1∫

0

σ2
1(x, t)dx

([
max
0≤x≤1

σ2
1(x, t)

]2
+

[
max
0≤x≤1

σ2
2(x, t)

]2)

≤ C2t
−3p−2

({ 1∫

0

σ2
1dx + 2

[ 1∫

0

σ2
1dx

] 1
2
[ 1∫

0

(
∂σ1

∂x

)2

dx

] 1
2
}2
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+

{ 1∫

0

σ2
2dx + 2

[ 1∫

0

σ2
2dx

] 1
2
[ 1∫

0

(
∂σ2

∂x

)2

dx

] 1
2
}2)

≤ C2t
−3p−2

({ 1∫

0

σ2
1dx + 2

[ 1∫

0

σ2
1dx

] 3
4
[ 1∫

0

(
∂2σ1

∂x2

)2

dx

] 1
4 }2

+

{ 1∫

0

σ2
2dx + 2

[ 1∫

0

σ2
2dx

] 3
4
[ 1∫

0

(
∂2σ2

∂x2

)2

dx

] 1
4
}2)

≤ C3t
p−2 + C4t

−3p−2t3p

([ 1∫

0

(
∂2U

∂t ∂x

)2

dx

] 1
2

+

[ 1∫

0

(
∂2V

∂t ∂x

)2

dx

] 1
2
)

≤ C3t
p−2 + C5t

−p−4 +
ctp

4

( 1∫

0

(
∂2U

∂t ∂x

)2

dx +

1∫

0

(
∂2V

∂t ∂x

)2

dx

)
.

Hence we have

d

dt

1∫

0

(
∂U

∂t

)2

dx +
c

4
tp

1∫

0

[
3
(

∂2U

∂t ∂x

)2

−
(

∂2V

∂t ∂x

)2]
dx ≤ Ctp−2, t ≥ 1.

Alalogously, we can show that

d

dt

1∫

0

(
∂V

∂t

)2

dx +
c

4
tp

1∫

0

[
3
(

∂2V

∂t ∂x

)2

−
(

∂2U

∂t ∂x

)2]
dx ≤ Ctp−2, t ≥ 1.

As a consequence we get the following estimate:

d

dt

1∫

0

[(
∂U

∂t

)2

+
(

∂V

∂t

)2]
dx+

c

2
tp

1∫

0

[(
∂2U

∂t ∂x

)2

+
(

∂2V

∂t ∂x

)2]
dx ≤ Ctp−2. (25)

By the Poincarè inequality
∥∥∥∥
∂U

∂t

∥∥∥∥ ≤
∥∥∥∥

∂2U

∂t ∂x

∥∥∥∥,
∥∥∥∥
∂V

∂t

∥∥∥∥ ≤
∥∥∥∥

∂2V

∂t ∂x

∥∥∥∥,

(25) gives

d

dt

1∫

0

[(
∂U

∂t

)2

+
(

∂V

∂t

)2]
dx +

ctp

2

1∫

0

[(
∂U

∂t

)2

+
(

∂V

∂t

)2]
dx ≤ Ctp−2.

From this we obtain (23).

Let us now estimate ∂S/∂x in L1(0, 1).

Lemma 6. For ∂S/∂x the following estimate is true:

1∫

0

∣∣∣∣
∂S

∂x

∣∣∣∣dx ≤ Ct−p, t ≥ 1. (26)
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Proof. We have

∂

∂t

[
S2p ∂S

∂x

]
= 2σ1

∂σ1

∂x
+ 2σ2

∂σ2

∂x
= 2σ1

∂U

∂t
+ 2σ2

∂V

∂t
. (27)

From (21) and (23) it follows that

∣∣∣∣∣

1∫

0

σ1
∂U

∂t
dx

∣∣∣∣∣ ≤ C1t
pt−1 = Ctp−1,

∣∣∣∣∣

1∫

0

σ2
∂V

∂t
dx

∣∣∣∣∣ ≤ C1t
pt−1 = Ctp−1 (28)

and, applying (22), (27) and (28), we get

S2p ∂S

∂x
=

t∫

0

(
2σ1

∂U

∂τ
+ 2σ2

∂V

∂τ

)
dτ,

1∫

0

∣∣∣∣
∂S

∂x

∣∣∣∣dx ≤ 1

c
t−2p

t∫

0

C1τ
p−1dτ = Ct−p.

Now we are ready to prove the theorem. Let us estimate ∂2U/∂x2 in L1(0, 1).
We have

∂U

∂x
= σ1S

−p,
∂σ1

∂x
=

∂U

∂t
,

∂2U

∂x2
=

∂U

∂t
S−p − pσ1S

−p−1∂S

∂x
,

σ2
1(x, t) ≤

1∫

0

σ2
1(y, t)dy + 2

1∫

0

|σ1(y, t)|
∣∣∣∣
∂U(y, t)

∂t

∣∣∣∣dy ≤ C1t
2p + C2t

−2.

From the latter we get

σ1(x, t) ≤ Ctp, t ≥ 1. (29)

Applying now (22), (23), (26) and (29), we derive

1∫

0

∣∣∣∣
∂2U(x, t)

∂x2

∣∣∣∣dx ≤
1∫

0

∣∣∣∣
∂U

∂t
S−p

∣∣∣∣dx + p

1∫

0

∣∣∣∣σ1S
−p−1∂S

∂x

∣∣∣∣dx

≤
[ 1∫

0

S−2pdx

] 1
2
[ 1∫

0

∣∣∣∣
∂U

∂t

∣∣∣∣
2

dx

] 1
2

+ p

1∫

0

∣∣∣∣σ1S
−p−1∂S

∂x

∣∣∣∣dx ≤ Ct−1−p.

Hence we have
1∫

0

∣∣∣∣
∂2U(x, t)

∂x2

∣∣∣∣dx ≤ Ct−1−p, t ≥ 1.

From this estimate, taking into account the relation

∂U(x, t)

∂x
=

1∫

0

∂U(y, t)

∂y
dy +

1∫

0

x∫

y

∂2U(ξ, t)

∂ξ2
dξ dy,
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it follows that

∂U(x, t)

∂x
− ψ1 =

1∫

0

x∫

y

∂2U(ξ, t)

∂ξ2
dξ dy ≤

1∫

0

∣∣∣∣
∂2U(y, t)

∂y2

∣∣∣∣dy ≤ Ct−1−p.

Thus the following asymptotic formula takes place:

∂U(x, t)

∂x
= ψ1 + O(t−1−p).

The same estimate is valid for ∂V/∂x:

∂V (x, t)

∂x
= ψ2 + O(t−1−p).

Let us now establish the asymptotic behaviour of the derivatives ∂U/∂t and
∂V/∂t. For this multiply (10) by t2. By integrating on (0, t) we have

t2

2

1∫

0

(
∂U

∂t

)2

dx−
t∫

0

1∫

0

τ
(

∂U

∂τ

)2

dx dτ +

t∫

0

1∫

0

τ 2Sp
(

∂2U

∂τ ∂x

)2

dx dτ

+p

t∫

0

1∫

0

τ 2Sp−1
(

∂U

∂x

)3 ∂2U

∂τ ∂x
dx dτ + p

t∫

0

1∫

0

τ 2Sp−1∂U

∂x

(
∂V

∂x

)2 ∂2U

∂τ ∂x
dx dτ = 0

and, using Schwarz’s inequality, we conclude that

1

2

t∫

0

1∫

0

τ 2Sp
(

∂2U

∂τ ∂x

)2

dx dτ ≤
t∫

0

1∫

0

τ
(

∂U

∂τ

)2

dx dτ

+p2

t∫

0

1∫

0

τ 2Sp−2
(

∂U

∂x

)6

dx dτ + p2

t∫

0

1∫

0

τ 2Sp−2
(

∂U

∂x

)2(∂V

∂x

)4

dx dτ.

From this using (6), (22) and (23) we get

t∫

0

1∫

0

τ 2Sp
(

∂2U

∂τ ∂x

)2

dx dτ ≤ Ctp+1. (30)

Hence
t∫

0

τ p+2

1∫

0

(
∂2U

∂τ ∂x

)2

dx dτ ≤ Ctp+1. (31)

Analogously,

t∫

0

1∫

0

τ 2Sp
(

∂2V

∂τ ∂x

)2

dx dτ ≤ Ctp+1, (32)

t∫

0

τ p+2

1∫

0

(
∂2V

∂τ ∂x

)2

dx dτ ≤ Ctp+1. (33)
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Multiplying (9) by t3∂2U/∂t2, applying the formula of integrating by parts
and a priori estimates (6), (22), (30), (31), (32) and (33), we get

t∫

0

1∫

0

τ 3
(

∂2U

∂τ 2

)2

dx dτ +
1

2

t∫

0

1∫

0

τ 3Sp ∂

∂τ

[
∂2U

∂τ ∂x

]2

dx dτ

+p

t∫

0

1∫

0

τ 3Sp−1
(

∂U

∂x

)3 ∂

∂τ

[
∂2U

∂τ ∂x

]
dx dτ

+p

t∫

0

1∫

0

τ 3Sp−1∂U

∂x

(
∂V

∂x

)2 ∂

∂τ

[
∂2U

∂τ ∂x

]
dx dτ = 0,

t∫

0

1∫

0

τ 3
(

∂2U

∂τ 2

)2

dx dτ +
1

2

1∫

0

t3Sp
(

∂2U

∂t ∂x

)2

dx =
3

2

t∫

0

1∫

0

τ 2Sp
(

∂2U

∂τ∂x

)2

dx dτ

+
p

2

t∫

0

1∫

0

τ 3Sp−1
[(

∂U

∂x

)2

+
(

∂V

∂x

)2](
∂2U

∂τ ∂x

)2

dx dτ

−pt3
1∫

0

Sp−1
(

∂U

∂x

)3 ∂2U

∂t ∂x
dx + 3p

t∫

0

1∫

0

τ 2Sp−1
(

∂U

∂x

)3 ∂2U

∂τ ∂x
dx dτ

+p(p− 1)

t∫

0

1∫

0

τ 3Sp−2
[(

∂U

∂x

)5

+
(

∂U

∂x

)3(∂V

∂x

)2] ∂2U

∂τ ∂x
dx dτ

+3p

t∫

0

1∫

0

τ 3Sp−1
(

∂U

∂x

)2( ∂2U

∂ τ∂x

)2

dx dτ−pt3
1∫

0

Sp−1∂U

∂x

(
∂V

∂x

)2 ∂2U

∂t ∂x
dx

+3p

t∫

0

1∫

0

τ 2Sp−1∂U

∂x

(
∂V

∂x

)2 ∂2U

∂τ ∂x
dx dτ + p(p− 1)

t∫

0

1∫

0

τ 3Sp−2
[(

∂U

∂x

)2

+
(

∂V

∂x

)2]∂U

∂x

(
∂V

∂x

)2 ∂2U

∂x ∂τ
dx dτ +p

t∫

0

1∫

0

τ 3Sp−1
(

∂V

∂x

)2( ∂2U

∂τ ∂x

)2

dx dτ

+2p

t∫

0

1∫

0

τ 3Sp−1∂U

∂x

∂V

∂x

∂2U

∂τ ∂x

∂2V

∂τ ∂x
dx dτ,

t3
1∫

0

Sp
(

∂2U

∂t ∂x

)2

dx≤3

t∫

0

1∫

0

τ 2Sp
(

∂2U

∂τ ∂x

)2

dx dτ +C1

t∫

0

τ p+2

1∫

0

(
∂2U

∂τ ∂x

)2

dx dτ

+
t3

2

1∫

0

Sp
(

∂2U

∂t ∂x

)2

dx + C2t
3

1∫

0

Sp−2dx + C3

t∫

0

1∫

0

τ 2Sp
(

∂2U

∂τ ∂x

)2

dx dτ
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+C4

t∫

0

1∫

0

τ 2Sp−2dx dτ +

t∫

0

1∫

0

τ 2Sp
(

∂2U

∂τ ∂x

)2

dx dτ

+C5

t∫

0

1∫

0

τ 4Sp−4dx dτ + C7t
p−1 + C6

t∫

0

τ p+2

1∫

0

(
∂2U

∂τ ∂x

)2

dx dτ

+C8

t∫

0

τ p+2

1∫

0

(
∂2U

∂τ ∂x

)2

dx dτ + C9

t∫

0

1∫

0

τ 2Sp
(

∂2U

∂τ ∂x

)2

dx dτ

+C10

t∫

0

1∫

0

τ 4Sp−4dx dτ + C11

t∫

0

τ p+2

1∫

0

(
∂2U

∂τ ∂x

)2

dx dτ

+C12

t∫

0

τ p+2

1∫

0

(
∂2U

∂τ ∂x

)2

dx dτ ≤ C13t
p+1,

ctp+3

1∫

0

(
∂2U

∂t ∂x

)2

dx ≤ Ctp+1.

From this we have

1∫

0

(
∂2U

∂t ∂x

)2

dx ≤ Ct−2. (34)

Taking into account the relation

∂U(x, t)

∂t
=

1∫

0

∂U(y, t)

∂t
dy +

1∫

0

x∫

y

∂2U(ξ, t)

∂t ∂ξ
dξ dy ≤ Ct−1

+

1∫

0

x∫

y

∂2U(ξ, t)

∂t ∂ξ
dξ dy ≤ Ct−1 +

[ 1∫

0

(
∂2U(y, t)

∂t ∂y

)2

dy

] 1
2

,

from (34) we get

∂U(x, t)

∂t
= O(t−1).

Analogously, we can show that

∂V (x, t)

∂t
= O(t−1).

So the proof of the theorem is over.
Finally we note that estimates similar to (6) and (7) are true for the averaged

integro-differential problem (1)–(3), (5).
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