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ON THE UNIQUENESS PROPERTY FOR PRODUCTS OF
SYMMETRIC INVARIANT PROBABILITY MEASURES

A. KHARAZISHVILI

Abstract. Two symmetric invariant probability measures µ1 and µ2 are
constructed such that each of them possesses the strong uniqueness property
but their product µ1 × µ2 turns out to be a symmetric invariant probability
measure without the uniqueness property.
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Let E be a nonempty set, G be a family of transformations of E and let µ
be a σ-finite measure defined on some σ-algebra of subsets of E. We recall that
µ is invariant with respect to G (under G) if, for each set X ∈ dom(µ) and for
each transformation g ∈ G, the relations

g(X) ∈ dom(µ), µ(g(X)) = µ(X)

hold true. In all typical situations the role of G is played by an appropriate
group of transformations of E. In particular, suppose that a group (Γ, ·) is given
and let µ be a probability measure defined on some σ-algebra of subsets of Γ.
Obviously, we may identify Γ with the group of all its left (right) translations.
If our µ is invariant with respect to the latter group (according to the defini-
tion above), then we say, in short, that µ is a left (right) Γ-invariant measure.
Clearly, for a commutative group Γ, the notion of a left Γ-invariant measure
and the notion of a right Γ-invariant measure coincide, and in this way we get
the concept of a Γ-invariant measure on Γ.

Recall also that a measure ν on a group Γ is symmetric if, for any set X ∈
dom(ν), we have the equality

ν(X−1) = ν(X).

For instance, the Haar measure on a compact topological group is always sym-
metric.

Let E be an arbitrary set, G be a family of transformations of E and let M
be a class of measures on E invariant under G. We shall say that a measure
µ ∈ M has the uniqueness property (in M) if, for every measure ν ∈ M , the
relation dom(ν) = dom(µ) implies the equality ν = µ.
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For example, it is well known that the probability Haar measure on a com-
pact topological group Γ possesses the uniqueness property, i.e., any Borel left
(right) Γ-invariant probability measure on Γ necessarily coincides with the Haar
measure (see, e.g., [1] or [2]).

Remark 1. Let G′ be a family of transformations of E containing G and let
M be a class of measures on E invariant with respect to G′. It can easily be
seen that if a measure µ ∈ M regarded as a measure invariant under G has the
uniqueness property (in M), then it also has the uniqueness property (in M)
as a measure invariant under G′.

Let us introduce the concept of the strong uniqueness property for invariant
measures.

Let E be again an arbitrary set, G be a family of transformations of E and
let M be a class of measures on E invariant with respect to G. We shall say
that a measure µ ∈ M has the strong uniqueness property (in M) if, for each
set X ∈ dom(µ) and for any measure ν ∈ M , the relation X ∈ dom(ν) implies
the equality ν(X) = µ(X).

Obviously, if a given measure µ on E has the strong uniqueness property
(in M), then it also possesses the uniqueness property (in M). The converse
assertion is not true, in general (in this connection, cf. Theorem 2 below).

In our further considerations, we will write (E, G, µ) if E is any set, G is a
group of transformations of E and µ is a probability measure on E invariant
with respect to G. The triple (E,G, µ) will be called a space equipped with an
invariant probability measure.

It is evident that the invariance and symmetricity of probability measures
are preserved under the product operation. The behaviour of the uniqueness
property under the same operation will be discussed later on (see Theorem 1).
Our main goal in this paper is to demonstrate that, on the one-dimensional
torus T1 regarded as a commutative compact topological group, there exist two
symmetric invariant probability measures with the strong uniqueness property,
whose product does not possess the uniqueness property. In order to give such
an example, we need some preliminary notions and constructions. These con-
structions will be based on the methods of extending invariant measures (the
corresponding techniques was developed in [3], [4], [5], [6]).

As usual, we denote by ω the first infinite ordinal (cardinal) and by c the
cardinality of the continuum. Let α stand for the first ordinal number whose
cardinality is equal to c. The symbol λ will denote the standard Lebesgue
measure on the real line R, i.e., the completion of the Haar measure on the
locally compact topological group R.

For further purposes, it is convenient to consider the real line R as a vector
space over the field Q of all rationals. Let H = {eξ : ξ < α} be a Hamel basis
in R. Then, for any x ∈ R, we have a unique representation

x =
∑

ξ<α

qξeξ



PRODUCTS OF SYMMETRIC INVARIANT PROBABILITY MEASURES 77

where all qξ (ξ < α) are rational numbers and

card({ξ < α : qξ 6= 0}) < ω.

For each x ∈ R \ {0}, denote by ξ = ξ(x) the largest ordinal from the interval
[0, α[, satisfying the relation qξ 6= 0, and define

A = {x ∈ R : qξ(x) > 0}, B = {x ∈ R : qξ(x) < 0}.
It is clear that

A ∩B = ∅, A ∪B ∪ {0} = R, −A = B.

The last relation means that the sets A and B are symmetric to each other
(with respect to the origin). Actually, both the sets A and B are convex (more
precisely, Q-convex) cones in R considered as a vector space over Q. Let us
point out an interesting property of these sets (cf. [4]). It is not hard to verify
that, for any y ∈ R, the inequalities

card(A4(A + y)) < c, card(B4(B + y)) < c

are valid. To see this, take a representation

y =
∑

ξ<α

q′ξeξ

of y (with respect to H). Then, for those x ∈ R which satisfy the relation
ξ(x) > ξ(y), we have

x ∈ A ⇔ x + y ∈ A,

x ∈ B ⇔ x + y ∈ B.

It remains to observe that

card({x ∈ R : ξ(x) ≤ ξ(y)}) < c,

which yields at once the required result. In other words, we obtain that the sets
A and B are almost invariant under the group of all translations of R.

We now assert that the sets A and B are nonmeasurable in the Lebesgue
sense. Indeed, suppose to the contrary that at least one of these sets is Lebesgue
measurable, i.e., belongs to dom(λ). Then, in view of the equality −A = B,
the second set will be Lebesgue measurable, too. Since

{0} ∪ A ∪B = R,

we infer that
λ(A) = λ(B) > 0.

On the other hand, the metrical transitivity of the Lebesgue measure, with
respect to the group of all translations of R, implies

λ(R \ A) = 0 ∨ λ(R \B) = 0

which leads to a contradiction. Thus, we conclude that each of the sets A and
B is nonmeasurable in the Lebesgue sense. Moreover, an easy argument based
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on the same property of metrical transitivity of λ shows that both these sets
are λ-thick in R, i.e., we have

λ∗(A) = λ∗(B) = 0,

where λ∗ denotes the inner measure associated with λ. However, the last relation
enables us to consider the sets A and B as measurable ones with respect to some
measure on R which extends λ and is invariant under the group of all motions
of R. Indeed, let us denote:

S = the σ-algebra of subsets of R, generated by dom(λ) ∪ {A, B};
J = the σ-ideal of all those subsets of R whose cardinalities are strictly less

than c;
S ′ = the σ-algebra of subsets of R, generated by S ∪ J .
Note that any set U from the σ-algebra S can be represented in the form

U = (A ∩X) ∪ (B ∩ Y ) ∪ ({0} ∩ Z),

where
{X,Y, Z} ⊂ dom(λ),

and such a representation is unique in the sense that an analogous equality

U = (A ∩X1) ∪ (B ∩ Y1) ∪ ({0} ∩ Z1)

implies the relations

λ(X4X1) = 0, λ(Y4Y1) = 0,

where 4 denotes the operation of the symmetric difference of two sets.
Now, define a functional

λ′ : S → R ∪ {+∞}
by the formula

λ′(U) = (1/2)(λ(X) + λ(Y )).

The remark just made implies that this definition is correct. Moreover, an easy
calculation shows that λ′ turns out to be a measure on S extending λ. This
measure, obviously, can be uniquely extended to a measure on the σ-algebra S ′,
by putting

λ′(V ) = 0 (V ∈ J).

We preserve the same notation for the extended in this manner measure. Finally,
we may assert that the obtained measure λ′ on S ′ is invariant under all isometric
transformations of R. To see this, let us observe that the equality −A = B and
the definition of λ′ immediately yield the invariance of λ′ with respect to the
symmetry

s : x → −x (x ∈ R).

Further, the almost invariance of A and B under the group of all translations
of R implies at once the translation-invariance of λ′. It remains to utilize the
elementary geometric fact saying that the group of all motions of R is generated
by s and all translations of R.
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Lemma 1. The measure λ′ has the strong uniqueness property.

The proof of Lemma 1 can be found in Chapter 7 of monograph [5]. Let us
stress once more that, in this lemma, λ′ is regarded as a measure extending λ
and invariant under the symmetry s and all translations of R.

The following statement shows us that the uniqueness property is preserved
under products of invariant measures.

Theorem 1. Let (E1, G1, µ1) and (E2, G2, µ2) be two spaces equipped with
invariant probability measures and suppose that both these measures possess the
uniqueness property. Consider the product space

(E,G, µ) = (E1 × E2, G1 ×G2, µ1 × µ2).

Then the measure µ also possesses the uniqueness property.

Proof. Let ν be an arbitrary probability measure defined on dom(µ1 × µ2) and
invariant under the product group G1×G2. First, let us observe that a functional

µ′ : dom(µ1) → [0, 1]

defined by the formula

µ′(X) = ν(X × E2) (X ∈ dom(µ1))

is a probability measure on dom(µ1) invariant under the group G1. Hence, in
view of the uniqueness property of µ1, we claim that µ′ coincides with µ1. So
we have

µ1(X) = ν(X × E2) (X ∈ dom(µ1)).

Fix now a set X ∈ dom(µ1) with µ1(X) > 0 and consider a functional

µ′′ : dom(µ2) → [0, 1]

defined by the formula

µ′′(Y ) =
1

µ1(X)
ν((X × E2) ∩ (E1 × Y )) (Y ∈ dom(µ2)).

Taking into account the said above, it is not hard to check that µ′′ is a probability
measure on dom(µ2) invariant under the group G2. Applying the uniqueness
property of µ2, we deduce that µ′′ coincides with µ2. In particular, we get

µ1(X)µ2(Y ) = ν((X × E2) ∩ (E1 × Y )) = ν(X × Y )

for any Y ∈ dom(µ2). Now, it is easy to verify that the above formula remains
true for arbitrary sets X ∈ dom(µ1) and Y ∈ dom(µ2). This shows us that
ν = µ1 × µ2, and the theorem is proved.
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In particular, if we have two commutative groups G1 and G2 endowed with
probability G1-invariant and G2-invariant measures µ1 and µ2, respectively,
then, according to the theorem just established, we may assert that the prod-
uct measure µ1 × µ2 possesses the uniqueness property, whenever both given
measures have this property.

In many cases (important from the point of view of applications) invariant
measures on groups turn out to be also invariant with respect to the symmetry.
For instance, we have already mentioned the invariance with respect to the
symmetry of the Haar measure on a compact topological group (the same holds
true for the Haar measure on a commutative locally compact group). Evidently,
if (G1, µ1) and (G2, µ2) are two symmetric probability measures on groups G1

and G2, respectively, then the product measure µ1×µ2 is a symmetric measure
on the product group G1 ×G2.

Now, we are going to consider the uniqueness property for the product mea-
sure of two symmetric invariant probability measures given on commutative
groups. It will be shown that, even in this case, the uniqueness property is not
preserved under products.

To present the corresponding example, we need some additional construc-
tions. Let us take the number π and let us extend the one-element set {π} to
a Hamel basis in R. We denote the obtained Hamel basis by

H = {eξ : ξ < α},
where α is the least ordinal of cardinality continuum, and we suppose in the
sequel, without loss of generality, that e0 = π. Let A and B be the two Q-
convex cones described earlier and associated with the Hamel basis H. Further,
let

φ : R → T1

be the canonical surjective group homomorphism defined by

φ(x) = (cos(x), sin(x)) (x ∈ R),

where T1 is the unit circumference (i.e., the standard one-dimensional torus) in
the plane R2. Then it is not hard to check that:

1) s(φ(A)) = φ(B) where s denotes the symmetry of the group T1;
2) card(φ(A) ∩ φ(B)) ≤ ω;
3) the sets φ(A) and φ(B) are almost invariant with respect to the group of

all rotations of the circumference T1 about its centre;
4) φ(A) ∪ φ(B) = T1.
For the sake of simplicity, let us put

A′ = φ(A), B′ = φ(B).

Also, let us denote by λ1 the classical Lebesgue probability measure on T1

(evidently, it is invariant under the group of all rotations of T1 about its centre).
A direct verification shows that both sets A′ and B′ are λ1-thick in T1. By
starting with the above-mentioned properties of the sets A′ and B′ and utilizing
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an argument similar to the one given earlier, it can easily be constructed a
measure ν on T1 which satisfies the following conditions:

(1) ν extends λ1 and is a rotation-invariant measure on T1;
(2) ν is invariant under the symmetry of T1;
(3) {A′, B′} ⊂ dom(ν) and ν(A′) = ν(B′) = 1/2.
As said above, the construction of ν can be carried out in the way similar

to the construction of an invariant extension λ′ of the Lebesgue measure on R,
which forces the sets A and B to be measurable.

Also, by starting with condition (3), the next proposition can be obtained.

Lemma 2. The measure ν has the strong uniqueness property.

The proof is completely similar to the proof of Lemma 1 (cf. Chapter 7 in
[5]). Let us emphasize once more that, in the lemma above, ν is regarded as a
symmetric T1-invariant measure extending λ1.

Now, we are able to establish the following statement.

Theorem 2. The product measure ν×ν, considered as a symmetric (T1×T1)-
invariant probability measure, does not possess the uniqueness property. More
precisely, there exists a symmetric (T1 × T1)-invariant probability measure on
dom(ν × ν) which differs from ν × ν.

Proof. Obviously, we may write

{A′ × A′, A′ ×B′, B′ × A′, B′ ×B′} ⊂ dom(ν × ν).

At the same time, denoting λ2 = λ1 × λ1, we have

λ2((A
′ × A′) ∪ (A′ ×B′) ∪ (B′ × A′) ∪ (B′ ×B′)) = 1.

Now, it is clear that the general form of an element W from dom(ν × ν) is the
following one:

W = ((A′ × A′) ∩X) ∪ ((A′ ×B′) ∩ Y ) ∪ ((B′ × A′) ∩ Z) ∪ ((B′ ×B′) ∩K)

where X,Y, Z,K are some elements of dom(λ2) (of course, in this representation
we omit some sets of (ν× ν)-measure zero). Now, fix a real r ∈ ]0, 1[ and define
a measure µ on dom(ν × ν) by the formula

µ(W ) = (1/2)(rλ2(X) + rλ2(K) + (1− r)λ2(Y ) + (1− r)λ2(Z)).

The correctness of this definition is implied by the fact that all the sets

A′ × A′, A′ ×B′, B′ × A′, B′ ×B′

are thick in T1 ×T1 with respect to λ2. Obviously, we have

µ 6= ν × ν

whenever r 6= 1/2. It can also be easily verified that µ is a symmetric (T1×T1)-
invariant probability measure on dom(ν × ν). This completes the proof of our
theorem.
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Remark 2. The measure ν × ν has the uniqueness property if it is regarded
as a G′-invariant probability measure, where G′ stands for the group generated
by the pairs (g, s) and (s, h), where g and h are arbitrary elements of T1 and
s is the symmetry of T1. To get this result, it suffices to apply Theorem 1.
Indeed, in our case, the group G′ coincides with the product group

[{s} ∪T1]× [{s} ∪T1]

where [{s} ∪T1] denotes the group generated by s and T1.
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