)

G N

M

Gen. Math. Notes, Vol. 18, No. 1, September, 2013, pp.10-15
ISSN 2219-7184; Copyright ©ICSRS Publication, 2013

WWW. 1-CSTS. 0Tq

Awailable free online at http://www.geman.in

The Relationship between M-Weakly Compact Operator
and Order Weaky Compact Operator
Kazem Haghnejad Azar' and Mina Matin Tazekand?

L2Department of Mathematics, University of Mohaghegh Ardabili
Ardabil, Iran
'E-mail: haghnejad@uma.ac.ir
2E-mail: minamatinl368@yahoo.com

(Received: 12-6-13 / Accepted: 21-7-13)

Abstract

In this note, we will show that the class of order weakly compact operators
bigger than the class of M-weakly compact operators. Under a new condition,
we will show that each M-weakly compact operator is an order weakly compact
operator. We will show that, if Banach lattice E be an AM-space with unit
and has the property (b), then the class of M-weakly compact operators from
E into Banach space Y coincides with that of order weakly compact operators
from E into Y. Also we establish some relationship between M-weakly compact
operators and weakly compact operators and b-weakly compact operators and
order weakly compact operators.

Keywords:  Banach lattice, order weakly compact operator, M-weakly
compact operator, b-weakly compact operator, AM-space.

1 Introduction

The class of order weakly compact operators bigger than the class of M-weakly
compact operators. In this note by combining Theorems 3.1 and 3.2, we will
show that, if Banach lattice E is an AM-space with unit and has the property
(b), then the class of M-weakly compact operators on E coincides with that of
order weakly compact operators on E.

A vector lattice E is an ordered vector space in which sup(z, y) exists for every
z,y € E. A sequence {z,} in a vector lattice E is said to be disjoint whenever
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n # m implies | z,, | A | z,, |= 0. A vector lattice E is called o -Dedekind
complete whenever every countable subset that is bounded from above has a
supremum. A subset B of a vector lattice E is said to be solid if it follows
from | y |<| x | with x € B and y € E that y € B. A solid vector subspace
of a vector lattice E is refferd to as an ideal. Let E be a vector lattice, for
each z,y € F with © < y, the set [z,y] = {z € E:2 <z <y} is called an
order interval. A subset of E is said to be order bounded if it is included in
some order interval. If E is a vector lattice, we denote by E~ its order dual.
Recall from [2] that a subset A of a vector lattice E is called b-order bounded
in E if it is order bounded in the order bidual (E~)~. A vector lattice E is
said to have property (b) if A C E is order bounded whenever A is b-order
bounded in E. A Banach lattice is a Banach space (E, || . ||) such that E is a
vector lattice and its norm satisfies the following property: for each z,y € E
such that | z |<| y |, we have || z ||<|| v || . If E is a Banach lattice, its
topological dual E’, endowed with the dual norm, is also a Banach lattice. A
norm || . || of a Banach lattice E is order continuous if for each net (z,) such
that z, | 0 in E, the net (z,) converges to 0 for the norm || . || . A Banach
lattice E is said to be an AM-space if for each x,y € E such that inf(z,y) =0
we have || z +y ||= max{|| z ||, ]| v ||} . The Banach lattice E is an AL-space
if its topological dual E’ is an AM-space. A Banach lattice E is said to be a
KB-space whenever every increasing norm bounded sequence of E* is norm
convergent.

We will use the term operator 7' : £ — F' between two Banach lattices to
mean a linear mapping.

2 Main Result of Relationship

Definition 2.1 Let T : X — Y be an operator between two Banach spaces.
Then, T is said to be weakly compact whenever T carries the closed unit ball of
X onto a relatively weakly compact subset of Y, the collection of weakly compact

operators will be denoted by W(X,Y).

Definition 2.2 A continuous operator T : E — Y from a Banach lattice
mto a Banach space is said to be M-weakly compact whenever
lim, || Tz, |[|= 0 holds for every norm bounded disjoint sequence {z,} of E,
denoted by Wy (E,Y).

Definition 2.3 A continuous operator T : E — Y from a Banach lattice
into a Banach space is said to be b-weakly compact whenever T carries each
b-order bounded subset of F into relatively weakly compact subset of Y, denoted
by Wb(E, Y)
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Definition 2.4 Finaly, a continuous operator T': E —'Y from a Banach
lattice into a Banach space is order weakly compact whenever T [0,x] is a
relatively weakly compact subset of Y for each x € ET, denoted by W,(E,Y).

Theorem 2.5 For a Banach lattice E, the following statements are equiv-
alent:
(1) E has order continuous norm.
(2) If 0 <z, T <z holds in E, then {x,} is norm couchy sequence.
(3) E is o-Dedekind complete, and x,, | 0 in E implies || =, ||{ 0.
(4) E is an ideal of E".
(5) Each order interval of E is weakly compact.
Proof. (1) = (2) Let 0 < xo 1< 2 hold in E, and let ¢ > 0. By Lemma 12.8 of
[1] there exists a net (yn) C E with yx — x4 | 0. Thus, there exists Ao and ag
such that || yn — zo ||< € holds for all X > Ay and a > . From the inequality

[ 2o =z [I<[| 2o = 2o [| + 1l 758 = 12 I

we see that || xo — xp ||< 2¢ holds for all a, 5 > . Hence, (z,) is a norm
couchy net.

(2) = (3) It follows immediately from Theorem 11.2(2) of [1].

(3) = (1) Let x4 1 0. If (z4) is not a norm Cauchy net, then there exist some
€ > 0 and a sequence {oy} of indices with o, T, and || xa, — %o, ||> € for
all n. Since FE is o-Dedekind complete, there exists some x € E with x,, | x.
Now from our hypothesis, we see that {x,, } is a norm Cauchy sequence, which
contradicts || Ta, — Ta,,, ||> €. Thus, (z4) is a norm Cauchy net, and so (x4)
is morm convergent to some y € E. By Theorem 11.2(2) of [1] we see that
y =0, and so || x4 ||{ 0 holds.

The other equivalences follow easily from Theorems 11.18 and 11.10 of [1].

Theorem 2.6 Let E be a Banach lattice. E is a KB-space if and only if
I : FE — FE is a b-weakly compact operator.

Proof. Let E be KB-space and A be an b-order bounded subset of E. Since
E by Proposition 2.1 of 2] has property (b), A is an order bounded subset of E
and thus there exists some v € Et for which A C [—xz,z|. Then, by Theorem
2.5, |[—x,z| and hence A is a relatively weakly compact subset of E.
Conversely, let I : E — E be b-weakly compact and {x,} be an increasing,
norm bounded sequence in Et. We wish to show {x,} is norm convergent.
Let us define " : (Et) — R by 2"(f) = lim, f(x,) for each f € (ET)".
2" is additive on (ET) and extends to an element of (ET)" which we shall
also denote by x". We have 0 < x,, < 2" in E" for each n. Therefore, {x,}
1s an b-order bounded subset of E. By b-weak compactness of I, we obtain a
subsequence {x,,} of {x,} such that x,, — x in o(E,E') for some x € E.
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Since {x,} is increasing, x = supy, T, and we have x = sup,, T,,. Thus x, — x
ino(E,E). © —x, | 0,2 —x, = 0 ino(E,E) now yield v — x,, — 0 in the
norm topology.

Theorem 2.7 M-weakly compact operators are weakly compact operators.
Proof. Assume first that T : E — Y is an M-weakly compact operator. Denot
by U and V the Closed unit balls of E and Y, respectively, and let € > 0. By
Theorem 18.9(1) of [1], there exists some u € ET such that || T(|z| —u)* ||< e
holds for all x € U, and consequently from the identity | = |=| x | Au+(|x|—u)*
we see that

T(UT) CT[0,u] +eV. (%)

On the other hand, if {u,} is disjoint sequence of [0,u], then it follows from
our hypothesis that lim || Tu,, ||= 0, and thus by Theorem 18.1 of [1] the set
T'[0,u] is relatively weakly compact. Now (*) combined with Theorem 10.17 of
[1] shows that T(U™T)(and hence T(U)) is relatively weakly compact, and so T
18 a weakly compact operator.

3 Main Result of Equality

Recall from [1] that Banach space X has the Dunford-pettis property whenever
Ty — 0ino(X,X") and z), — 0 in o(X', X") imply lim 2] (x,,) = 0, and we say
that an operator T : X — Y between two Banach spaces is a Dunford-pettise
operator whenever x, — 0 in o (X, X') implies lim || Tx,, ||= 0.

Theorem 3.1 Let T is an operator from AM-space with unit FE into Banach
space Y. Then the following assertion are equivalent:
(1) T is M-weakly compact.
(2) T is weakly compact.
(3) T is Dounford-pettis.
(4) T is b-weakly compact.
Proof. (1) = (2) Follows from Theorem 2.6.
(2) = (3) From Theorem 19.6 0f [1] E has the Duoford-pettis property. Then
from Theorem 19.4 of [1] it follows that every weakly compact operators from
E which has the Duonford-pettis property into an arbitary Banach space Y is
a Duonford-pettis operator.
(3) = (1) E' is an AL-space so it will be KB-space and then E' has the
order contiuvous norm. Then from Theorem 3.7.10 of [5] every Duonford-pettis
operator from FE into Y is a M-weakly compact operator.
(2) = (4) Obvious.
(4) = (2) Since E is AM-space with unit so from Theorem 12.20 of [1] its
closed unit ball is like an order interval. So we have the result.
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Theorem 3.2 Let E is a Banach lattice with property (b). Then every or-
der weakly compact operator from FE into Banach space Y is a b-weakly compact
operator.

Proof. Let E has the property (b) and T from E into Banach space Y is order
weakly compact operator and A is a b-order bounded subset of E. Since E has
the property (b) we can choose x € Et with A C [—x, z|. Therefore

w

T(A)" CT([—x,z])".

Therefor by hypothesis, we will result.

4 Conclusion

In the following, we establish some relationships between some class of opera-
tors.

i) Each weakly compact operator from Banach lattice E into Banach space
Y is b-weakly compact operator.

i1) Each b-weakly compact operator from Banach lattice E into Banach space
Y is order weakly compact.

i11) Now by Theorem 2.7, i, ii, we will have
Wy(E)Y)CW(EY)CW,(E,)Y)CW,(EY) (xx)

iv) Since the norm of ¢ is order continuous, by Theorem 2.5, [0, z] is weakly
compact in ¢y, then I : ¢y — c¢g is order wekly compact. But ¢y is not KB-
space, then by Theorem 2.6, I : ¢ — c¢g is not b-weakly compact operator.
Therefore, by (**) every order weakly compact operator is not M-weakly com-
pact and weakly compact operator.

v) Since Ly ([0, 1]) is a KB-space therefor I : L;([0,1]) — L1([0, 1]) is b-weakly
compact operator. But its not weakly compact operator. By (**) every b-

weakly compact operator is not M-weakly compact operator.

vi) By theorems 19.6 and 17.5 of [1], operator T : [ — [*° defined by

T(ar, ) = (i oy a> - [i an] (111,

is weakly compact. The sequence {e, } of the standard unit vectors is a norm
bounded disjoint sequence of [! satisfying Te, = (1,1,1,...) for each n. This
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follow that T is not M-weakly compact. Then every weakly compact is not
M-weakly compact.

vii)If E is an AM-space with unit and has the property (b), by Theorems
3.1 and 3.2 we will have

W, (E,Y) = Wy(E,y) = Wy (E,Y) = W(E,Y).
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