GEOMETRY OF MODULUS SPACES

R. KHALIL, D. HUSSEIN, AND W. AMIN

Abstract. Let ϕ be a modulus function, i.e., continuous strictly increasing function on $[0, \infty)$, such that $\phi(0) = 0$, $\phi(1) = 1$, and $\phi(x+y) \leq \phi(x) + \phi(y)$ for all x, y in $[0, \infty)$. It is the object of this paper to characterize, for any Banach space X, extreme points, exposed points, and smooth points of the unit ball of the metric linear space $\ell^{\phi}(X)$, the space of all sequences (x_n) , $x_n \in X$, $n = 1, 2, \ldots$, for which $\sum \phi(\|x_n\|) < \infty$. Further, extreme, exposed, and smooth points of the unit ball of the space of bounded linear operators on ℓ^p , 0 , are characterized.

2000 Mathematics Subject Classification: Primary: 47B38; Secondary: 48A65.

Key words and phrases: Extreme point, exposed point, smooth point, modulus function.

- **0. Introduction.** Let $\phi : [0, \infty) \longrightarrow [0, \infty)$ be a continuous function. We call ϕ a modulus function if:
 - (i) $\phi(x) = 0$ if and only if x = 0;
 - (ii) ϕ is increasing;
 - (iii) $\phi(x+y) \le \phi(x) + \phi(y)$.

The functions $\phi(x) = x^p$, $p \in (0,1)$, and $\phi(x) = \ln(1+x)$ are modulus functions.

For a modulus function ϕ , we let ℓ^{ϕ} denote the space of all real-valued sequences (x_n) for which $\sum \phi(|x_n|) < \infty$. For $x, y \in \ell^{\phi}$, $d(x, y) = \sum \phi(|x_n - y_n|)$ is a metric on ℓ^{ϕ} . For $x \in \ell^{\phi}$ we let $||x||_{\phi}$ denote d(x, 0). The space $(\ell^{\phi}, ||||_{\phi})$ is a metric linear space. These spaces were initiated by Ruckle [4].

Throughout this paper, R denotes the set of real numbers. If X is a Banach space, X^* will denote the dual of X. If $x^* \in X^*$ and $x \in X$, we let $\langle x^*, x \rangle$ denote the value of x^* at x. We let ℓ^p denote the space of all (real) sequences (x_n) for which $\sum |x_n|^p < \infty$, $0 . For <math>x \in \ell^p$, we let

$$||x||_p = \begin{cases} (\sum |x_i|^p)^{\frac{1}{p}} & \text{if } 1 \le p < \infty, \\ \sum |x_i|^p & \text{if } 0 < p < 1. \end{cases}$$

So $||x||_1$ is the 1-norm of x in ℓ^1 . For $p = \infty$, ℓ^∞ is the space of all bounded (real) sequences. If $x \in \ell^\infty$, we let $||x||_\infty = \sup |x_i|$.

Let us summarize the basic properties of $(\ell^{\phi}, \parallel \parallel_{\phi})$ in

Theorem A. Let ϕ be any modulus function. Then:

- (1) $(\ell^{\phi}, \| \|_{\phi})$ is a complete metric linear space.
- (2) If $||x||_{\phi} \le \phi(a)$, then $||x||_{1} \le a$.
- (3) $\ell^{\phi} \subseteq \ell^{\dot{1}}$, and the inclusion map $I : \ell^{\phi} \longrightarrow \ell^{1}$ is continuous.
- (4) If $\phi(1) = 1$, then for every $x \in \ell^{\phi}$ there exists r > 0 such that $||rx||_{\phi} = 1$.
- (5) There exist α and a in $[0, \infty)$ such that $\phi(x) > \alpha x$ for all $x \in [0, a)$.

Proof. The proof of (1) is in [4]. Statements (2) and (3) are easy to handle. Statement (5) is in [5]. So we prove only (4).

There are two cases: either $\|x\|_{\phi} < 1$ or $\|x\|_{\phi} > 1$. If $\|x\|_{\phi} > 1$, define $F: [0,1] \longrightarrow [0,\infty)$ by $F(t) = \|tx\|_{\phi}$. Then F is continuous with F(0) = 0 and F(1) > 1. By the intermediate value theorem there is $r \in (0,1)$ such that F(r) = 1. Hence $\|rx\|_{\phi} = 1$. The other case follows from statement (2) and the assumption $\phi(1) = 1$. \square

Let X be a Banach space. A linear mapping $T:\ell^{\phi} \longrightarrow X$ is called bounded if there exists $\lambda > 0$ such that $||Tx|| \leq \lambda$ for all x in ℓ^{ϕ} for which $||x||_{\phi} \leq 1$. We let $L(\ell^{\phi}, X)$ denote the space of all bounded linear operators on ℓ^{ϕ} with values in X. We let $(\ell^{\phi})^*$ denote $L(\ell^{\phi}, R)$. For $T \in L(\ell^{\phi}, X)$ we set $||T|| = \sup\{||Tx|| : ||x||_{\phi} \leq 1\}$. For the case $0 we let <math>B(\ell^p, \ell^p)$ denote the space of linear operators on ℓ^p for which $||Tx||_p \leq \lambda ||x||_p$ for all $x \in \ell^p$ with some λ depending on T. Since $a|b|^p = \left|a^{\frac{1}{p}}b\right|^p$ for a > 0, it follows that $\sup\{||Tx||_p : ||x||_p \leq 1\} = \inf\{\lambda : ||Tx||_p \leq \lambda ||x||_p$ for all $x \in \ell^p\}$. Hence $B(\ell^p, \ell^p) = L(\ell^p, \ell^p)$.

For a modulus function ϕ and a Banach space X, we set $\ell^{\phi}(X) = \{(x_n) : x_n \in X \text{ and } \sum \phi(\|x_n\|) < \infty\}$. If $x = (x_n) \in \ell^{\phi}(X)$, then we define $\|x\|_{\phi} = \sum \phi(\|x_n\|)$. It is easy to check that $(\ell^{\phi}(X), \|\|_{\phi})$ is a complete metric linear space.

Extreme points of the unit ball of $L(\ell^p, \ell^p)$, $1 , have been studied extensively by many authors ([6]–[10] and others). A full characterization of extreme points of the unit ball of <math>L(\ell^p, \ell^p)$, 1 , is still an open problem.

In this paper we characterize extreme, exposed, and smooth points of the unit balls of ℓ^{ϕ} , $\ell^{\phi}(X)$ and $L(\ell^{p}, \ell^{p})$, 0 .

- 1. Basic Structure of Spaces $\ell^{\phi}(X)$. Throughout this paper we will assume that:
 - (i) ϕ is strictly increasing;
 - (ii) $\phi(1) = 1$.

Let M denote the class of all modulus functions satisfying (i) and (ii). We set $(\ell^{\phi}(X))^* = L(\ell^{\phi}, R)$, where R is the set of real numbers.

Theorem 1.1. Let $\phi \in M$ and X be any Banach space. Then $[\ell^{\phi}(X)]^*$ is isometrically isomorphic to $\ell^{\infty}(X^*)$.

Proof. Let $F \in \ell^{\infty}(X^*)$. So $F = (x_1^*, x_2^*, \dots)$ with $x_i^* \in X^*$ and $\sup_i ||x_i^*|| < \infty$. Define $\tilde{F} : \ell^{\phi}(X) \longrightarrow R$ such that for $x = (x_i) \in \ell^{\phi}(X)$, $\tilde{F}(x) = \sum \langle x_i, x_i^* \rangle$.

Hence $|\tilde{F}(x)| \leq \sum ||x_i|| ||x_i^*|| \leq ||F|| \sum ||x_i||$. Now for any function ϕ in M one can easily show that $\ell^{\phi}(X) \subseteq \ell^1(X)$. Further, if $||f||_{\phi} = 1$, then $||f||_{1} \leq 1$. Thus

$$\|\widetilde{F}\| \le \|F\| \tag{*}$$

On the other hand, if $\tilde{F} \in [\ell^{\phi}(X)]^*$, then we define x_i^* in X^* as : $x_i^*(x) = \tilde{F}(0,0,\ldots,0,x,0,\ldots)$ where x appears in the ith coordinate. Set $F = (x_1^*, x_2^*, \ldots)$. Then since $\sup_i \|x_i^*\| \leq \|\tilde{F}\|$, we obtain $F \in \ell^{\infty}(X^*)$ and $\|F\|_{\infty} \leq \|\tilde{F}\|$. This together with (*) gives $\|F\|_{\infty} = \|\tilde{F}\|$. Thus the mapping $J : \ell^{\infty}(X^*) \longrightarrow [\ell^{\phi}(X)]^*$, $J(F) = \tilde{F}$ is linear onto and an isometry. This ends the proof. \square

As a consequence we get

Corollary 1.2. $(\ell^{\phi})^* = \ell^{\infty}$.

Remark 1. If $\phi(x+y) < \phi(x) + \phi(y)$ for any x > 0, y > 0, then there are some elements x of ℓ^{ϕ} such that there is no x^* in ℓ^{∞} for which $\langle x, x^* \rangle = \|x\| \|x^*\|$. Indeed, if $\|x\|_{\phi} = 1$, then the continuity of ϕ , being strictly increasing and $\phi(1) = 1$, implies that $\|x\|_1 = 1$ unless x has only one nonzero coordinate. So for x with more than one nonzero terms there cannot exist x^* in ℓ^{∞} which attains its norm at x. However, if x has only one nonzero coordinate, then $\|x\|_1 = \|x\|_{\phi}$, if $\|x\|_{\phi} = 1$ and such x^* exists.

2. Geometry of $B_1(\ell^{\phi}(X))$. A point x of a set K of a metric linear space E is called extreme if there exist no y and z in K such that $y \neq z$ and $x = \frac{1}{2}(y+z)$. The point x in $B_1(E)$ is called exposed if there exists $f \in B_1(E^*)$ such that f(x) = d(x,0), and f(y) < d(y,0) for all y in $B_1(E)$, $y \neq x$. We call x a smooth point of $B_1(E)$ if there exists a unique $f \in B_1(E^*)$ such that f(x) = d(x,0).

In this section we will characterize extreme, exposed, and smooth points of $B_1(\ell^{\phi}(X))$ for any Banach space X.

Theorem 2.1. Let $\phi \in M$. The following statements are equivalent:

- (i) f is an extreme point of $B_1(\ell^{\phi}(X))$.
- (ii) f(n) = 0 for all n except for one coordinate, say, $f(n_0)$, and $f(n_0)$ is an extreme point of $B_1(X)$.

Proof. (i) \longrightarrow (ii). Let f be extreme and, if possible, assume that f does not vanish at n_1 and n_2 . Define

$$g(n) = \begin{cases} f(n), & n \neq n_1, n_2, \\ \frac{\|f(n_1)\| + \|f(n_2)\|}{\|f(n_1)\|} f(n_1), & n = n_1, \\ 0, & n = n_2, \end{cases}$$

$$h(n) = \begin{cases} f(n), & n \neq n_1, n_2, \\ \frac{\|f(n_1)\| + \|f(n_2)\|}{\|f(n_2)\|} f(n_2), & n = n_2, \\ 0, & n = n_1. \end{cases}$$

Then $g \neq h$. Further,

$$||g||_{\phi} = \sum \phi(||g(n)||) \le \sum \phi ||f(n)|| \le 1.$$

Similarly, $||h||_{\phi} \leq 1$. Now

$$f = \frac{\|f(n_1)\|}{\|f(n_1)\| + \|f(n_2)\|} g + \frac{\|f(n_2)\|}{\|f(n_1)\| + \|f(n_2)\|} h = tg + (1-t)h, \quad 0 < t < 1,$$

where $t = \frac{\|f(n_1)\|}{\|f(n_1)\| + \|f(n_2)\|}$.

Hence f is not an extreme point. Thus f must be of the form

$$f(n) = \delta_{nn_0} \cdot x_0,$$

where δ_{ij} stands for the Kronecker's delta.

Now we claim that x_0 is an extreme point of $B_1(X)$. Indeed, $||f||_{\phi} = 1 = \phi(||x_0||)$. Since ϕ is strictly increasing, we have $||x_0|| = 1$. If x_0 is not an extreme point, then $x_0 = \frac{1}{2}(y+z)$ for some y and z in $B_1(X)$. Then one can construct f_1 and f_2 in $B_1(\ell^{\phi}(X))$ such that $f = \frac{1}{2}(f_1 + f_2)$. Hence x_0 must be extreme.

Conversely: (ii) \longrightarrow (i). Let $f(n) = \delta_{nn_0} \cdot x$ with x an extreme point of $B_1(X)$. If f is not extreme, then there exist g and h in $B_1(\ell^{\phi}(X))$ such that $f = \frac{1}{2}(g+h)$. But then $g(n_0) = h(n_0) = x$ since x is an extreme point. Since ||x|| = 1 and ϕ is strictly increasing and $\phi(1) = 1$, we have g(n) = h(n) = 0 for all $n \neq n_0$. But this implies that f = g = h, and f is extreme. This ends the proof of the theorem. \square

As a corollary, we get

Theorem 2.2. A point x is an extreme point of $B_1(\ell^{\phi})$ if and only if $x_n = 0$ for all n except for one n, say, n_0 , and $|x_{n_0}| = 1$.

Proof. Take R for X. \square

As for the exposed points we have

Theorem 2.3. Let $f \in B_1(\ell^{\phi}(X))$. The following statements are equivalent:

- (i) f is an exposed point.
- (ii) $f(n) = \delta_{nn_0} \cdot x$ and x is an exposed point of $B_1(X)$.

Proof. (i) \longrightarrow (ii). Let f be exposed. Then f is an extreme point. Hence $f(n)\delta_{nn_0} \cdot x$ with x an extreme point of $B_1(X)$. If x is not exposed, then for every $x^* \in B_1(X^*)$ with $x^*(x) = 1$, there exists $z \in B_1(X)$ such that $x^*(z) = 1$ and $z \neq x$. Now let $F \in [\ell^{\phi}(X)]^* = \ell^{\infty}(X^*)$ such that ||F|| = 1, and F(f) = 1. In that case, if $F = (x_1^*, x_2^*, \ldots)$, then $F(f) = x_{n_0}^*(x) = 1$. Since x is not exposed, there exists $z \neq x$ in $B_1(X)$ such that $x_{n_0}^*(z) = 1$. But then F(g) = 1, where $g(n) = \delta_{nn_0} \cdot z$ and f is not exposed. Hence x must be exposed in $B_1(X)$.

Conversely: (ii) \longrightarrow (i). Let $f = \delta_{nn_0} \cdot x$ with x exposed in $B_1(X)$. If x^* is the functional that exposes x, then one can easily see that $F(n) = \delta_{nn_0} \cdot x^*$ is the functional that exposes f. This ends the proof. \square

Theorem 2.3 readily implies

Theorem 2.4. An element f is an exposed point of $B_1(\ell^{\phi})$ if and only if f is extreme.

As for smooth points we have

Theorem 2.5. $B_1(\ell^{\phi}(X))$ has no smooth points for any Banach space X.

Proof. Let $f \in B_1(\ell^{\phi}(X))$. If there exists $F \in B_1(\ell^{\infty}(X^*))$ such that F(f) = 1, then by Remark 1 f must have only one nonzero coordinate, say, $f(n_0) = x_{n_0}$. Since $\phi(1) = 1$, it follows that $||x_{n_0}|| = 1$. Consider the functionals:

$$F_1(n) = \delta_{nn_0} \cdot x^* \text{with } x^*(x_{n_0}) = 1,$$

 $F_2(n) = \delta_{nn_0} \cdot x^* + \delta_{n,n_0+1} \cdot z^* \text{ with } ||z^*|| = 1.$

Then, F_1 and F_2 are two different elements in $B_2(\ell^{\phi}(X))$ such that $F_1(f) = F_2(f) = 1$. Thus f is not smooth. This ends the proof. \square

It follows that $B_1(\ell^{\phi})$ has no smooth points.

3. Geometry of $B_1(L(\ell^p))$, $0 . The characterization of the extreme points of <math>B_1(L(\ell^p))$, $1 , is still an open difficult problem [1], [3]. In this section we give a complete description of the extreme points and the exposed points of the unit ball of <math>L(\ell^p)$ for $0 . We remark that Kalton, [2], studied isomorphisms of and some classes of operators on <math>\ell^p$, 0 .

Theorem 3.1. Let $T \in B_1(L(\ell^p))$, 0 . The following statements are equivalent:

- (i) T is an extreme point.
- (ii) T is a permutation on the basis elements.

Proof. (ii) \longrightarrow (i). Let T be a permutation of the basis elements e_1, e_2, \ldots If T is not extreme, then there exists $S \in B_1(L(\ell^p))$ such that $S \neq 0$ and $||S \pm T|| \leq 1$. Thus $||(S \pm T)x|| \leq 1$ for all x in $B_1(\ell^p)$. Thus, in particular, $||Se_n \pm Te_n|| \leq 1$ for all n. Since $||S|| \leq 1$, it follows that Te_n is not extreme for those n for which $Se_n \neq 0$. Since $S \neq 0$, we get a contradiction, noting that $\pm e_n$ are the extreme points of ℓ^p . Thus T must be extreme.

Conversely: (i) \longrightarrow (ii). Let T be an extreme element of $B_1(L(\ell^p))$, but, if it is possible, assume there exists k_0 such that Te_{k_0} is not a basis element and hence not an extreme element of $B_1(\ell^p)$. Thus there exists z in $B_1(\ell^p)$ such that $||Te_{k_0} \pm z|| \leq 1$. Define the operator S on ℓ^p as $S = e_{k_0} \otimes z$, so $Sx = x_{k_0}z$. Then

$$\|(S \pm T)x\|_{p} = \|(S \pm T)(\sum x_{i}e_{i})\|_{p} = \|\sum x_{i}(S \pm T)e_{i}\|_{p}$$

$$\leq \sum |x_{i}|^{p} \|(S \pm T)e_{i}\|_{p}.$$

But

$$(S \pm T)e_i = \begin{cases} Te_0, & i \neq k_0, \\ z \pm Te_{k_0}, & i = k_0. \end{cases}$$

Thus in either case we have $||(S \pm T)e_i|| \le 1$ for all i. So $||(S \pm T)x|| \le \sum |x_i|^p$. It follows that $||S \pm T|| \le 1$, and T is not extreme, which contradicts the assumption. So T must be a permutation. This ends the proof. \square

To characterize the exposed points, we need

Theorem 3.2. $L(\ell^p)$ is isometrically isomorphic to $\ell^{\infty}(\ell^p)$.

Proof. Let $f \in \ell^{\infty}(\ell^{p})$. Then $f: N \longrightarrow \ell^{p}$ with $\sup_{n} \|f(n)\|_{p} < \infty$. Define $T: \ell^{p} \longrightarrow \ell^{p}$, by $Tx = \sum x_{k}f(k)$. Then $\|Tx\|_{p} \leq \sum \|x_{p}f(k)\|_{p} \leq \sum |x_{k}|^{p} \|f(k)\|_{p} \leq \|f\|_{\infty} \|x\|_{p}$. Thus $\|T\| \leq \|f\|_{\infty}$. But $Te_{k} = f(k)$. So $\|f(k)\|_{p} = \|Te_{k}\|_{p} \leq \|T\|$. It follows that $\|f\|_{\infty} \leq \|T\|$. Hence $\|f\|_{\infty} = \|T\|$.

On the other hand, let $T \in L(\ell^p)$. Define $f(n) = Te_p$. Then one can easily show that $f \in \ell^{\infty}(\ell^p)$ and $||f||_{\infty} = ||T||$. This ends the proof. \square

Now for the exposed points we have

Theorem 3.3. Let $T \in B_1(L(\ell^p))$. The following statements are equivalent:

- (i) T is exposed.
- (ii) T is extreme.

Proof. That $(i) \longrightarrow (ii)$ is immediate.

For the converse, let T be an extreme point. By Theorem 3.1, T is a permutation of the basis elements. Let f be the function corresponding to T as in Theorem 3.2. Thus $f(n) = \pm e_{k(n)}$. Define $G: L(\ell^p) \longrightarrow R$, $G(S) = \sum t_n \langle f(n), g(n) \rangle$, where $0 < t_n, \sum t_n = 1$, and g is the element in $\ell^{\infty}(\ell^p)$ that represents S as in Theorem 3.2. Then, G is bounded and $||G|| \le 1$. Further G(T) = 1. Now, if it is possible, assume there exists some S in $B_1(L(\ell^p))$ such that G(S) = 1. Then $\sum t_n \langle f(n), g(n) \rangle = 1$. This implies that $\langle f(n), g(n) \rangle = 1$. Since $f(n) = e_{k(n)}$, it follows that g(n) = f(n), and so S = T. Hence T is exposed. This ends the proof. \square

ACKNOWLEDGMENT

The authors would like to thank the referee for a very careful reading of the manuscript. His suggestions and comments helped us to write the final version of the paper.

REFERENCES

- 1. W. Deeb and R. Khalil, Exposed and smooth points of some classes of operators in $L(\ell^p)$, $1 \le p < \infty$. J. Funct. Anal. 103(1992), 217–228.
- N. J. Kalton, Isomorphisms between L_p-functions. J. Funct. Anal. 42(1981), 299–337.
- 3. R. Khalil, Smooth points of unit balls of operator and function spaces. *Demonstr. Math.* **29**(1996), 723–732.
- W. Ruckle, FK spaces in which the sequence of coordinate vector is bounded. Canadian J. Math. 25(1973), 973–978.
- 5. W. DEEB and R. Younis, Extreme points of a class of non-locally convex topological vector spaces. *Math. Rep. Toyama Univ.* **6**(1983), 95–103.

- 6. W. Deeb and R. Khalil, Exposed and smooth points of some classes of operators in $L(\ell^p)$. J. Funct. Anal. 103(1992), 217–228.
- 7. R. Grzaslewicz, Extreme operators on 2-dimensional ℓ^p -spaces. Coll. Math. 44(1981), 209–215.
- 8. R. Grzaslewicz, A note on extreme contractions on ℓ^p -spaces. *Portugal. Math.* **40**(1981), 413–419.
- 9. R. Khalil, A class of extreme contractions in $L(\ell^p)$. Annali di Mat. Pura ed Applic. 145(1988), 1–5.
- 10. C.-H. Kan, A class of extreme L^p contractions, $p \neq 1, 2, \infty$. Illinois J. Math. **30**(1986), 612–635.

(Received 9.02.2001; revised 4.10.2001)

Authors' address:
Department of Mathematics
University of Jordan, Amman
Jordan
E-mail: roshdi@ju.edu.jo
hussein@ju.edu.jo
wamin@ju.edu.jo