
Georgian Mathematical Journal
Volume 9 (2002), Number 2, 367–382

CONFORMAL AND QUASICONFORMAL MAPPINGS OF
CLOSE MULTIPLY-CONNECTED DOMAINS

Z. SAMSONIA† AND L. ZIVZIVADZE

Abstract. Doubly-connected and triply-connected domains close to each
other in a certain sense are considered. Some questions connected with con-
formal and quasiconformal mappings of such domains are studied using in-
tegral equations.
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1. Conformal Mapping of Close Triply-Connected Domains

Let G be a finite triply-connected domain of a complex plane Z bounded by
the simple Lyapunov curves Γ0, Γ1, Γ2, one of which Γ0 envelops the other two
and z = 0 ∈ int Γ1.

Assume first that the boundary Γ =
2⋃

i=0
Γi belongs to the class C ′

α (1
2

< α ≤
1), while singly-connected domains with boundaries Γ1 and Γ0 are star-like with
respect to z = 0. Let the equations of these curves be given in terms of polar
coordinates

t = g1(ϕ) = ρ1(ϕ) · eiϕ, t = g0(ϕ) = ρ0(ϕ) · eiϕ (0 ≤ ϕ ≤ 2π)

and the finite domain with boundary Γ2 be star-like with respect to z0 ∈ int Γ2.
If we assume that the polar axis with a pole in z0 is parallel to the abscissa axis,
then the parametric equation for Γ2 can be written in the form

t = g2(ϕ) = z0 + ρ2(ϕ)eiϕ (0 ≤ ϕ ≤ 2π).

Let us consider the second triply-connected domain G̃ of type G bounded by
the curves Γ̃0, Γ̃1, Γ̃2 (with the same properties) whose parametric equations
are

t = ρ̃1(ϕ)eiϕ, t = z0 + ρ̃2(ϕ)eiϕ, t = ρ̃0(ϕ)eiϕ (0 ≤ ϕ ≤ 2π).

We introduce the following notation:

d1 = ρ(Γ1; Γ0), d2 = ρ(Γ1; Γ2), d3 = ρ(Γ2; Γ0), d0 = min{d1; d2; d3}.
It is assumed that ε ∈ (0; d0/2).
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Definition 1. The domains G and G̃ are called ε-close to each other if the
conditions

|ρi(ϕ)− ρ̃i(ϕ)| ≤ ε; ‖ρ′i(ϕ)− ρ̃i(ϕ)‖Cα ≤ ε (i = 0, 1, 2) (1)

are fulfilled.

An infinite set of domains ε-close to G are formed for any ε ∈ (0; d/2). We
denote it by Gε.

Let us conformally map the domains G and G̃ onto the canonical domains
K(ρ; r; 1) and K̃(ρ̃; r̃; 1), respectively, using the assumptions of [1], where

K(ρ; r; 1) and K̃(ρ̃; r̃; 1) are annuli with concentric cuts along the arc of the
circumferences |W | = r and |W | = r̃, (ρ < r < 1, ρ̃ < r̃ < r < 1), respectively.
Then for the definition of radii we have [1]

ln ρ =
1

π

2π∫

0

ν1(ϕ)
√

ρ2
1(ϕ) + [ρ′1(ϕ)]2 dϕ ,

ln ρ̃ =
1

π

2π∫

0

ν̃1(ϕ)
√

ρ̃2
1(ϕ) + [ρ̃′1(ϕ)]2 dϕ ,

ln r =
1

π

2π∫

0

ν2(ϕ)
√

ρ2
2(ϕ) + [ρ′2(ϕ)]2dϕ ,

ln r̃ =
1

π

2π∫

0

ν̃2(ϕ)
√

ρ̃2
2(ϕ) + [ρ̃′2(ϕ)]2 dϕ .

(2)

It is assumed here that

ν(t(ϕ)) =





ν1(ϕ), when t ∈ Γ1,

ν2(ϕ), when t ∈ Γ2,

ν0(ϕ), when t ∈ Γ0.

The reasoning for ν̃(t̃(ϕ)) is analogous. It is assumed that ν(t) and ν̃(t) are
unique solutions of the integral equations

ν(t0) +
1

π

∫

Γ

K0(t; t0)ν(t)dt = − ln |t0|, t0 ∈ Γ, (3)

ν̃(t0) +
1

π

∫

Γ̃

K̃0(t; t0)ν̃(t)dt = − ln |t0|, t0 ∈ Γ̃, (4)

where

K0(t; t0) =





Im
(

1

t− t0
· dt

ds

)
− 1, when t, t0 ∈ Γj (j = 1, 2),

Im
(

1

t− t0
· dt

ds

)
, in all other cases.
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K̃0(t; t0) is defined analogously.
Let us pose the problem: derive an estimate through ε for a difference of the

solutions of equations (3) and (4) (in an appropriate norm), and also for the
expressions |ρ− ρ̃|, |r − r̃|.

We can obtain such estimates by using the statements proved below. For
this, the integral equations (3) and (4) are represented in the complex form:

ν(t0) +
1

2πi

∫

Γ

1

t′
K∗(t; t0)ν(t)dt = − ln |t0|, (31)

ν̃(t0) +
1

2πi

∫

Γ̃

1

t′
K̃∗(t; t0)ν̃(t)dt = − ln |t0|, (41)

where

K0(t; t0)=





(t′ − t′0) + (t̄′0 − t̄′)
t− t0
t̄− t̄0

+

[
t′0

t̄− t̄0
t− t0

− t̄′0

]
t− t0
t̄− t̄0

1

t− t0
− 2i,

when t, t0 ∈ Γi (i = 1, 2),

(t′ − t′0) + (t̄′0 − t̄′)
t− t0
t̄− t̄0

+

[
t′0

t̄− t̄0
t− t0

− t̄′0

]
t− t0
t̄− t̄0

1

t− t0
in all other cases.

(5)

Here t′ = g′j(ϕ), t′0 = g′j(ϕ0) and j take values 0, 1, 2 depending on the fact

to which contour Γj (j = 0, 1, 2) the point t or t0 belongs. K̃∗(t; t0), too, is
constructed analogously to (5). Clearly, in that case t = g̃j(ϕ), t0 = g̃j(ϕ0),
t′ = g̃′j(ϕ), t′0 = g̃′j(ϕ0) (j = 0, 1, 2).

Let us represent the integral equations (31), (41) in the operator form:

Aν = (I + H)ν = f0, (3′1)

Ãν̃ = (I + H̃)ν̃ = f̃0. (4′1)

It is assumed that (analogously to ν[t(ϕ)]), ν̃(t), f0(t), f̃0(t) are column-
matrices, I is the uni t matrix of third order, and

Hν =




H11ν1 + H12ν2 + H10ν0

H21ν1 + H22ν2 + H20ν0

H01ν1 + H02ν2 + H00ν0


 ,

H̃ν̃ =




H̃11ν̃1 + H̃12ν̃2 + H̃10ν̃0

H̃21ν̃1 + H̃22ν̃2 + H̃20ν̃0

H̃01ν̃1 + H̃02ν̃2 + H̃00ν̃0


 .

Here Hij, H̃ij (i, j = 0, 1, 2) are the concrete integral operators. Before repre-
senting them explicitly, let us make some additional observations.
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Observe that

dt

t− t0

∣∣∣∣∣ t∈Γj
t0∈Γk

=
g′j(ϕ)dϕ

gj(ϕ)− gk(ϕ0)
= Mjk(ϕ; ϕ0)

(
ctg

ϕ− ϕ0

2
+ i

)
dϕ,

where the function

Mjk(ϕ; ϕ0) =
g′j(ϕ)

2ieiϕ
· eiϕ − eiϕ0

gj(ϕ)− gk(ϕ0)
(6)

satisfies the Hölder condition with index α with respect to its arguments, i.e.,
belongs to the class Cα(Γj × Γk).

The function

Rjk(t0; t) =
1

t′

{
(t′ − t′0) + (t̄′0 − t̄′)

t− t0
t̄− t̄0

+

[
t′0

t̄− t̄0
t− t0

− t̄′0

]
t− t0
t̄− t̄0

}

(t ∈ Γj, t0 ∈ Γk, j, k = 0, 1, 2) figuring in (5) also belongs to the class Cα(Γj×Γk)
and Rkk(t0; t0) = 0.

We have in terms of the parameter ϕ

Sj k(ϕ; ϕ0) = Rj k[gj(ϕ); gk(ϕ0)] =
1

g′j(ϕ)

{
g′j(ϕ)− g′k(ϕ0)

+ (ḡ′k(ϕ0)− ḡ′j(ϕ))
gj(ϕ)− gk(ϕ0)

ḡj(ϕ)− ḡk(ϕ0)

+
[
g′k(ϕ0)

ḡj(ϕ)− ḡk(ϕ0)

gj(ϕ)− gk(ϕ0)
− ḡ′k(ϕ0)

]
gj(ϕ)− gk(ϕ0)

ḡj(τ)− ḡk(τ0)

}
, (5′)

Sjk(ϕ; ϕ0) ∈ Cα(Γj × Γk), Skk(ϕ0; ϕ0) = 0 (0 ≤ ϕ ≤ 2π).

M̃jk(ϕ, ϕ0) and S̃jk(ϕ; ϕ0) are defined analogously.
Having introduced the notation, we can write that

[H11ν1 + H12ν2 + H10ν0](ϕ0)

=
1

2πi

2π∫

0

{
S11(ϕ0; ϕ)M11(ϕ0; ϕ)

|eiϕ − eiϕ0|β ·
(

ctg
ϕ− ϕ0

2
+ i

)
|eiϕ − eiϕ0|β − 2i

}
ν1(ϕ)dϕ

+
1

2πi

2π∫

0

S12(ϕ0; ϕ)M12(ϕ0; ϕ)

|eiϕ − eiϕ0|β ·
(

ctg
ϕ− ϕ0

2
+ i

)
|eiϕ − eiϕ0|βν2(ϕ)dϕ

+
1

2πi

2π∫

0

S10(ϕ0; ϕ)M10(ϕ0; ϕ)

|eiϕ − eiϕ0|β ·
(

ctg
ϕ− ϕ0

2
+ i

)
|eiϕ − eiϕ0|βν0(ϕ)dϕ,

[H21ν1 + H22ν2 + H20ν0](ϕ0)

=
1

2πi

2π∫

0

{
S21(ϕ0; ϕ)M21(ϕ0; ϕ)

|eiϕ − eiϕ0|β ·
(

ctg
ϕ− ϕ0

2
+ i

)
|eiϕ − eiϕ0|β

}
ν1(ϕ)dϕ
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+
1

2πi

2π∫

0

{
S22(ϕ0; ϕ)M22(ϕ0; ϕ)

|eiϕ − eiϕ0|β ·
(

ctg
ϕ− ϕ0

2
+ i

)
|eiϕ − eiϕ0|β − 2i

}
ν2(ϕ)dϕ

+
1

2πi

2π∫

0

{
S20(ϕ0; ϕ)M20(ϕ0; ϕ)

|eiϕ − eiϕ0|β ·
(

ctg
ϕ− ϕ0

2
+ i

)
|eiϕ − eiϕ0|β

}
ν0(ϕ)dϕ,

[H01ν1 + H02ν2 + H00ν0](ϕ0)

=
1

2πi

2π∫

0

{
S01(ϕ0; ϕ)M01(ϕ0; ϕ)

|eiϕ − eiϕ0|β ·
(

ctg
ϕ− ϕ0

2
+ i

)
|eiϕ − eiϕ0|β

}
ν1(ϕ)dϕ

+
1

2πi

2π∫

0

{
S02(ϕ0; ϕ)M02(ϕ0; ϕ)

|eiϕ − eiϕ0|β ·
(

ctg
ϕ− ϕ0

2
+ i

)
|eiϕ − eiϕ0|β

}
ν2(ϕ)dϕ

+
1

2πi

2π∫

0

{
S00(ϕ0; ϕ)M00(ϕ0; ϕ)

|eiϕ − eiϕ0|β ·
(

ctg
ϕ− ϕ0

2
+ i

)
|eiϕ − eiϕ0|β

}
ν0(ϕ)dϕ,

where β is any number satisfying the condition 1
2

< β ≤ α.
From the above formulas we obtain

(H11 − H̃11)ν1 =
1

πi

2π∫

0

S11(ϕ0; ϕ)M11(ϕ0; ϕ)− S̃11(ϕ0; ϕ)M̃11(ϕ0; ϕ)

|eiϕ − eiϕ0|β

× 1

2

(
ctg

ϕ− ϕ0

2
+ i

)
|eiϕ − eiϕ0|βν1(ϕ)dϕ

=
1

πi

2π∫

0

S11(ϕ0; ϕ)M11(ϕ0; ϕ)− S̃11(ϕ0; ϕ)M̃11(ϕ0; ϕ)

|eiϕ − eiϕ0|β

× ieiϕ

eiϕ − eiϕ0
|eiϕ − eiϕ0|βν1(ϕ)dϕ

=
1

πi

2π∫

0

[K11(ϕ0; ϕ)− K̃11(ϕ0; ϕ)]ν1(ϕ)dϕ. (7)

In (7)

K11(ϕ0; ϕ) = K
(1)
11 (ϕ0; ϕ)K

(2)
11 (ϕ0; ϕ),

K̃11(ϕ0; ϕ) = K̃
(1)
11 (ϕ0; ϕ)K̃

(2)
11 (ϕ0; ϕ),

(7′)

where

K
(1)
11 (ϕ0; ϕ) =

M11(ϕ0; ϕ)

|eiϕ − eiϕ0|β ; K
(2)
11 (ϕ0; ϕ) =

iS11(ϕ0; ϕ)eiϕ

|eiϕ − eiϕ0|1−β · ei arg(eiϕ−eiϕ0)
;

K̃
(1)
11 (ϕ0; ϕ) =

M̃11(ϕ0; ϕ)

|eiϕ − eiϕ0|β ; K̃
(2)
11 (ϕ0; ϕ) =

iS̃11(ϕ0; ϕ)eiϕ

|eiϕ − eiϕ0|1−β · ei arg(eiϕ−eiϕ0 )
.

(8)
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According to [2], if ϕ(t) ∈ Cµ(Γ), 0 < µ ≤ 1, then the function of two
variables (t, t0 ∈ Γ)

ψ(t; t0) =
ϕ(t)− ϕ(t0)

|t− t0|λ ,

0 ≤ λ < µ ≤ 1, satisfies, on Γ, the Hölder condition with index µ−λ. Moreover,
the estimate

‖ψ(t0; t)‖Cµ−λ
≤ A∗(1 + λ) (9)

holds true, where A∗ ≥ |ϕ(t)−ϕ(t0)|
|t−t0|λ (see §§5, 6 of [2]). Taking into account the

structure of the functions M11(ϕ; ϕ0), S11(ϕ; ϕ0), M̃11(ϕ; ϕ0), S̃11(ϕ; ϕ0), this

result implies that the functions K11(ϕ; ϕ0) and K̃11(ϕ; ϕ0) are continuous in
the Hölder sense with respect to ϕ0 and ϕ with index δ, δ = min{α−β; α+β−1}
and

‖K11(ϕ; ϕ0)− K̃11(ϕ; ϕ0)‖Cδ
= ‖K(1)

11 K
(2)
11 − K̃

(1)
11 K̃

(2)
11 ‖Cδ

≤ ‖K(2)
11 ‖Cδ

· ‖K(1)
11 − K̃

(1)
11 ‖Cδ

+ ‖K̃(1)
11 ‖Cδ

· ‖K(2)
11 − K̃

(2)
11 ‖Cδ

. (10)

Let us define the order of smallness with respect to ε in (10). Preliminarily,
we will prove the validity of the following propositions.

For small values of ε the following inequalities are fulfilled:

I. ‖[g′1(ϕ)− g′(ϕ0)]− [g̃′1(ϕ)− g̃′(ϕ0)]‖Cα ≤ 2ε,

‖[ḡ′1(ϕ)− ḡ′(ϕ0)]− [g̃
′
1(ϕ)− ¯̃g

′
(ϕ0)]‖Cα ≤ 2ε,

II.

∥∥∥∥∥
eiϕ − eiϕ0

g1(ϕ)− g1(ϕ0)
· g′1(ϕ)

2ieiϕ
− eiϕ − eiϕ0

g̃1(ϕ)− g̃1(ϕ0)
· g̃′1(ϕ)

2ieiϕ

∥∥∥∥∥
Cα

≤ A1 · ε,

III.

∥∥∥∥∥
g1(ϕ)− g1(ϕ0)

g1(ϕ)− g1(ϕ0)
− g̃1(ϕ)− g̃1(ϕ0)

g̃1(ϕ)− g̃1(ϕ0)

∥∥∥∥∥
Cα

≤ A2 · ε,

IV. |g̃′1(ϕ)| ≥
min
[0,2π]

|g′1(ϕ)|
2

for ε ≤
min
[0,2π]

|g′1(ϕ)|
2

,

V.

∥∥∥∥∥

(
g′1(ϕ0) · g1(ϕ)− g1(ϕ0)

g1(ϕ)− g1(ϕ0)
− g′1(ϕ0)

)

(
−g̃′1(ϕ0) · g̃1(ϕ)− g̃1(ϕ0)

g̃1(ϕ)− g̃1(ϕ0

− g̃
′
1(ϕ0)

)∥∥∥∥∥
Cα

≤ A3ε

and all constants contained in the estimates do not depend on G̃.

Proof. Inequality I immediately follows from the definition of domain closeness,
i.e., from (1).

Further we have

|g′1(ϕ)| − |g̃′1(ϕ)| ≤ ‖g′1(ϕ)− g̃′1(ϕ)‖C ≤ ‖g′1(ϕ)− g̃′1(ϕ)‖Cα < ε
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and if it is assumed that ε ≤ 1
2

min
[0,2π]

|g′1(ϕ)|, then the validity of inequality IV is

proved.
Before proving inequality II, note the following: for |s− s0| ≤ l1

2
, where l1 is

the length of Γ1, and s and s0 are the arc abscissas of the points t = g1(ϕ) and
t0 = g1(ϕ0), we have

|t− t0|2
|ϕ− ϕ0|2 =

|g1(ϕ)− g1(ϕ0)|2
|s− s0|2 · |s− s0|2

|ϕ− ϕ0|2 ≥ k2
1 · ρ2

1, (11)

where ρ1 = min
[0,2π]

|g′1(ϕ)| = ρ(0; Γ1) > 0, and k1 (0 < k1 < 1) is the constant

defined by giving the contour Γ1.
On the other hand,

[g1(ϕ)− g1(ϕ0)]− [g̃1(ϕ)− g̃1(ϕ0)] = [g1(ϕ)− g̃1(ϕ)]− [g1(ϕ0)− g̃1(ϕ0)]

= Re[g1(ϕ)− g̃1(ϕ)]− Re[g1(ϕ0)− g̃1(ϕ0)]

+i (Im[g1(ϕ)− g̃1(ϕ)]− Im[g1(ϕ0)− g̃1(ϕ0)])

= (ϕ− ϕ0) Re[g
′
1(ξ)− g̃

′
1(ξ)] + i (ϕ− ϕ0) Im[g

′
1(η)− g̃

′
1(η)],

where the numbers ξ and η lie between ϕ and ϕ0.
By virtue of (1) we can write that

|[g̃(ϕ)− g̃(ϕ0)]− [g1(ϕ)− g1(ϕ0)]| ≤ 4ε|ϕ− ϕ0|.
Moreover, since

|g1(ϕ)− g1(ϕ0)| − |g̃1(ϕ)− g̃1(ϕ0)|
≤ |[g1(ϕ)− g1(ϕ0)]− [g̃1(ϕ)− g̃1(ϕ0)]| ≤ 4ε|ϕ− ϕ0|

we have
|g̃1(ϕ)− g̃1(ϕ0)| ≥ |g1(ϕ)− g1(ϕ0)| − 4ε|ϕ− ϕ0|.

Hence, assuming that ε ≤ k1ρ1

8
, by (11) we obtain

|g̃1(ϕ)− g̃1(ϕ0)|
|ϕ− ϕ0| >

k1ρ1

2
. (12)

Now we return to proving inequality II. Since

eiϕ − eiϕ0

g1(ϕ)− g1(ϕ0)
· g

′
1(ϕ)

2ieiϕ
− eiϕ − eiϕ0

g̃1(ϕ)− g̃1(ϕ0)
· g̃

′
1(ϕ)

2ieiϕ

=
ei ϕ − ei ϕ0

2 i ei ϕ
· g

′
1(ϕ)[g̃1(ϕ)− g̃1(ϕ0)]− g̃

′
1(ϕ)[g1(ϕ)− g1(ϕ0)]

[g1(ϕ)− g1(ϕ0)][g̃1(ϕ)− g̃1(ϕ0)]
=

eiϕ − eiϕ0

2ieiϕ

×
(ϕ− ϕ0)

[
g
′
1(ϕ)

1∫
0

g̃
′
1[ϕ0 + u(ϕ− ϕ0)] du− g̃

′
1(ϕ)

1∫
0

g
′
1[ϕ0 + u(ϕ− ϕ0)]du

]

[g1(ϕ)− g1(ϕ0)][g̃1(ϕ)− g̃1(ϕ0)]
,

by virtue of I, IV, (11) and (12) this expression obviously implies that inequality
II is valid.
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Just in the same way, after carrying out analogous transformations, from

g1(ϕ)− g1(ϕ0)

g̃1(ϕ)− g̃1(ϕ0)
− g̃1(ϕ)− g̃1(ϕ0)

¯̃g1(ϕ)− ¯̃g1(ϕ0)
=

(ϕ− ϕ0)
2

[ḡ1(ϕ)− ḡ1(ϕ0)][¯̃g1(ϕ)− ¯̃g1(ϕ0)]

×



1∫

0

g
′
1[ϕ0 + u(ϕ− ϕ0)]du

1∫

0

¯̃g1[ϕ0 + u(ϕ− ϕ0)]du

−
1∫

0

g̃
′
1[ϕ0 + u(ϕ + ϕ0)]du

1∫

0

ḡ1[ϕ0 + u(ϕ− ϕ0)]du




follows the validity of inequality III.
Inequality V immediately follows from inequalities I, II and IV.
The validity of I–V is proved.

Now taking into account formulas (6) and (5′) for M11(ϕ, ϕ0), S11(ϕ, ϕ0) and

analogous formula for M̃11(ϕ, ϕ0), S̃11(ϕ, ϕ0), we can state by virtue of the above

inequalities and S11(ϕ0, ϕ0) = S̃11(ϕ0, ϕ0) that

‖S11(ϕ, ϕ0) ei arg(ei ϕ−ei ϕ0 ) − S̃11(ϕ, ϕ0) ei arg(ei ϕ−ei ϕ0)‖cα
≤ B1 · ε,

‖M11(ϕ, ϕ0)− M̃11(ϕ, ϕ0)‖cα
≤ B2 · ε,

(13)

where the constants B1 and B2 depend only on the domain G.
By virtue of (9) and (13), inequality (10) immediately gives rise to the fol-

lowing estimates of its individual terms:

‖K(1)
11 (ϕ, ϕ0)− K̃

(1)
11 (ϕ, ϕ0)‖cδ

≤ N1 · ε,
‖K(2)

11 (ϕ, ϕ0)− K̃
(2)
11 (ϕ, ϕ0)‖cδ

≤ N2 · ε,
‖K̃(1)

11 (ϕ, ϕ0)‖cδ
≤ N3, ‖K̃(2)

11 (ϕ, ϕ0)‖cδ
≤ N4,

(14)

(δ = min{α − β; α + β − 1})), where all constants are expressed in terms of
the initial domain G, i.e.,for small ε the estimates are uniform with respect to
domains G̃ ∈ Gε.

Therefore for the kernels represented by formulas (7′) we have

‖K11(ϕ; ϕ0)− K̃11(ϕ; ϕ0)‖cδ
≤ N1(β) · ε. (15)

The estimates

‖K22(ϕ; ϕ0)− K̃22(ϕ; ϕ0)‖cδ
≤ N2(β) · ε,

‖K00(ϕ; ϕ0)− K̃00(ϕ; ϕ0)‖cδ
≤ N0(β) · ε

(16)

are established analogously.
If the points t(ϕ), t(ϕ0) and the corresponding points t̃(ϕ), t̃(ϕ0) lie on differ-

ent curves Γi, Γj and Γ̃i, Γ̃j (i 6= j), respectively, then estimates for the values

‖Kij − K̃ij‖cδ
(i 6= j, i, j = 0, 1, 2) are established immediately and have order



CONFORMAL AND QUASICONFORMAL MAPPINGS 375

O(ε). This can be verified at once if, for the kernels of equations (31), (41)
representable by formulas of form (5), the difference

K∗[gi(ϕ), gj(ϕ0)]− K̃∗[g̃i(ϕ); g̃j(ϕ0)]

is reduced to the common denominator and the latter is estimated from below by
the number d0 = min{d1; d2; d3} assuming that 0 < ε < d0

2
, while the difference

of their numerators is estimated using inequality (1).
We have thus shown that the following theorem holds for small values of the

parameter ε.

Theorem 1. If the domains G and G̃ ∈ Gε (0 < ε ≤ ε0) belong to the class
G′

α (1
2

< α ≤ 1), then the inequality

‖K∗(ϕ; ϕ0)− K̃∗(ϕ; ϕ0)‖cδ
< A0(G; β) · ε (17)

holds, where K∗(ϕ; ϕ0), K̃∗(ϕ; ϕ0) are the kernels of the integral equations (31),
(41), respectively, δ = min{α − β; α + β − 1} and 1

2
< β ≤ α. The constant

A0(G; β) and small ε0 are completely defined by giving the initial domain G

ε0 =
1

2
min

{
d0; kρ/4; g(ϕ)

}
,

where k is the constant defined by giving the contour Γ, ρ=min{ρ(0, Γj) : j =
0, 1, 2}, g(ϕ) = min{|g′j(ϕ)| : j = 0, 1, 2}.

The proven theorem makes it possible to obtain an estimate for the difference
ν(ϕ)− ν̃(ϕ) in an adequate norm. It is of order O(ε), but it can be obtained in
a stronger form if we use the result from [3]. This technique implies estimating,
through ε, the difference of the corresponding integral operators.

Let us estimate the difference (H − H̃)ν. Having in mind the structure of

this difference, it suffices to confine the investigation to the case (H11− H̃11)ν1.
From (7) we have

(H11 − H̃11) ν1

=
1

πi

2π∫

0

K̃∗
11(ϕ; ϕ0)ie

i ϕ · exp(−i arg(eiϕ − eiϕ0))
ν1(ϕ)

|eiϕ − eiϕ0|1−β , (18)

where

K̃∗
11(ϕ, ϕ0) =

S11(ϕ; ϕ0)M11(ϕ; ϕ0)− S̃11(ϕ; ϕ0)M̃11(ϕ; ϕ0)

|eiϕ − eiϕ0|β . (19)

As has already been noted, the function K̃∗
11(ϕ; ϕ0) is continuous in the Hölder

sense with index α−β. Taking into account (9) and (19) as well as inequalities
I–V, we see that the inequality

‖K̃∗
11(ϕ; ϕ)‖cα−β

≤ C1(β) ε (20)

is valid for small values of the parameter ε.
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Let us use the following result from [2]. A function of form (18)

ω(t(ϕ0)) =
1

π

2π∫

0

K̃∗
11(ϕ; ϕ0) r(ϕ; ϕ0)

ν1(ϕ) dϕ

|ei ϕ − ei ϕ0|1−β ,

where r(ϕ; ϕ0) = ieiϕ exp(−i arg(eiϕ − eiϕ0)) belongs to the class Cδ for any
bounded function ν1(ϕ) and δ = α− β (see §51 of [2]).

Now, by virtue of this result, (18) and (20) give rise to the estimate

‖(H11 − H̃11) ν1‖cα−β
≤ C

′
(β) ‖ν1‖Cα−β

· ε, (21)

where C ′(β) and C1(β) from (20) are the absolute constants, while ν(ϕ) is any
function of the class Cα−β.

The proof that the values ‖(Hii − H̃ii)νi‖Cα−β
for i = 0, 2 have order O(ε)

repeats the proof of inequality (21).

The estimate for the values ‖(Hij − H̃ij)νj‖Cα−β
when i 6= j, i.e., when the

points t(ϕ) and t0(ϕ0) belong to different curves Γ1 and Γ2, while the corre-

sponding points t̃(ϕ) and t̃0(ϕ0) belong to the contours Γ̃1 and Γ̃2, is obtained
immediately if it is assumed, for instance, ε < d0

2
. The constants in all such

estimates are expressed only in terms of the curves Γ1 and Γ2.
Hence the estimate

‖(H − H̃) ν‖cα−β
≤ C0(β) · ‖ν‖Cα−β

· ε, (22)

where C0(β) is the absolute constant, is valid.
Assume now that ν(ϕ) and ν̃(ϕ) are solutions of equations (31) and (41),

respectively. From (3′1) and (4′′1) we have

ν − ν̃ = Ã−1(Ã− A) ν − Ã−1 (f̄0 − f0)

= Ã−1(H̃ −H) ν − Ã−1(f̃0 − f0). (23)

But by (22)

‖A− Ã‖cα−β
= sup

‖ν‖Cα−β
=1
‖(Ã− A) ν‖cα−β

≤ sup
‖ν‖Cα−β

=1
C0(β)‖ν‖cα−β

· ε = C0(β) · ε (24)

and

‖(Ã− A) A−1‖cα−β
≤ ‖A− Ã‖cα−β

· ‖A−1‖cα−β
≤ C0(β) ‖A−1‖

cα−β
· ε

and if it is assumed that ε < 1/(C0(β)·‖A−1‖Cα−β
), then the norm of the inverse

operator Ã−1 [4] is uniformly (with respect to Γ̃) bounded in the space Cα−β,

‖Ã−1‖Cα−β
≤ ‖A−1‖Cα−β

1− ‖(H̃ −H)A−1‖Cα−β

.
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Using further the obvious estimate ‖f0 − f̃0‖ and (24), from (23) it follows
that the inequality

‖ν(ϕ)− ν̃(ϕ)‖Cα−β
< B0(β) · ‖ν‖Cα−β · ε

is valid for all ε ≤ ε1, where

ε1 =

{
d0

2
;

g(ϕ)

2
;

1

C0(β)‖A−1‖Cα−β

}
,

B0(β) is the constant depending only on G and β (β is any positive number
smaller than α). Thus we have proved

Theorem 2. If the boundaries of the domains G and G̃ ∈ Gε, 0 < ε ≤ ε1,
belong to the class C ′

α (0 < α < 1), then the inequality

‖ν(ϕ)− ν̃(ϕ)‖Cα−β
< B0(β) · ‖ν‖Cα−β

· ε (25)

is valid, where ν(ϕ) and ν̃(ϕ) are unique solutions of the integral equations (31),
(41), respectively. The constant B0(β) and small ε1 are defined by giving the
initial domain G; β is any positive number smaller than α.

The proven theorem solves the problem we have posed. As for estimating
the differences ‖r− r̃‖ and ‖ρ− ρ̃}, such an estimate is immediately implied by
Theorem 2 and formulas (2).

Corollary 1. If the triply-connected domains G and G̃ are ε-close to each
other (0 < ε ≤ ε1), then the inequalities

‖ρ− ρ̃‖ < Q1 · ε; ‖r − r̃‖ < Q2 · ε (26)

are valid, where ρ, r, ρ̃, r̃ are the radii defining the canonical domains K(ρ; r; 1)

and K̃(ρ̃; r̃; 1), respectively, while the constant Q1 and Q2 depend only on the
domain G.

2. Conformal Mapping of Close Doubly-Connected Domains

In the complex plane Z let us consider the finite doubly-connected domain
G whose boundary Γ consists of the simple closed Lyapunov curves Γ0 and Γ1,
one of which Γ0 envelops the other, and z = 0 ∈ int Γ1.

Assume that the boundary Γ = Γ0 ∪ Γ1 of the given domain belongs to the
class C ′

α (0 < α < 1) and is given parametrically by the equations

t = g1(τ), t = g0(τ) (0 ≤ τ ≤ 2π; gi(0) = gi(2π), i = 0, 1).

Let d0 = ρ(Γ1; Γ0) and assume that 0 < ε < d0/2.

Consider another doubly-connected domain G̃ of type G.
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Definition 2. The domains G and G̃ whose boundary Γ̃ consists of Γ̃0 and
Γ̃1 whose parametric equations are

t = g̃1(τ), t = g̃0(τ) (0 ≤ τ ≤ 2π; g̃i(0) = g̃i(2π), i = 0, 1)

are called ε-close to each other if the conditions

|gi(τ)− g̃i(τ)| ≤ ε, ‖g′i(τ)− g̃′i(τ)‖Cα ≤ ε (i = 0, 1) (1′)

are fulfilled.

As has already been noted, Gε denotes a set of domains ε-close to G for any
0 < ε < d0/2.

Let us map conformally (under the assumptions of [5]) the close domains

G and G̃ onto the canonical domains K(ρ; 1) and K̃(ρ̃; 1), where K(ρ; 1) and

K̃(ρ̃; 1) are respectively annuli with ρ < |w| < 1 and ρ̃ < |w| < 1, while the
radii ρ and ρ̃ are defined by the formulas

ln ρ =
1

π

2π∫

0

ν1(τ) |g′1(τ)|dτ,

ln ρ̃ =
1

π

2π∫

0

ν̃1(τ) |g̃′1(τ)|dτ,

where

ν(t) =





ν1(t), when t ∈ Γ1,

ν0(t), when t ∈ Γ0.

Apply an analogous treatment to ν̃(t) too. Note that ν(t) and ν̃(t) are so-
lutions of integral equations of form (31) and (41), respectively, derived for the

doubly-connected domains G and G̃.
Using the methods from Section 1 one can similarly obtain an estimate for

the norm ‖ν − ν̃‖Cα−β
of difference of solutions of integral equations. Namely,

we have

Theorem 3. If the boundaries of doubly-connected domains G and G̃ ∈ Gε,
0 < ε ≤ ε0, belong to the class C ′

α (1
2

< α < 1), then the inequalities

‖ν(τ)− ν̃(τ)‖Cα−β < B′
0(β) · ‖ν‖Cα−β · ε,

| ln ρ− ln ρ̃| < Q0 · ε
are valid, where 0 < β < α and the constants B′

0(β), Q0 and ε0 are defined by
giving the initial domain G.

These estimates allow us to construct, with the aid of the function ν(t) defined

by giving the initial domain G, an approximation to the function w = f̃ν̃(z)

(f̃ν̃(z̃1) = 1, z̃1 > 0, z̃1 ∈ Γ̃0) which maps conformally an arbitrary doubly-

connected domain G̃ ∈ Gε (0 < ε ≤ ε0) onto the canonical domain K(ρ̃; 1).
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By virtue of inequalities (25) and (26), we can regard the function (see [3])

w = f̃ν(z) = z · exp




1

πi

∫

Γ̃

ν(t)dt

t− z
+ ic


 (27)

(f̃ν(z1) = 1, z1 > 0, z1 ∈ Γ̃0), where ν(t) is a solution of equation (31), as an

approximation to the function w = f̃ν̃(z). By the proof of the Plemelj–Privalov
theorem [2] (§18) the use of (25) and (26) leads to

Theorem 4. The function w = f̃ν(z) (f̃ν(z1) = 1, z1 > 0, z1 ∈ Γ̃0) given in

the doubly-connected domain G̃ by formula (27), where G̃ ∈ Gε (0 < ε ≤ ε∗1),
admits, in G̃, an estimate

|f̃ν(z)− f̃ν̃(z)| < P · ε,
where P depends only on the domain G.

Note that it is assumed here that the given boundary points z1 and z̃1 corre-
spond to one and the same value of the parameter τ (say, τ = 0).

3. To the Quasiconformal Mapping of Close Doubly-Connected
Domains

Let us consider the problem of quasiconformal mapping of close domains. As
a construction tool we take the method of integral equations [5], which stipulates
the knowledge of the concrete global homeomorhism of the Beltrami equation

Wz̄ = q(z) ·Wz, (28)

|q(z)| ≤ q0 < 1,

constructed by I. N. Vekua’s scheme [6]. This homeomorphism figures in the
kernels of integral equations whose solutions are used to construct the wanted
functions.

Assume that the coefficient q(z) of the Beltrami equation is given in some
doubly-connected domain G0 containing the initial domain G and all domains
G̃ ∈ Gε which are ε-close to G (in the sense of (1′)). As G0 we can take, for
instance, an annulus ρ0

2
< |z| < R0, where ρ0 = ρ(0; Γ1), R0 = max

t0∈Γ0

ρ(0; t0).

Assume further that the boundary of the domain G belongs to the class C ′
α

(0 < α < 1), and q(z) ∈ C ′
γ(Ḡ0), (0 < γ < 1), and the so-called Vekua basic

homeomorphism W̃ (z) of equation (28) is constructed with the coefficient

q̃(z) =





q(z), when z ∈ Ḡ0,

0, when z lies outside G0.

In that case q̃(z) belongs to any Lebesgue class Lp(E) (where E is the entire

complex plane) and, according to [7], W̃z̄ and W̃z satisfy the Hölder condition
with index γ0 and 0 < γ0 < min{α; γ}. In what follows this global homeomor-

phism of equation (28) is denoted by W̃G0(z).
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We use the technique of exit in the plane of this homeomorphism. Then the
integral equations (31) and (41) take the form

µ(ξ0) +
1

2πi

∫

W̃G0
(Γ)

1

ξ′
K∗(ξ; ξ0)µ(ξ)dξ

= − ln |ξ0 − W̃G0(0)|, ξ0 ∈ W̃G0(Γ), (29)

µ̃(ξ0) +
1

2πi

∫

W̃G0
(Γ̃)

1

ξ′
K̃∗(ξ; ξ0)µ̃(ξ)dξ

= − ln |ξ0 − W̃G0(0)|, ξ0 ∈ W̃G0(Γ̃), (30)

where ξ = W̃G0 [gk(τ)], ξ = W̃G0 [g̃k(τ)] (k = 0, 1) are the parametric equations of

the curves W̃G0(Γk), W̃G0(Γ̃k), respectively. K∗(ξ; ξ0) = K∗[W̃G0 [gk(τ); gl(τ0)]]

(k, l = 0, 1). In an analogous manner we define K̃∗(ξ; ξ0). Moreover, [W̃G0(z)]z̄
[W̃G0(z)]z ∈ Cγ0(Ḡ0) [7] and µ[ξ(τ)], µ̃[ξ(τ)] ∈ Cγ0 [0; 2π]. We can also write

that µ(ξ0) = ν[W̃−1
G0

(g(τ0))].
By virtue of (1′) we have

|W̃G0 [gj(τ)]− W̃G0 [g̃j(τ)]| ≤ Cj(W̃G0 ; G0)|gj(τ)− g̃j(τ)|
< Cj(W̃G2 ; G0) · ε (j = 0, 1). (31)

For convenience, denote W̃G0(z) = W̃ (z).
We have

(W̃ [gj(τ)])′τ = W̃t[g(τ)](g′j(τ))τ + W̃t̄[gj(τ)](ḡj(τ))′τ ,

(W̃ [g̃j(τ)])′τ = W̃t[g̃(τ)](g̃′j(τ))τ + W̃t̄[g̃j(τ)](¯̃gj(τ))′τ

and
(W̃ [gj])

′
τ ∈ Cγ0 [0, 2π], (W̃ [g̃j(τ)])′τ ∈ Cγ0 [0; 2π]; (j = 0, 1).

Compose the difference

(W̃ [gj(τ)])′τ − (W̃ [g̃j(τ)])′τ = W̃t(gj)(g
′
j)τ − W̃t(gj)(g̃

′
j)τ − W̃t(g̃j)(g̃j)

′
τ

+W̃t(gj)(g̃
′
j)τ + W̃t̄(gj)(g̃j)

′
τ − W̃t̄(gj)( ¯̃gj)

′
τ

−W̃t̄(g̃j)( ¯̃gj)
′
τ + W̃t̄(gj)( ¯̃gj)

′
τ (j = 0, 1).

Using (1′) in these expressions and taking into account the inequalities

‖g′j(τ)− g̃′(τ)‖Cγ0/2
≤ constj1 · ‖g′j(τ)− g̃j

′(τ)‖Cα ,

‖ḡ′j(τ)− ¯̃gj
′
(τ)‖Cγ0/2

≤ constj2 · ‖ḡ′j(τ)− ¯̃gj
′
(τ)‖Cα ,

we obtain

‖W̃t(gj)− W̃t(g̃j)‖Cγ0/2
≤ C∗

2j(W̃G0 ; G0)|gj(τ)− g̃j(τ)|γ0/2

≤ C∗
3j εγ0/2 (j = 0, 1). (32)
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We see that the closeness conditions (1′) of the contours Γj and Γ̃j in the plane of

the homeomorphism W̃G0(z) for the corresponding curves W̃G0(Γj) and W̃G0(Γ̃j)
are replaced by conditions (31) and (32).

Now, by virtue of the estimate established in Theorem 3, we come to the
validity of the following proposition.

Theorem 5. If the doubly-connected domains G ⊂ G0 and G̃ ⊂ G0 whose
boundaries belong to the class C ′

α (0 < α < 1) are ε-close to each other in the
sense of (1′), then the estimate

‖µ(ξ)− µ̃(ξ)‖C γ0
2 −β

< Q∗(W̃G0 ; G; β) · ‖µ‖C γ0
2 −β

· ε γ0
2 (33)

holds for all ε ∈ [0; ε∗]; here µ(ξ) and µ̃(ξ) are unique solutions of the integral
equations (29) and (30), respectively, β is any positive number smaller than
γ0/2, the constant Q∗ and small ε∗ are completely defined by giving the initial

domain G and the homeomorphism W̃G0(z).

Note that in Theorem 5 the order of smallness for ε can be obtained arbitrarily
close to γ0 [3], for instance, O(εγ0−η), where η < γ0 is any positive number, but
in that case we can estimate only “small” norms of the value ‖µ(ξ) − µ̃(ξ)‖Cη

(the Hölder index η decreases). In the considered situation the choice η = γ0

2
seems optimal to us.

In conclusion, also note that, analogously to the conformal case, the estimate
in terms of ε for the difference of modules ln ρ(q̃)− ln ρ̃(q̃) calculated by [8] can
be established with the aid of estimate (33).
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