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GEOMETRY OF MODULUS SPACES

R. KHALIL, D. HUSSEIN, AND W. AMIN

Abstract. Let ¢ be a modulus function, i.e., continuous strictly increasing
function on [0, 00), such that ¢(0) =0, #(1) = 1, and ¢(x +y) < ¢(x) + ¢d(y)
for all z,y in [0,00). It is the object of this paper to characterize, for any
Banach space X, extreme points, exposed points, and smooth points of the
unit ball of the metric linear space £?(X), the space of all sequences (z,),
xn € X,n=1,2,..., for which > ¢(]|zy|) < co. Further, extreme, exposed,
and smooth points of the unit ball of the space of bounded linear operators
on /P, 0 < p < 1, are characterized.

2000 Mathematics Subject Classification: Primary: 47B38; Secondary:
48A65.

Key words and phrases: Extreme point, exposed point, smooth point,
modulus function.

0. Introduction. Let ¢ : [0,00) — [0, 00) be a continuous function. We call
¢ a modulus function if:

(i) ¢(x) = 0 if and only if z = 0;

(ii) ¢ is increasing;

(iii) o(x +y) < ¢(x) + o(y).

The functions ¢(z) = 2P, p € (0,1), and ¢(x) = In(1 + x) are modulus
functions.

For a modulus function ¢, we let ¢¢ denote the space of all real-valued se-
quences (z,,) for which 3> ¢(|z,|) < co. For z,y € €2, d(z,y) = X ¢(|1n — yn|)
is a metric on 7. For x € (¢ we let ||z, denote d(z,0). The space (¢, ][,) is
a metric linear space. These spaces were initiated by Ruckle [4].

Throughout this paper, R denotes the set of real numbers. If X is a Banach
space, X* will denote the dual of X. If 2* € X* and = € X, we let (z* x)
denote the value of z* at z. We let ¢? denote the space of all (real) sequences
(x,,) for which Y |z,|? < 00, 0 < p < co. For z € 7, we let

1
o, = {C Il i 1p<oc
b > |z if 0<p<Ll.

So ||z]|; is the 1-norm of z in ¢'. For p = oo, > is the space of all bounded
(real) sequences. If x € £, we let ||z]| = sup |z;].

Let us summarize the basic properties of (¢, ]| || ) in
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Theorem A. Let ¢ be any modulus function. Then:

1) (€2, |l,) is a complete metric linear space.

2) If lzlly < ¢(a), then ||z|[; < a.

3) £ C {Y, and the inclusion map I : (° — (% is continuous.

4) If p(1) = 1, then for every x € (% there exists r > 0 such that ||rz||, = 1.
(5) There ezist o and a in [0,00) such that ¢(x) > ax for all x € [0,a).

(
(
(
(

Proof. The proof of (1) is in [4]. Statements (2) and (3) are easy to handle.
Statement (5) is in [5]. So we prove only (4).

There are two cases:either [[zf|, < 1 or [|z|, > 1. If [jz|, > 1, define F":
[0,1] — [0,00) by F(t) = [[tz[|,. Then F is continuous with F(0) = 0 and
F(1) > 1. By the intermediate value theorem there is r € (0,1) such that
F(r) = 1. Hence [|rz[|, = 1. The other case follows from statement (2) and the
assumption ¢(1) = 1. O

Let X be a Banach space. A linear mapping 7:¢/* — X is called bounded
if there exists A > 0 such that || Tz| < A for all z in ¢¢ for which zlly <
1. We let L(¢¢, X) denote the space of all bounded linear operators on (%
with values in X. We let (¢#)* denote L(¢{¢,R). For T € L({*, X) we set
|T|] = sup{||T%|| : |lz[|, < 1}. For the case 0 < p < 1 we let B({”,¢?) denote
the space of linear operators on (# for which [[Tz[[, < Al[z||, for all z €

with some A depending on 7T'. Since alb|P = a%b‘p for a > 0, it follows that
sup{[|Tz[, : [|z], < 1} = inf{A : [[Tz|[, < Az, for all x € ¢P}. Hence
B(eP,¢P) = L(¢P, (P).

For a modulus function ¢ and a Banach space X, we set (#(X) = {(z,) : z, €
X and Y é([|lzal) < oo} If & = (x,) € £2(X), then we define [|lz[|, = 3 o([|2. ).
It is easy to check that (¢2(X), ||| ) is a complete metric linear space.

Extreme points of the unit ball of L(¢?,¢P), 1 < p < oo, have been studied
extensively by many authors ([6]-[10] and others). A full characterization of
extreme points of the unit ball of L(¢P,¢P), 1 < p < oo, is still an open problem.

In this paper we characterize extreme,exposed, and smooth points of the unit
balls of ¢¢, ¢¢(X) and L(¢7,¢P), 0 < p < 1.

1. Basic Structure of Spaces (¢(X). Throughout this paper we will assume
that:
(i) ¢ is strictly increasing;

(ii) ¢(1) = 1.
Let M denote the class of all modulus functions satisfying (i) and (ii). We
set ((?(X))* = L(¢?, R), where R is the set of real numbers.

Theorem 1.1. Let ¢ € M and X be any Banach space. Then [(¢(X)]* is
isometrically isomorphic to £>°(X™).

Proof. Let F' € {°(X*). So F = (¥}, 3,...) with z} € X* and sup ||7}| < co.
Define F : (¢(X) — R such that for z = (z;) € (9(X), F(z) = X (x;,z7).
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Hence |F(z)| < S |ai]l ] < |F < ||l Now for any function ¢ in M one
can easily show that (*(X) C ¢'(X). Further, if || f||, = 1, then || f[|; < 1. Thus

|7 < 1P (+)

On the other hand, if F € [(¢(X)]*, then we define z} in X* as : z¥(z) =

ﬁ(O, 0,...,0,2,0,..) where z appears in the ith coordinate. Set F'=(x},x3,.. ).
, we obtain F € (*°(X*) and ||F| < HF’ . This

Then since sup ||z} || < Hﬁ
together Withl (%) gives ||F|,, = Hﬁ” Thus the mapping J : (*(X*) —
[0¢(X)]*, J(F) = F is linear onto and an isometry. This ends the proof. [
As a consequence we get
Corollary 1.2. (£¢)* = (>.

Remark 1. If p(x+y) < ¢(z)+¢(y) for any z > 0, y > 0, then there are some
elements x of £ such that there is no z*in ¢* for which (x,z*) = ||z| ||=*]| .
Indeed, if [[z]|, = 1, then the continuity of ¢, being strictly increasing and
¢(1) = 1, implies that ||z|[, = 1 unless x has only one nonzero coordinate.
So for x with more than one nonzero terms there cannot exist x* in ¢*° which
attains its norm at x. However, if £ has only one nonzero coordinate, then
zll; = |zl , if [[z]|; = 1 and Such x* exists.

2. Geometry of B;(¢?(X)). A point x of a set K of a metric linear space F is
called extreme if there exist no y and z in K such that y # z and x = %(y + z).
The point z in B;(F) is called exposed if there exists f € Bj(E*) such that
f(z) =d(z,0), and f(y) < d(y,0) for all y in By(FE), y # x. We call z a smooth
point of B;(F) if there exists a unique f € By(E*) such that f(z) = d(z,0).

In this section we will characterize extreme, exposed, and smooth points of
B1(¢?(X)) for any Banach space X.

Theorem 2.1. Let ¢ € M.The following statements are equivalent:
(i) f is an extreme point of By(*(X)).
(ii) f(n) =0 for all n except for one coordinate, say, f(ng), and f(ng)
is an extreme point of Bi(X).

Proof. (i)—(ii). Let f be extreme and, if possible, assume that f does not
vanish at n; and ny. Define

f(n)7 n#nhnZu
_ ) W)+ f(n2)ll _
g(n) = el 4 (m), n=mn,
0, n = nay,
f(n)a n#nbn%
_ ) WD)+ f(n2)]] _
h(n) = |1|f(n2 i 2L f(n2), n=ny,
0, n=n,.
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Then g # h. Further,
lglly =D_o(lgm)D) < ¢ llf ()] < 1.

Similarly, [|2[[, < 1. Now

[ f ()l £ (n2)|
P T+ Gl T+ ey "~ 9070 O<t<t
where t = £ (n)]l

ILf (n)ll+[1£ (n2)] - ]
Hence f is not an extreme point. Thus f must be of the form

f(n) = 5nn0 * Xo,

where 9;; stands for the Kronecker’s delta.

Now we claim that zo is an extreme point of B;(X). Indeed, |f[[, = 1 =
o(||zol|). Since ¢ is strictly increasing, we have ||zo|| = 1. If 2 is not an extreme
point, then zy = (y + z) for some y and z in B;(X). Then one can construct
frand fp in By (€%(X)) such that f = 3(fi + f2). Hence xo must be extreme.

Conversely: (ii)—(i). Let f(n) = 6un, - with x an extreme point of By (X).
If f is not extreme, then there exist g and h in B; (¢?(X)) such that f = 1(g+h).
But then g(ng) = h(ng) = x since x is an extreme point. Since ||z|| = 1 and
¢ is strictly increasing and ¢(1) = 1, we have g(n) = h(n) = 0 for all n # no.
But this implies that f = g = h, and f is extreme. This ends the proof of the
theorem. [J

As a corollary, we get

Theorem 2.2. A point x is an extreme point of By (£?) if and only if x, = 0
for all n except for one n, say, ng, and |x,,| = 1.

Proof. Take R for X. O
As for the exposed points we have

Theorem 2.3. Let f € B;(¢?(X)). The following statements are equivalent:
(1) f is an exposed point.
(i) f(n) = duny - and x is an exposed point of Bi(X).

Proof. (i)—(ii). Let f be exposed. Then f is an extreme point. Hence
f(n)dnn, -  with 2 an extreme point of By(X). If x is not exposed, then for
every z* € By(X*) with z*(x) = 1, there exists z € By(X) such that z*(z) =1
and z # z. Now let ' € [(?(X)]* = (°°(X*) such that |F| = 1, and F(f) = 1.
In that case, if I' = (7,73,...), then F(f) = z, (¥) = 1. Since x is not
exposed, there exists z #  in B;(X) such that x} _(2) = 1. But then F(g) =1,
where g(n) = d,p, -z and f is not exposed. Hence x must be exposed in By (X).

Conversely: (ii)—(i). Let f = 0pp, - © with = exposed in By (X). If 2* is
the functional that exposes z, then one can easily see that F'(n) = d,p, - 2* is
the functional that exposes f. This ends the proof. [

Theorem 2.3 readily implies
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Theorem 2.4. An element f is an exposed point of By(£?) if and only if f
18 extreme.

As for smooth points we have
Theorem 2.5. B ((?(X)) has no smooth points for any Banach space X.

Proof. Let f € By(£?(X)). If there exists F' € B;(£>°(X*)) such that F(f) =1,
then by Remark 1 f must have only one nonzero coordinate, say, f(ng) = x,,.
Since ¢(1) = 1, it follows that ||z,,|| = 1. Consider the functionals:

Fi(n) = dpp, - a*with 2 (z,,) = 1,
Fy(n) = 0png - ° 4 Onng41 - 27 with [[27]| = 1.

Then, I} and F; are two different elements in By (¢?(X)) such that Fy(f) =
F5(f) = 1. Thus f is not smooth. This ends the proof. [

It follows that B;(¢?) has no smooth points.

3. Geometry of B;(L({")), 0 < p < 1. The characterization of the extreme
points of By (L(¢?)), 1 < p < 00, is still an open difficult problem [1], [3]. In this
section we give a complete description of the extreme points and the exposed
points of the unit ball of L(¢?) for 0 < p < 1. We remark that Kalton, [2],
studied isomorphisms of and some classes of operators on /7, 0 < p < 1.

Theorem 3.1. Let T' € By(L(?)), 0 < p < 1. The following statements are
equivalent:
(1) T is an extreme point.
(i) T is a permutation on the basis elements.

Proof. (ii)—(i). Let T be a permutation of the basis elements ej,es,. ...
If T is not extreme, then there exists S € Bj(L(¢?)) such that S # 0 and
|IS+T| < 1. Thus [[(S£T)z| <1 for all z in By(¢?). Thus, in particular,
|Sen £ Tey,|| < 1 for all n. Since ||S]| < 1, it follows that Te, is not extreme
for those n for which Se, # 0. Since S # 0, we get a contradiction, noting that
+e,, are the extreme points of /7. Thus T must be extreme.

Conversely: (i)—(ii). Let T be an extreme element of By(L(¢?)), but, if
it is possible, assume there exists kg such that T'ey, is not a basis element and
hence not an extreme element of By (¢?). Thus there exists z in By (¢?) such that
|Tex, £ z|| < 1. Define the operator S on * as S = ey, ® z, 80 Sx = T, 2.
Then

IS £ D)zl = [|(5 £ D) wies)|, = [ 2i(S £ T)es
<3 [l (S £ Teil, -

p

But
T€07 i 7é kOJ

zx£Tey,, 1= ko.
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Thus in either case we have ||(S£T)e;|| < 1 for all i. So [[(S+T)z| <
> |z|P. Tt follows that ||S+ T < 1, and T is not extreme, which contradicts
the assumption. So 7" must be a permutation. This ends the proof. [

To characterize the exposed points, we need
Theorem 3.2. L(¢?) is isometrically isomorphic to (>°(¢P).
Proof. Let f € £>°(¢?). Then f : N — (¥ with sup||f(n)|, < oo. Define T":

(" — {7, by Tw = Y wpf (k). Then [|Twl|, <3 [lzpf (k) < 3w [ F(R)], <
[ flloo N[l Thus [T} < | /]l But Tey = f(k). So |[f(E)]l, = [ Texll, < 1.
It follows that || f]|, < ||T|| .Hence || f]|..=/|T" -

On the other hand, let 7" € L(¢?). Define f(n) = Te,. Then one can easily
show that f € ¢>(¢?) and || f||_,=[|7"||. This ends the proof. [

Now for the exposed points we have

Theorem 3.3. Let T € By (L(¢?)). The following statements are equivalent:
(1) T is exposed.
(ii) T is extreme.

Proof. That (i)—(ii) is immediate.

For the converse, let T" be an extreme point. By Theorem 3.1, T" is a permuta-
tion of the basis elements. Let f be the function corresponding to T" as in Theo-
rem 3.2. Thus f(n) = +ey(,). Define G : L(?) — R, G(S) = X t,(f(n), g(n)),
where 0 < t,,, >t, = 1, and ¢ is the element in ¢>°(¢?) that represents S as in
Theorem 3.2. Then, G is bounded and ||G|| < 1. Further G(T') = 1. Now, if it
is possible, assume there exists some S in By (L(¢?)) such that G(S) = 1. Then
> tn(f(n),g(n)) = 1. This implies that (f(n),g(n)) = 1. Since f(n) = ek, it
follows that g(n) = f(n), and so S = T. Hence T is exposed. This ends the
proof. [
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