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Abstract
In this note, we will show that the class of order weakly compact operators

bigger than the class of M-weakly compact operators. Under a new condition,
we will show that each M-weakly compact operator is an order weakly compact
operator. We will show that, if Banach lattice E be an AM-space with unit
and has the property (b), then the class of M-weakly compact operators from
E into Banach space Y coincides with that of order weakly compact operators
from E into Y. Also we establish some relationship between M-weakly compact
operators and weakly compact operators and b-weakly compact operators and
order weakly compact operators.
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1 Introduction

The class of order weakly compact operators bigger than the class of M-weakly
compact operators. In this note by combining Theorems 3.1 and 3.2, we will
show that, if Banach lattice E is an AM-space with unit and has the property
(b), then the class of M-weakly compact operators on E coincides with that of
order weakly compact operators on E.
A vector lattice E is an ordered vector space in which sup(x, y) exists for every
x, y ∈ E. A sequence {xn} in a vector lattice E is said to be disjoint whenever
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n 6= m implies | xn | ∧ | xm |= 0. A vector lattice E is called σ -Dedekind
complete whenever every countable subset that is bounded from above has a
supremum. A subset B of a vector lattice E is said to be solid if it follows
from | y |≤| x | with x ∈ B and y ∈ E that y ∈ B. A solid vector subspace
of a vector lattice E is refferd to as an ideal. Let E be a vector lattice, for
each x, y ∈ E with x ≤ y, the set [x, y] = {z ∈ E : x ≤ z ≤ y} is called an
order interval. A subset of E is said to be order bounded if it is included in
some order interval. If E is a vector lattice, we denote by E∼ its order dual.
Recall from [2] that a subset A of a vector lattice E is called b-order bounded
in E if it is order bounded in the order bidual (E∼)∼. A vector lattice E is
said to have property (b) if A ⊂ E is order bounded whenever A is b-order
bounded in E. A Banach lattice is a Banach space (E, ‖ . ‖) such that E is a
vector lattice and its norm satisfies the following property: for each x, y ∈ E
such that | x |≤| y |, we have ‖ x ‖≤‖ y ‖ . If E is a Banach lattice, its
topological dual E ′, endowed with the dual norm, is also a Banach lattice. A
norm ‖ . ‖ of a Banach lattice E is order continuous if for each net (xα) such
that xα ↓ 0 in E, the net (xα) converges to 0 for the norm ‖ . ‖ . A Banach
lattice E is said to be an AM-space if for each x, y ∈ E such that inf(x, y) = 0
we have ‖ x + y ‖= max {‖ x ‖, ‖ y ‖} . The Banach lattice E is an AL-space
if its topological dual E ′ is an AM-space. A Banach lattice E is said to be a
KB-space whenever every increasing norm bounded sequence of E+ is norm
convergent.

We will use the term operator T : E → F between two Banach lattices to
mean a linear mapping.

2 Main Result of Relationship

Definition 2.1 Let T : X → Y be an operator between two Banach spaces.
Then,T is said to be weakly compact whenever T carries the closed unit ball of
X onto a relatively weakly compact subset of Y, the collection of weakly compact
operators will be denoted by W(X,Y).

Definition 2.2 A continuous operator T : E → Y from a Banach lattice
into a Banach space is said to be M-weakly compact whenever
limn ‖ Txn ‖= 0 holds for every norm bounded disjoint sequence {xn} of E,
denoted by WM(E, Y ).

Definition 2.3 A continuous operator T : E → Y from a Banach lattice
into a Banach space is said to be b-weakly compact whenever T carries each
b-order bounded subset of E into relatively weakly compact subset of Y, denoted
by Wb(E, Y ).
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Definition 2.4 Finaly, a continuous operator T : E → Y from a Banach
lattice into a Banach space is order weakly compact whenever T [0, x] is a
relatively weakly compact subset of Y for each x ∈ E+, denoted by Wo(E, Y ).

Theorem 2.5 For a Banach lattice E, the following statements are equiv-
alent:
(1) E has order continuous norm.
(2) If 0 ≤ xn ↑ ≤ x holds in E, then {xn} is norm couchy sequence.
(3) E is σ-Dedekind complete, and xn ↓ 0 in E implies ‖ xn ‖↓ 0.
(4) E is an ideal of E ′′.
(5) Each order interval of E is weakly compact.
Proof. (1)⇒ (2) Let 0 ≤ xα ↑≤ x hold in E, and let ε > 0. By Lemma 12.8 of
[1] there exists a net (yλ) ⊆ E with yλ − xα ↓ 0. Thus, there exists λ0 and α0

such that ‖ yλ − xα ‖< ε holds for all λ ≥ λ0 and α ≥ α0. From the inequality

‖ xα − xβ ‖≤‖ xα − yλ0 ‖ + ‖ xβ − yλ0 ‖,

we see that ‖ xα − xβ ‖< 2ε holds for all α, β ≥ α0. Hence, (xα) is a norm
couchy net.
(2)⇒ (3) It follows immediately from Theorem 11.2(2) of [1].
(3)⇒ (1) Let xα ↓ 0. If (xα) is not a norm Cauchy net, then there exist some
ε > 0 and a sequence {αn} of indices with αn ↑, and ‖ xαn − xαn+1 ‖> ε for
all n. Since E is σ-Dedekind complete, there exists some x ∈ E with xαn ↓ x.
Now from our hypothesis, we see that {xαn} is a norm Cauchy sequence, which
contradicts ‖ xαn − xαn+1 ‖> ε. Thus, (xα) is a norm Cauchy net, and so (xα)
is norm convergent to some y ∈ E. By Theorem 11.2(2) of [1] we see that
y = 0, and so ‖ xα ‖↓ 0 holds.
The other equivalences follow easily from Theorems 11.13 and 11.10 of [1].

Theorem 2.6 Let E be a Banach lattice. E is a KB-space if and only if
I : E → E is a b-weakly compact operator.

Proof. Let E be KB-space and A be an b-order bounded subset of E. Since
E by Proposition 2.1 of [2] has property (b), A is an order bounded subset of E
and thus there exists some x ∈ E+ for which A ⊂ [−x, x] . Then, by Theorem
2.5, [−x, x] and hence A is a relatively weakly compact subset of E.
Conversely, let I : E → E be b-weakly compact and {xn} be an increasing,
norm bounded sequence in E+. We wish to show {xn} is norm convergent.
Let us define x′′ : (E+)′ → R by x′′(f) = limn f(xn) for each f ∈ (E+)′.
x′′ is additive on (E+)′ and extends to an element of (E+)′′ which we shall
also denote by x′′. We have 0 ≤ xn ≤ x′′ in E ′′ for each n. Therefore, {xn}
is an b-order bounded subset of E. By b-weak compactness of I, we obtain a
subsequence {xnk

} of {xn} such that xnk
→ x in σ(E,E ′) for some x ∈ E.
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Since {xn} is increasing, x = supk xnk
and we have x = supn xn. Thus xn → x

in σ(E,E ′). x − xn ↓ 0, x − xn → 0 in σ(E,E ′) now yield x − xn → 0 in the
norm topology.

Theorem 2.7 M-weakly compact operators are weakly compact operators.
Proof. Assume first that T : E → Y is an M-weakly compact operator. Denot
by U and V the Closed unit balls of E and Y, respectively, and let ε > 0. By
Theorem 18.9(1) of [1], there exists some u ∈ E+ such that ‖ T (|x|−u)+ ‖< ε
holds for all x ∈ U, and consequently from the identity | x |=| x | ∧u+(|x|−u)+

we see that

T (U+) ⊆ T [0, u] + εV. (∗)

On the other hand, if {un} is disjoint sequence of [0, u] , then it follows from
our hypothesis that lim ‖ Tun ‖= 0, and thus by Theorem 18.1 of [1] the set
T [0, u] is relatively weakly compact. Now (*) combined with Theorem 10.17 of
[1] shows that T (U+)(and hence T (U)) is relatively weakly compact, and so T
is a weakly compact operator.

3 Main Result of Equality

Recall from [1] that Banach space X has the Dunford-pettis property whenever
xn → 0 in σ(X,X ′) and x′n → 0 in σ(X ′, X ′′) imply limx′n(xn) = 0, and we say
that an operator T : X → Y between two Banach spaces is a Dunford-pettise
operator whenever xn → 0 in σ (X,X ′) implies lim ‖ Txn ‖= 0.

Theorem 3.1 Let T is an operator from AM-space with unit E into Banach
space Y. Then the following assertion are equivalent:
(1) T is M-weakly compact.
(2) T is weakly compact.
(3) T is Dounford-pettis.
(4) T is b-weakly compact.
Proof. (1)⇒ (2) Follows from Theorem 2.6.
(2) ⇒ (3) From Theorem 19.6 0f [1] E has the Duoford-pettis property. Then
from Theorem 19.4 of [1] it follows that every weakly compact operators from
E which has the Duonford-pettis property into an arbitary Banach space Y is
a Duonford-pettis operator.
(3) ⇒ (1) E ′ is an AL-space so it will be KB-space and then E ′ has the
order contiuous norm. Then from Theorem 3.7.10 of [5] every Duonford-pettis
operator from E into Y is a M-weakly compact operator.
(2)⇒ (4) Obvious.
(4) ⇒ (2) Since E is AM-space with unit so from Theorem 12.20 of [1] its
closed unit ball is like an order interval. So we have the result.
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Theorem 3.2 Let E is a Banach lattice with property (b). Then every or-
der weakly compact operator from E into Banach space Y is a b-weakly compact
operator.
Proof. Let E has the property (b) and T from E into Banach space Y is order
weakly compact operator and A is a b-order bounded subset of E. Since E has
the property (b) we can choose x ∈ E+ with A ⊆ [−x, x].Therefore

T (A)
w ⊆ T ([−x, x])

w
.

Therefor by hypothesis, we will result.

4 Conclusion

In the following, we establish some relationships between some class of opera-
tors.

i) Each weakly compact operator from Banach lattice E into Banach space
Y is b-weakly compact operator.

ii) Each b-weakly compact operator from Banach lattice E into Banach space
Y is order weakly compact.

iii) Now by Theorem 2.7, i , ii, we will have

WM(E, Y ) ⊂ W (E, Y ) ⊂ Wb(E, Y ) ⊂ Wo(E, Y ) (∗∗)

iv) Since the norm of c0 is order continuous, by Theorem 2.5, [0, x] is weakly
compact in c0, then I : c0 → c0 is order wekly compact. But c0 is not KB-
space, then by Theorem 2.6, I : c0 → c0 is not b-weakly compact operator.
Therefore, by (**) every order weakly compact operator is not M-weakly com-
pact and weakly compact operator.

v) Since L1([0, 1]) is a KB-space therefor I : L1([0, 1])→ L1([0, 1]) is b-weakly
compact operator. But its not weakly compact operator. By (**) every b-
weakly compact operator is not M-weakly compact operator.

vi) By theorems 19.6 and 17.5 of [1], operator T : l1 → l∞ defined by

T (α1, α2, ...) =

( ∞∑
n=1

αn,
∞∑
n=1

αn, ...

)
=

[ ∞∑
n=1

αn

]
(1, 1, 1, ...)

is weakly compact. The sequence {en} of the standard unit vectors is a norm
bounded disjoint sequence of l1 satisfying Ten = (1, 1, 1, ...) for each n. This
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follow that T is not M-weakly compact. Then every weakly compact is not
M-weakly compact.

vii)If E is an AM-space with unit and has the property (b), by Theorems
3.1 and 3.2 we will have

Wo(E, Y ) = Wb(E, y) = WM(E, Y ) = W (E, Y ).
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