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Abstract 
In this paper the authors have used certain fundamental concept of functional 
analysis to tackle a class of constrained time optimal control problems. A class of 
constrained time optimal control problems has been solved in 2-Banach space 
setting. An example is exhibited to show the technique of application of the 
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1      Introduction 

 
Minimum time optimal control problem has been solved by different authors 
using functional analysis technique in Banach Space setting. Minamide and 
Nakamura [8,9] considered a related problem where the objective function was a 
continuous convex functional. Choudhury and Mukherjee [1,11,12] developed a 
uniform theory of time optimal control problem for system which can be 
represented in terms of linear, bounded and onto transformation from a Banach 
space of control function to another Banach space. Recently, the concept of 2-
Banach spaces has been developed. Many authors like Acikgoz [7]; 
Lewandowska, Moslehian and Saadatpour [24,25]; Freese and Cho [10]; Cho, 
Kim and Misiak [23]; Reddy and Dutta [3,5]; Park [4]; Som [14] have developed 
a uniform theory in 2-Banach space. Optimization in 2-Banach space setting is an 
important area of application of functional analysis. So, it may be worthwhile to 
make an attempt to develop an optimization theory in 2-Banach space. In this 
paper, we have developed a class of constrained time optimal control problems in 
2-Banach space. 
The control systems, which can be characterized by the following vector matrix 
differential equation: 

(1),                                                                       U(t)B(t)X(t) A(t)
dt

dx +=                                                         

where X(t) is an n vector, representing the instantaneous state of the system, u(t) 
is an r-vector (r≤n) representing the control input to the system, A(t) is (n × n) 
matrix and B(t) is an (n × r) matrix has received considerable attention in the 
literature. The solution of the above equation can be expressed in the following 
integral forms: 

           (2),                                                
t

0t
ds  U(s)B(s) s)φ(t,)0X(t )0tφ(t,X(t) ∫+=                                             

where φ (t, t0) is the fundamental matrix of the system (1), and x(t0), the initial 
state of the system at time t = t0. The minimum time control problem, is to find the 
optimal control u(t) belonging to the admissible set, which will drive the systems 
from a given initial state x(t0) at t = t0,  to the desired state x1 in minimum time t i.e. 

x(t) = x1. Now (2) can be written as   
t

0t
ds  U(s)B(s) s)φ(t,)0X(t )0tφ(t,X(t) ∫=− .                                    

Put  ξ.)0X(t )0tφ(t,X(t) =− Expression (2) can be written as ξ = Tt u, where  

∫=
t

0t
ds  U(s)B(s) s)φ(t, u

t
T . Thus without any loss of generality one can consider the 

problems of finding the optimal u to drive the system from the origin to any point 
ξ in minimum time t. 
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The above problem can be considered as a mapping from some space to which u 
belongs to some other space ξ belongs. In the light of the above we can consider 
following general problem:  
Let Bt be a 2-Banach space depending on the parameter t and D be also a 2-
Banach space. Let Tt be a bounded linear transformation depending on the 
parameter mapping Bt onto D. The problem is to find the optimal control u∈Bt to 
reach ξ from the origin in minimum time t under the constraint N1{(u,u1): u,u1 ∈ 
Bt }≤1 where N1(.,.) denotes the 2-norm function defined on Bt.  
 
2. Some Preliminaries: Definition of 2-Normed space 2.1: Let Bt be a 
vector space of dimension greater than one over F, where F is the real or complex 
number field. Suppose N1(.,.) be a non negative real valued function on Bt × Bt 
which satisfies the conditions:                           (і) N1(ui,uj)=0 if and only if ui and 
uj are linearly dependent vectors, (ii)N1(ui,uj)= N1(uj,ui) for all ui,uj ∈ Bt,  (iii) 
N1(λui,uj)=|λ| N1(ui,uj) for all λ∈F and for all ui,uj ∈ Bt, (iv) N1(ui+uj,z) ≤ 
N1(ui,z)+ N1(uj,z) for all ui,uj,z∈ Bt. Then N1(.,.) is called a 2-norm function 
defined on Bt and (Bt, N1 (.,.)) is called a linear 2-normed space.                                                                                                                    
A sequence {un} n≥1  in a linear 2-normed space Bt is called Cauchy sequence if 
there exist two linear independent elements y and z in Bt such that {N1(un, y)} and 
{N 1(un, z)} are real Cauchy sequence, i.e., 0y)},x(x{Nlim nm1

nm,
=−  and 

0z)},x(x{Nlim nm1
nm,

=−                                                                                                   

A sequence {un} n≥1  in a linear 2-normed space (Bt, N1(.,.)) is called convergent if 
there exists              u ∈ Bt such that  01ny)}x,n(x1lim{N →≥−  ∀ y ∈ Bt, i.e., 

01ny)}x,n(x1lim{N =≥−  ∀ y ∈ Bt.                                                                                                            

A 2-normed space (Bt,N1(.,.)) is called a 2-Banach space if every Cauchy 
sequence is convergent. Also if Bt and D are 2-Banach spaces over the field of 
real numbers, it can be verified that Bt×D is also 2-Banach space with respect to 
the 2-norm N3(.,.) where                              N3{(u i,vi),( uj,vj)}= 
min{N1(ui,uj),N2(vi,vj)},  i.e. N3(.,.)=min{N1(.,.), N2(.,.)}; N1(.,.) and N2(.,.) are 2-
norm functions defined on the spaces Bt and D respectively and 
N3{( u i,vi),( uj,vj)}=0 iff either ui, uj are linearly dependent (L.D.) in Bt or vi,vj  are 
linearly dependent in D.                                               

Let '
3

N,'
2

N,'
1

N are the 2-norm functions defined on the spaces 'D)
t

(B ,'D ,'
t

B ×  

respectively, where )}(.,'
2

N(.,.),'
1

{Nmin )(.,'
3

N =  and '
t

B denotes the conjugate of 

Bt. Let Bt be the conjugate of Xt and D be the conjugate of Y. Then '
t

X
t

B =  and 

D=Y′. Let  φ:D→R &  f : X→R be two functionals. Then φ∈D′, f∈X′; *
t

B
1
f ∈ .  
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Example 2.1: For X=R3, define:                                                                                                    
N1(x,y)=max{x1y2-x2y1+x1y3-x3y1,x1y2-x2y1+x2y3-x3y2}, where 
x=(x1,x2,x3) and y=(y1,y2,y3)∈R3. Then N1(.,.) is a 2-norm on R3. See more details 
Freese [10], Acikgoz [7]. 
For examples of some known 2-normed spaces, generalized 2-normed space; see 
Adak [15]-[22].                                                                                                                    
Definition 2.2: Let X and Y be real linear spaces. Denote by D a non-empty 
subset of X × Y such that for every x ∈ X, y ∈ Y the sets Dx = {y ∈ Y:(x,y) ∈ D} 
and Dy = {x ∈ X:(x,y) ∈ D} are linear subspaces of the spaces Y and X 
respectively. A function N5(.,.):D →[0, ∞) will be called a generalized 2-norm on 
D if it satisfies the conditions: (i) N5(x, αy) = α  N5(x, y) = N5(αx, y) for any 
real number α and all (x ,y) ∈ D; (ii)N5(x, y + z) ≤ N5(x, y) + N5(x, z) for x ∈ X, 
y, z ∈ Y with (x, y), (x, z) ∈ D; (iii) N5(x + y, z) ≤ N5(x, z) + N5(y, z) for x,y ∈ X, 
z ∈ Y with (x, z) (y, z) ∈ D. Then D is called a 2-normed set.                                                                                                        
In particular, if D = X × Y, the function N5(.,.) is said to be a generalized 2-norm 
on X × Y and the pair (X × Y, N5(.,.)) is called a generalized 2-normed space.                                                        
Unfortunately, there is no connection between normed spaces and 2-normed 
spaces, but in 1999 in order to introduce some connections between normed 
spaces and 2-normed spaces, Lewandowska [24] introduced generalized 2-normed 
spaces, as a subspace of 2-normed spaces.  
 
If X = Y, then the generalized 2-normed space (X × X, N1(.,.)) is denoted by (X, 
N1(.,.)).                           In the case that X = Y, D = D−1, where D−1 = {(y, x) : (x, 
y) ∈ D}, and  N5(x, y) = N5(y, x) for all (x, y) ∈ D, we call N5(.,.) a generalized 
symmetric 2-norm function defined on X×X and D a symmetric 2-norm set.                                                                                                                               
 
Also let (X, N(.)) be a normed space. Then N1(x, y) = N(x). N(y) for all x, y ∈ X 
is a 2-norm function defined on X × X. So, (X, N1(.,.)) is a generalized 2-normed 
space.  
If we take as N(x)=N(y), our generalized 2-normed space will be a generalized 
symmetric 2-normed space with the symmetric 2-norm defined by N1(x, y) = N(x). 
N(y) for all x, y ∈ X.                      Let us remark that  a symmetric 2-normed 
space need not be a 2-normed space in the sense of Gahler [13]. For instance 
given above, x≠θ, y=kx, k≠0, we obtain N1(x,y)=N1(x, kx)=kN1(x,x)>0, but 
inspite of this x and y are linearly dependent. So from this, we say that the 2-
normed space is not a 2-normed space in the sense of Definition 2.1.                                               
Each 2-normed space is a generalized 2-normed space. But, in case of X = Y, D = 
D−1; the generalized 2-normed space is a 2-normed space.                                                                          

Throughout the paper, '
3

N ,'
2

N,'
1

N
3,

N
2,

N
1,

N  denote the 2-norm functions defined 

on the spaces 'D)
t

(B,'D,'
t

BD),
t

(BD,,
t

B ××  respectively which are defined earlier 

in Definition 2.1.  
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Problem Statement 
          In this paper we shall consider the problem where the constraints on the 

control function are given as: N,muu ≤⋅
ℓ

 

M,
2

1

 τd

2t

0
   )  τ(

s
u

2

1

  τd 

2t

0
   ) (τ

r
u ≤∫⋅∫




























 M and N being positive constraints. The 

problem is to find the optimal control function u which will drive the origin 
(initial state) to ξ (desired state) in minimum time t, satisfying the above 
constraints. 
For the sake of completeness, we shall now give certain Definitions, Theorems 
and Lemmas. 
Deffinition: Let UXt={x t: N1(α,x)≤1,x∈Bt},α∈Xt,α≠θ; UY={y:N 2(β,y) ≤1,y∈D}, 

β∈Y, β≠θ be the unit balls in Bt, D respectively. 

Deffinition: The set of all points ξ ∈D, such that Tt u = ξ for some u ∈ Ut ⊂⊂⊂⊂ Bt 
will be called the Reachable set and will be denoted by C(t), where Ut is the unit 
ball in Bt, for some given time t.  
Deffinition: Let X be a 2-Normed linear space. A non-negative real valued 
function ρ(.,.) on X×X is called a seminorm if it satisfies the conditions:(i) 
ρ(xi+xj,z)≤ρ(xi,z)+ρ(xj,z) ∀ xi, xj, z∈X,                                           
(ii) ρ(λ xi,xj)= λ  ρ(xi,xj) for all λ∈F and for all xi, xj, ∈X. 
Deffinition: Let X be a 2-Normed linear space. A 2-norm (.,.)

1
ρ  on X×X is said to 

be equivalent to a 2-norm (.,.)
2
ρ  on X×X if there are positive numbers a and b 

such that                                         )
j

x,
i

(x
2
ρ b)

j
x,

i
(x

1
ρ)

j
x,

i
(x

2
ρ a ≤≤ . In 

following theorems D,
t

T,
t

B  will mean the same as define earlier, until they are 

specially defined. 
Theorem 1: If B t and D be the conjugate spaces of the 2-Normed linear spaces Xt 
and Y respectively and Tt is the adjoint of some bounded linear transformation S, 
mapping Y one to one and on to a closed subspace of Xt, then C(t) is closed. 

Proof: By [18] (Corollary 2.1) the unit ball in *
t

X  is weak* compact. Also, both 

*
t

X  and D are equipped with their weak* topologies. Again, as 
t

T  is adjoint to S, 

t
T  will also be onto and remains continuous with respect to weak* topologies of 
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*
t

X  and D. Consequently, the unit ball of *
t

X  will be mapped onto a weak* 

compact subset of D. Hence C(t) is weak* closed and therefore weakly closed and 
hence norm closed in D. 
Note: Let X be a 2-normed linear space and X* be its conjugate. Hahn-Banach 
theorem [16,17] assures that that 0X}

j
x,

i
x:)

j
x,

i
{(x

1
N ≠∈ . Then there exists a 

real bounded 2-linear functional F∈X*, defined on the whole space, such that 
F(xi,xj) = X}

j
x,

i
x:)

j
x,

i
{(x

1
N ∈ and  

  1
0X}

j
x,

i
x:)

j
x,

i
{(x

1
N

)
j

x,
i

F(x

sup
L.D.not  arey  x,

=
≠∈

.    Such an F will be called an 

extremal of x.  
Note [16,18]: The Reachable set is also convex body, symmetric with respect to 
the origin of D. 
Theorem 2: Let Bt be the conjugate space of the 2-normed linear space 

t
X and D 

is the conjugate of some 2-normed linear space Y. Let ξ∈ δC(t), where δC(t) 
denotes the boundary of C(t) for some given time t. Then there exists at least one 
uξ (t) ∈Ut ⊂ Bt which will transfer the system from origin to ξ ∈δC(t) in 
minimum time t, where 

t
T  is an in Theorem 1. 

Proof: As Y is reflexive [17], D=Y* is evidently a reflexive space. Now, 

S:Y→Xt* implies *Y*
*t

X:*S →  that is, D
*t

B:*S → . since Y is reflexive 

*
*t

BY:**S → . Therefore ⋅= *S**S But *t
_
T*S = (by hypothesis). Hence 

*
*t

T**S = . Consequently *
*t

TS**S == . Again 
*t

XY:S →  i.e. 
*t

X*D:S → . If 

φ∈D* then Sφ∈ 
*t

X  and so *
*t

Xφ
_
S ∈  where φ

_
S  denotes the extremal of Sφ i.e. 

*t
B*

*t
Xφ*

*t
T =∈  with 1.}**

t
Bfφ,*

t
T:f)φ,*

t
{(T

1
N =∈  Now if t* is the minimum 

time to reach ξ, then ξ∈∂C(t*). Let φξ∈D* be the supporting hyper plane to 
∂C(t*)  at ξ let uφ be optimal control to reach ξ in minimum time t*, then 

1.}
t

U
1

u,
φ

u:)
1

u,
φ

u {(
1

N φ, *
*t

T
φ

u =∈=  Thus 
*t

B
φ

u ∈ . See [16,18] for 

determining φξ and t* for a given ξ. Let '
3

N ,'
2

N,'
1

N  are the 2-norms of the spaces 

*Y)
t

(X,*Y,*
t

X ×  respectively, where X* denotes the conjugate space of X. 
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Theorem 3: On a finite dimensional 2-normed linear space X, any 2-norm (.,.)
1
ρ  

is equivalent to any other 2-norm (.,.)
2
ρ .  

Remark 1: If D is finite dimensional, then S always exist. We state the following 
lemmas which can be easily proved. 
Lemma 1: Let X be a 2-normed linear space. If (x)

1
ρ  and (x)

2
ρ  are the seminorm 

and 2-norms respectively in X, then, (x)}
2
ρ (x),

1
Max{ρ  is a 2-norm in X, where x 

∈ X. 
Corollary: Evidently (x)}

2
ρ (x),

1
Max{ρ  is a 2-norm, where each of (x)}

2
ρ (x),

1
{ρ  

is a 2-norm. 

Lemma 2: 





∫




⋅




∫




≤≤≤≤
=

t

0

21
 m

m
t

0

21 )    τd   )  τ( u (
M

1
,

N

 )  τ(u
)    τd   )  τ( u (

M

1
,

N

 )  τ(u

tτ0
sup essMax

tτ0
sup essMax)

m
u,(u

2
ρ

ℓ

ℓ

ℓ

                                                                                                                                                                                              
is equivalent to  )   τ( u sup ess  )(u sup ess)u,(uρ jiji1

tτ0tτ0 ≤≤≤≤
⋅= τ  which is a 2-norm on 

L∞ (0,t).                                                                                                                                                                                                                                                        
Proof: We have      

t )   τ(u  sup ess
M

N
t )     τ(u   sup ess

M

1
)   τd   )   (u   (

M

1

tτ0tτ0

t

0

212 ⋅=⋅≤∫
≤≤≤≤

τ     

We shall consider two cases, case (i) and case (ii), and two subcases of case (ii). 

Case (i): If 
2

2

N

M
t ≤ ,                                                                                                                                               

                                                                              

 
N

 )  τ(mu
 

tτ0
sup ess

N

    τ (u
 

tτ0
sup ess

t

0

21)     τd  
2

 ) (τ su (
M

1t

0

21)    τd  
2

 ) (τ ru (
M

1

≤≤≤≤
≤∫∫ ⋅ ℓ  

 )
j

u,
i

(u
1
ρ

N

)   τ(mu
 

tτ0
sup ess

N

)    τ(u
 

tτ0
sup ess)

m
u,(u

2
ρ =

≤≤≤≤
=∴ ℓ

ℓ
 for (3).           

N

M
t

2

2

≤                                               

Hence )
m

u,(u
2
ρ
ℓ

  is equivalent to )
j

u,
i

(u
1
ρ    for 

2

2

N

M
t ≤ . 

Case (ii):   
2

2

N

M
t > .  There will be two subcases:                                                                                                                                        

(a) 
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∫∫ ⋅=
≤≤≤≤

t

0

21)   d  
2

  )  τ(su (
M

1t

0

21)     τd  
2

 ) ( ru (
M

1

N

 )   τ(mu
 

tτ0
sup ess

N

 )   ( u
 

tτ0
sup ess ττ

τ
ℓ                                                  

on a set of finite measure. 

(b)  

∫∫ ⋅<
≤≤≤≤

t

0

21)   d  
2

  ) (τsu (
M

1t

0

21)     τd  
2

 ) ( ru (
M

1

N

 )   τ(mu
 

tτ0
sup ess

N

 )   ( u
 

tτ0
sup ess ττ

τ
ℓ                             

almost everywhere.                                                    

We make use of the following notations: 

⋅∫∫ ⋅=
≤≤≤≤

=
t

0

21)   τd  
2

  )   τ(su (
M

1t

0

21)    τd  
2

 )   ( ru (
M

1
)

s
u,

r
(u

4
ρ,

N

 )   τ(qu
 

tτ0
sup ess

N

 )   τ( pu
 

tτ0
sup ess)

q
u,

p
(u

3
ρ τ

 Obviously )
q

u,
p

(u
3
ρ  and )

s
u,

r
(u

4
ρ  are 2-norms and they are equivalent to 

)u,(uρ ji1 and )
m

u,(u
2
ρ
ℓ

 respectively. 

In case (ii)  (a): )
s

u,
r

(u
4
ρ)

q
u,

p
(u

3
ρ)

m
u,(u

2
ρ ==
ℓ

, 

⋅≤≤∴ (4)     )
m

u,(u
2
ρ)

q
u,

p
(u

3
ρ)

m
u,(u

2
ρ

ℓℓ
 

In case (ii)  (b): t
N

 )  τ( qu
 

tτ0
sup ess

N

 )   τ( pu
 

tτ0
sup ess)

s
u,

r
(u

4
ρ)

m
u,(u

2
ρ ⋅

≤≤≤≤
≤=

ℓ
 

or  

⋅=<=
≤≤≤≤

≤ (5)             )u,(uρ ji1)
s

u,
r

(u
4
ρ)

q
u,

p
(u

3
ρ

N

 )  τ(qu
 

tτ0
sup ess

N

 )   τ(pu
 

tτ0
sup ess)

m
u,(u

2
ρ

tN

M
ℓ

 Combining (3), (4) and (5) we obtain 

                

(6).                                                 )
m

u,(u
2
ρ)

q
u,

p
(u

3
ρ)

m
u,(u

2
ρ

tN

M
1,Max

ℓℓ
≤≤







                          

But )
q

u,
p

(u
3
ρ  is obviously equivalent to  )u,(uρ ji1 ⋅ Hence from (6)  )

m
u,(u

2
ρ
ℓ

is 

equivalent to  )u,(uρ ji1 ⋅  Hence the proof. 

Definition: We define L∞,N,M  to be the space of all essentially bounded functions 
u, equipped with the 2-norm  )

m
u,(u

2
ρ ⋅
ℓ
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Definition: We define L∞,N  to be the space of all essentially bounded functions u, 

equipped with the 2-norm 
N

 ) (τ qu
 

tτ0
sup ess

N

 )  (τ pu
 

tτ0
sup ess)

q
u,

p
(u

3
ρ

≤≤≤≤
= . 

Definition: The space LM consist of all square integrable functions u, equipped 

with the 2-norm ⋅∫∫ ⋅=
t

0

21)   d  
2

  ) (τsu (
M

1t

0

21)     τd  
2

 ) ( ru (
M

1
)

s
u,

r
(u

4
ρ ττ                                                                          

Note: Evidently )
q

u,
p

(u
3
ρ  and )

s
u,

r
(u

4
ρ  are equivalent to  )u,(uρ ji1  and 

  )
m

u,(u
2
ρ
ℓ

 respectively and hence the space L∞,N and L∞,M are complete with 

respect to their respective 2-norms )
q

u,
p

(u
3
ρ  and )

s
u,

r
(u

4
ρ . 

Consider a system described by (1) where u(t) is a scalar control. Assume that at t 
= 0 the state of the system is given be x(0). It is required to find u(t) which will 
bring the system from the initial state x(0) to the origin of the state space in the 
least time under the constraint                                       

M.2

1

) dτ

2t

0
 ) (τ

s
u (2

1

) dτ

2t

0
 )  τ(

r
u(N,)(mu)(u ≤⋅≤⋅ ∫∫ττ

ℓ
                                                                                                               

The above constraints can be expressed in the following alternative form: 





∫




⋅




∫




≤≤≤≤
=

t

0

21
 m

m
t

0

21 )    τd   )  τ( u (
M

1
,

N

 )  τ(u
)     τd   )  τ( u (

M

1
,

N

 )  τ(u

tτ0
sup essMax

tτ0
sup essMax)

m
v,J(u

ℓ

ℓ

ℓ

 From Lemma 1, it follows that )
m

v,J(u
ℓ

 is a 2-norm in L∞,N, M.                                                      

Now  L∞,N,M  can be considered as the conjugate of the space L1,N,M  i.e. 

MN,,L*
MN,1,L ∞=  where  ∗  denotes the conjugate of the corresponding spaces. 

Here Tt : L∞,N,M  → Rn where Rn denotes the n-dimensional Euclidean space. In the 

finite dimensional case it can be easily shown that *
t

T  = S is one to one and onto a 

closed subspace of L1,N,M , where S: Rn → L1,N,M . By Theorem 1 one can easily 
verify that the corresponding Reachable set is closed. Also By Theorem 2, it 
follows that there exists an optimal control 

φ
u . 

                                   The Form Of The Optimal Control                                                       
The problem is to find u which will maximize 〉〈 φ

*
t

Tu, , under the constraint   
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                  Consequently, one has to find that u(τ) which will maximize 
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*
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( ) ( ) ( ) φ)(τ)dτ.*
t(T

E
  

CE
uφ)(τ)dτ*

t(T u  φ)(τ)dτ*
t(T

t

0
 u   ∫ ∫+=∫∴ τττ   

Now   ∫
E

u ττ φ)(τ)d*
tT)((   will be maximized if φ(τ)]*

t
[Tsign  N)(u =τ , τ∈E. 

Again ∫ =
t

0

2M  τd  
2

 ) (u  τ i.e 2   τd  
2

 ) (u    τd  
2

 ) (u  M
E CE

=∫ ∫+ ττ                                                  

or, m(E)2N2M

CE
  τd  

2
 ) (τu  −=∫ , where m(E) denotes the measure of the set E. 

So, ∫
CE

φ)(τ)d*
tT( )u( ττ  will be maximized under the constraint (A), if we take 

φ)(τ)*
t(T α)  τ(u   =  where α is a positive constant. Substituting φ)(τ)*

t(T αu   =  in 

(A), we have   m(E)2N2M
2

 φ)(τ)*
t

T(2 −=∫ τα d

C
E

, where   

dτ

C
E

2
 φ)(τ)*

t
(T

m(E)
2

N
2

M
α

∫

−
=                              

dτ

C
E

2
 φ)(τ)*

t
(Tm(E)

2
N

2
MMax d φ)(τ)*

t
T(Nφ

*
t

Tu, ∫⋅−+=〉〈 ∫ τ
E

.   It can easily verified 

that                                                                                                                             

dτ

C
E

2
 φ)(τ)*

t
(Tm(E)

2
N

2
Md φ)(τ)*

t
T(N}*

t
B

1
fφ,*

t
T:)

1
fφ,*

t
{(T'

1
N ∫⋅−+=∈ ∫ τ

E
 , 

from the above it follows that                                                                                                                      

                     








≤=∈

>=∈
=

N})φ)(*
t

(T:{t 
C

E )],φ)(*
t

(T

N})φ)(*
t

(T:{t E )],φ)(*
t

(T[sign  N
)(u

ταττα

ταττα
τ  . 

Case (II) (b):  1
t

0

21)   d  
2

  ) ( su (
M

1t

0

21)     τd  
2

 ) ( ru (
M

1
)

m
u,(u

2
ρ =∫∫ ⋅= τττ
ℓ

  

Or, 

(B).                                                             2M
t

0

21)   d  
2

  ) ( su (
t

0

21)   d  
2

 ) ( ru ( =∫∫ ⋅ ττττ

                              Now, the problem becomes, find u which will 
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Example: Let us consider the n-th order constant linear system                                                    

 U(t),BX(t)A 
dt

dx(t) +=  where X(t), U(t), A, B have their usual meanings. The 

problem which we shall consider here is to find the admissible control vector U(t) 
such that the trajectories described by the system under U(t) remain within an ε-
neighbourhood of the target state xd .                                                                      

εX}u,x)x(t:u),x){(x(tN d
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11 ≤∈−−  where                                                                                                         
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⋅∫ −+
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=

τ=[t0,t1], t0 & t1 being initial and final times respectively. Let us now specify the 
2-Banach spaces and linear operators as follows:                                                                                                                                                                                                     

τ),(r),
1

(
1

Lτ)(r),
1

(
1

L(r)
1 ,1

B(r)
1 ,1

B Zη), () η (Y τ),(r),(Lτ)(r),(L(r)
,

B(r)
,

BX ℓℓℓℓℓℓ ×=×=∞×∞=∞∞×∞∞=∞∞×∞∞=

  

Then by definition (2.2), X Y, Z are generalized 2-normed spaces.  
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The auxiliary problem becomes finding U, such that  

ε,Y}wTu(.,.),ξ:w)Tu(.,.),{( ξN2 ≤∈−− )
j

u,
i

J(u is minimized. For further 

details, see [15].                                                                     

Some examples are given in Adak ([15], [18], [19]) to show the technique of 
application of the control theory in generalized 2-normed spaces.                                                                                                                             

Note 1: Any complete 2-normed space is said to be 2-Banach space. Every 2-
normed space of dimension 2 is a 2-Banach space when the underlying field is 
complete. For details see Adak [18, 21] & White [2]. A linear 2-normed space of 
dimension 3 is not a 2-Banach space. For details see White [2].                                                            
Note 2: Every 2-normed space is a locally convex topological vector space. But 
convers is not true. In fact for a fixed b∈X, Pb(x)=N1(x,b) ∀x∈X, is a seminorm 
and the family P={Pb: b∈X} generates a locally convex topology on X. Such a 
topology is called the natural topology induced by 2-norm N1(.,.).      
 
Conclusion: In the previous papers [18, 20, 21], we introduced generalized 2–
normed spaces and 2-normed spaces. There are appropriate connections between: 
(i) normed spaces and generalized 2–normed spaces, (ii) 2-normed spaces and 
generalized 2–normed spaces, (iii) 2-normed spaces and 2-Banach spaces, (iv) 2-
normed spaces and locally convex topological vector spaces, (v) generalized 2-
normed spaces and generalized symmetric 2-normed spaces. 
In this paper we introduced semi-norm and equivalent norm. There are 
appropriate connections among semi-norm, 2-norm and equivalent norm.                                                           
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