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Abstract

This paper aims to reduce noise levels of two-aircraft landing simultaneously
on approach. Constraints related to stability, performance and flight safety are
taken into account. The problem of optimal control is described and solved by a
Sequential Quadratic Programming numerical method ’SQP’ when globalized by
the trust region method. By using a merit function, a sequential quadratic pro-
gramming method associated with global trust regions bypasses the non-convex
problem. This method used a nonlinear interior point trust region optimization
solver under AMPL. Among several possible solutions, it is shown that there
is an optimal trajectory leading to a reduction of noise levels on approach.

Keywords: TRSQP algorithm, optimal control problem, aircraft noise lev-
els, AMPL programming, KNITRO.
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1 Introduction

The aim of this work is the development of a theoretical model of noise op-
timization while maintaining a reliable evolution of the flight procedures of
two commercial aircraft on approach. These aircraft are supposed to land
successively on one runway without conflict [37]. It is all about the evolu-
tion of flight dynamics and minimization of noise for two similar commercial
aircraft landing taking into account the energy constraint. This model is a
non-linear and non-convex optimal control. It is governed by a system of or-
dinary non-linear differential equations [12]. The 3-D movement of the two
planes is described by a system depending on ordinary non-linear differential
equations with mixed constraints. The function to be minimized is the integral
describing the overall level of noise emitted by the two aircraft on approach
and collected on the ground. We take into account constraints related to joint
stability, performance and flight safety.

The problem of optimal control is described and solved by a Trust Region
Sequential Quadratic Programming method ’TRSQP’[3, 5, 10, 11, 30]. By us-
ing a merit function, a sequential quadratic programming method associated
with global trust regions bypasses the non-convex problem. This method is
established by following a tangent quadratic problem obtained from the opti-
mality conditions of Karush-Khun-Tucker applied to the problem considering
the objective function as the merit function.

The TRSQP methods are suggested as an option by a Nonlinear Interior
point Trust Region Optimization solver ’KNITRO’ [33] under A Mathemat-
ical Programming Modeling Language ’AMPL’[17, 27]. The global conver-
gence properties are analyzed under different assumptions on the approximate
Hessian. Additional assumptions on the feasibility perturbation technique are
used to prove quadratic convergence to points satisfying second-order sufficient
conditions.

Details of the two-aircraft flight dynamic, the noise levels, the constraints,
the mathematical model of the two-aircraft acoustic optimal control problem
and the trust region sequential quadratic programming method processing are
presented in section 2, 3 and 4 while the numerical experiments are presented
in the last section.

2 Mathematical Modelization

The motion of each aircraft Ai, i := 1, 2 is three dimensional analyzed with 3
frames: the landmark (O,

−→
X 1,
−→
Y 1,
−→
Z 1), the aircraft frame (Gi,

−→
XGi,

−→
Y Gi,

−→
Z Gi)

and the aerodynamic one (Gi,
−→
X ai,

−→
Y ai,
−→
Z ai) where i := 1, 2 [6]. The transition

between these three frames is shown easily [7]. In general, the equations of
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motion of each aircraft are summarized as:

∑−→
F exti − dmi

dt

−→
Vai =

mid
−→
V ai

dt∑−→
M extGi

= d
dt

[IGi
−→
Ω i]

d
−→
X

o

dt
= d
−→
X

1

dt
+
−→
Ω 10 ×

−→
X

(1)

The index i = 1, 2 reflects the aircraft. In the system above,
−→
F exti represents

the external forces acting on the aircraft, mi(t) the mass of the aircraft, vi
the airspeed of aircraft,

−→
M extGi

the moments of each aircraft, J(Gi, Ai) the

inertia matrix,d
−→
X

o

dt
is the derivative with respect to time of the vector X in

vehicle-carried normal Earth frame RO, d
−→
X

1

dt
is the derivative with respect to

time of the vector X in frame R1, Ωi the angular rotation of the aircraft and
Ω10 is the angular velocity of the frame R1 relative to the frame RO. After
transformations and simplifications, the system (1) becomes:



˙Vai = 1
mi

[(cosαaicosβai + sinβai + sinαaicosβai)Fxi
−migsinγai − 1

2
ρSV 2

ai
CD + 1

2
CSRiρSV

2
aiCDui −mi∆A

i
u]

˙βai = 1
miVai

[(cosβai − cosαaisinβai − sinαaisinβai)Fyi
+migcosγaisinµai + 1

2
ρSV 2

ai
Cyi + 1

2
CSRiρSV

2
aiCDvi −mi∆A

i
v]

α̇ai = 1
miVaicosβai

[migcosγaicosµai − 1
2
ρSV 2

ai
CLi + (cosαai − sinαai)Fzi

+1
2
CSRiρSV

2
aiCDwi −mi∆A

i
w]

ṗi = C
AC−E2{riqi(B − C)− Epiqi + 1

2
ρSlV 2

ai
Cli

+
∑2
j=1 Fj[y

b
Mij

cosβmijsinαmij − zbMij
sinβmij]}

+ E
AC−E2{piqi(A−B)− Eriqi + 1

2
ρSlV 2

ai
Cni

+
∑2
j=1 Fj[x

b
Mij

sinβmij − ybMij
cosβmijcosαmij]}

q̇i = 1
B
{−ripi(A− C)− E(p2

i − r2
i ) + 1

2
ρSlV 2

ai
Cmi

+
∑2
j=1 Fj[z

b
Mij

cosβmijcosαmij − xbMij
cosβmijsinαmij]}

ṙi = E
AC−E2{riqi(B − C) + Epiqi + 1

2
ρSlV 2

ai
Cli

+
∑2
j=1 Fj[y

b
Mij

cosβmijsinαmij − zbMij
sinβmij]}

+ A
AC−E2{piqi(A−B)− Eriqi + 1

2
ρSlV 2

ai
Cni

+
∑2
j=1 Fj[x

b
Mij

sinβmij − ybMij
cosβmijcosαmij]}

ẊGi = Vaicosγaicosχai + uw
ẎGi = Vaicosγaisinχai + vw
ŻGi = −Vaisinγai + ww
φ̇i = pi + qisinφitanθi + ricosφitanθi
θ̇i = qicosφi − risinφi
ψ̇i = sinφi

cosθi
qi + cosφi

cosθi
ri

ṁi = −1
2
CSRiρSV

2
aiCD

(2)
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where j means the engine index, the expressions A = Ixx, B = Iyy, C = Izz, E =
Ixz are the inertia moments of the aircraft, ρ is the air density, S is the aircraft
reference area, l is the aircraft reference length, g is the acceleration due to
gravity, CD = CD0 + kC2

L is the drag coefficient, Cyi = Cyββ +Cyp
pl
V

+Cyr
rl
V

+
CY δlδl+CY δnδn is the lateral forces coefficient, CLi = CLα(αa−αa0)+CLδmδm+

CLMM+CLq
qbal
V

is the lift coefficient, Cli = Clββ+Clp
pl
V

+Clr
rl
V

+Clδlδl+Clδnδn
is the rolling moment coefficient, Cmi = Cm0 + Cmα(α − α0) + Cmδmδm is the
pitching moment coefficient, Cni = Cnββ+Cnp

pl
V

+Cnr
rl
V

+Cnδlδl+Cnδnδn is the
yawing moment coefficient, (xbMij, x

b
Mij, x

b
Mij) is the position of the engine in

the body frame, F = (Fxi, Fyi, Fzi) is the propulsive force, Vai = (ui, vi, wi) is
the aerodynamic speed, (∆Aiu,∆A

i
v,∆A

i
w) is the complementary acceleration,

(uw, vw, ww) is the wind velocity, βmij is the yaw setting of the engine and
αmij is the pitch setting of the engine. The mass change is reflected in the
aircraft fuel consumption as described by E. Torenbeek [36] where the specific
consumption is

CSRi = 2.01× 10−5
(Φ− µ− Ki

ηc
)
√

Θ√
5ηn(1 + ηtfiλ)

√
Gi + 0.2M2

i
ηdi
ηtfi

λ− (1− λ)Mi

with the generator function G:

Gi = (Φ− Ki
ηc

)(1− 1.01

η
ν−1
ν

i (Ki+µi)(1−
Ki

Φηcηt
)
)

Ki = µi(ε
ν−1
ν

c − 1)
µi = 1 + ν−1

2
M2

i

The Nomenclature of engine performance variables are given by G the gas gen-
erator power function, G0 the gas generator power function (static, sea level),
Ki the temperature function of compression process, Mi the flight Mach num-
ber, T4 the turbine Entry total Temperature, T0 the ambient temperature at
sea level, T the flight temperature, while the nomenclature of engines yields
is ηc = 0.85 the isentropic compressor efficiency, ηdi = 1 − 1.3( 0.05

Re
1
5

)2( 0.5
Mi

)2 L
D

,

the isentropic fan intake duct efficiency, L the duct length, D the inlet diam-
eter, Re the reynolds number at the entrance of the nozzle, ηfi = 0.86 −
3.13 × 10−2Mi the isentropic fan efficiency, ηi =

1+ηdi
γ−1

2
M2
i

1+ γ−1
2
M2
i

the gas Gen-

erator intake stagnation pressure ratio, ηn = 0.97 the isentropic efficiency
of expansion process in nozzle, ηt = 0.88 the isentropic turbine efficiency
ηtfi = ηtηfi , εc the overall pressure ratio (compressor), ν the ratio of spe-
cific heats ν = 1.4, λ the bypass ratio, µi the ratio of stagnation to static
temperature of ambient air, Φ the nondimensional turbine entry temperature
Φ = T4

T
and Θ the relative ambient temperature Θ = T

T0
. The expressions

αai(t), βai(t), θi(t), ψi(t), φi(t), Vai(t), XGi(t), YGi(t), ZGi(t), pi(t), qi(t), ri(t),mi(t)
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are respectively the attack angle, the aerodynamic sideslip angle, the inclina-
tion angle, the cup, the roll angle, the airspeed, the position vectors, the roll
velocity of the aircraft relative to the earth, the pitch velocity of the aircraft
relative to the earth, the yaw velocity of the aircraft relative to the earth and
the aircraft mass.

Transforming the system (2) in state function, one has:

dyi(t)

dt
= fi(yi(t), ui(t)), i = 1, 2 (3)

where the state vector is:

yi(t) : [t0, tf ] −→ R13

yi(t) = (αai(t), βai(t), θai(t), ψai(t), φi(t), Vai(t), XGi(t), YGi(t), ZGi(t), pi(t),
qi(t), ri(t),mi(t))

(4)
The control vector is

ui(t) : [t0, tf ] −→ R4

t −→ ui(t) = (δli(t), δmi(t), δni(t), δxi(t))
(5)

where the expressions δli(t), δmi(t), δni(t), δxi(t) are respectively the roll con-
trol, the pitch control, the yaw control and the thrust one. The dynamics
relationship can be written as:

ẏi(t) = fi(yi(t), ui(t), t),∀t ∈ [0, T ], yi(0) = yi0 (6)

The angles γai(t), χai(t), µai(t) corresponding respectively to the aerodynamic
climb angle (air-path inclination angle), the aerodynamic azimuth (air-path
track angle) and the air-path bank angle (aerodynamic bank angle) are not
taken as state in this model.

To simplify the model, the atmosphere standards conditions are consid-
ered. The engine angles, the complementary acceleration and the aerodynamic
sideslip angle are negligible because the wind is constant and there is no en-
gine failure. With some complex mathematical transformations, the dynamic
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system (2) becomes:



˙Vai = 1
mi

[−migsinγai − 1
2
ρSV 2

ai
CD + (cosαai + sinαai)Fxi

+1
2
CSRiρSV

2
aiCDui]

α̇ai = 1
miVaicosβai

[migcosγaicosµai − 1
2
ρSV 2

ai
CLi

+(cosαai − sinαai)Fzi + 1
2
CSRiρSV

2
aiCDwi]

ṗi = C
AC−E2{riqi(B − C)− Epiqi + 1

2
ρSlV 2

ai
Cli}

+ E
AC−E2{piqi(A−B)− Eriqi + 1

2
ρSlV 2

ai
Cni

q̇i = 1
B
{−ripi(A− C)− E(p2

i − r2
i ) + 1

2
ρSilV

2
ai
Cmi},

ṙi = E
AC−E2{riqi(B − C) + Epiqi + 1

2
ρSlV 2

ai
Cli

+ A
AC−E2{piqi(A−B)− Eriqi + 1

2
ρSlV 2

ai
Cni}

ẊGi = Vaicosγaicosχai
ẎGi = Vaicosγaisinχai
ŻGi = −Vaisinγai
φ̇i = pi + qisinφitanθi + ricosφitanθi
θ̇i = qicosφi − risinφi
ψ̇i = sinφi

cosθi
qi + cosφi

cosθi
ri

ṁi = −1
2
CSRiρSV

2
aiCD

(7)

By the combination of this system with the aircraft control, one has the two-
aircraft dynamic flight model as shown in (6). The state vector is

yi(t) : [t0, tf ] −→ R12

yi(t) = (αai(t), θai(t), ψai(t), φai(t), Vai(t), XGi(t), YGi(t), ZGi(t), pi(t),
qi(t), ri(t),mi(t))

(8)

This will be added to the cost function and constraint function for the aircraft
optimal control problem as shown in the following paragraphs.

The objective function model
In this paper, the considered cost function is the Sound Exposure Level ’SEL’[1,
22, 28]:

SEL = 10log
[

1

to

∫
t′

100.1LA1,dt(t)dt
]

(9)

where to is the time reference taken equal to 1 s and t′ the noise event interval.
[t10, t1f ] and [t20, t2f ] are the respective approach intervals for the first and the
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second aircraft, the objective function is calculated as:

SEL1 = 10log
[

1
to

∫ t20
t10

100.1LA1,dt(t)dt
]
, t ∈ [t10, t20]

SEL12 = SEL11 ⊕ SEL21

= 10 log[ 1
to

∫ t1f
t20

100.1LA1,dt(t)dt+ 1
to

∫ t1f
t20

100.1LA2,dt(t)dt], t ∈ [t20, t1f ]

SEL2 = 10 log
[

1
to

∫ t2f
t1f 100.1LA2,dt(t)dt

]
, t ∈ [t1f , t2f ]

SELG =
(t20−t10)SEL1⊕(t1f−t20)SEL12⊕(t2f−t1f)SEL2

t2f−t10

= 10 log{ 1
t2f−t10

[(t20 − t10)
∫ t20
t10

100.1LA1(t)dt

+ (t1f − t20)
∫ t1f
t20

100.1LA1(t)dt+ (t1f − t20)
∫ t1f
t20

100.1LA2(t)dt

+ (t2f − t1f )
∫ t2f
t1f 100.1LA2(t)dt, ]}, t ∈ [t10, t2f ]

(10)
where SELG is the cumulated two-aircraft noise and the operator ⊕ means
the acoustic adding. Expressions LA1(t), LA2(t) are equivalent and reflect the
aircraft jet noise given by the formula [1, 20]:

LA1(t) = 141 + 10 log

(
ρ1

ρ

)w
+ 10 log

(
Ve
c

)7.5

+ 10 log s1

+3 log

(
2s1

πd2
1

+ 0.5

)
+ 5 log

τ1

τ2

+10 log


(

1− v2

v1

)me
+ 1.2

(
1 +

s2v
2
2

s1v2
1

)4

(
1 +

s2

s1

)3


−20 logR + ∆V + 10 log

( ρ

ρISA

)2 (
c

cISA

)4


where v1 is the jet speed at the entrance of the nozzle, v2 the jet speed at
the nozzle exit, τ1 the inlet temperature of the nozzle, τ2 the temperature
at the nozzle exit, ρ the density of air, ρ1 the atmospheric density at the
entrance of the nozzle, ρISA the atmospheric density at ground, s1 the en-
trance area of the nozzle hydraulic engine, s2 the emitting surface of the
nozzle hydraulic engine, d1 the inlet diameter of the nozzle hydraulic engine,
Ve = v1[1 − (V/v1) cos(αp)]

2/3 the effective speed (αp is the angle between
the axis of the motor and the axis of the aircraft), R the source observer

distance, w the exponent variable defined by: w =
3(Ve/c)

3.5

0.6 + (Ve/c)3.5
− 1, c

the sound velocity (m/s), m the exhibiting variable depending on the type

of aircraft: me = 1.1

√
s2

s1

;
s2

s1

< 29.7, me = 6.0;
s2

s1

≥ 29.7, the term

∆V = −15log(CD(Mc, θ))− 10log(1−Mcosθ), means the Doppler convection
when CD(Mc, θ) = [(1 + Mccosθ)

2 + 0.04M2
c ], M the aircraft Mac Number,
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Mc the convection Mac Number: Mc = 0.62(v1 − V cos(αp))/c, θ is the Beam
angle.

Formula above leads to the objective function JG12(y(t), u(t), i = 1, 2) =∫
t′ g(y(t), u(t), t, i = 1, 2)dt.

Constraints
The considered constraints concern aircraft flight speeds and altitudes, flight
angles and control positions, energy constraint, aircraft separation, flight ve-
locities of aircraft relative to the earth and the aircraft mass:

1. The vertical separation given by ZG12 = ZG2 − ZG1 where ZG1 , ZG2 are
respectively the altitude of the first and the second aircraft and ZG12 the
altitude separation.

2. The horizontal separation XG12 = XG1−XG2 [13, 14, 38] where XG1 , XG2

are horizontal positions of the first and the second aircraft and their
separation distance.

3. The aircraft speed Vai must be bounded as follows 1.3Vs ≤ Vai ≤ Vif
where Vs is the stall speed,Vif is the maximum speed and Vio = 1.3Vs the
minimum speed of the aircraft Ai [15, 36], the roll velocity of the aircraft
relative to the earth pi ∈ [pi0, pif ], the pitch velocity of the aircraft
relative to the earth qi ∈ [qi0, qif ] and the yaw velocity of the aircraft
relative to the earth ri ∈ [ri0, rif ] .

4. On the approach, the ICAO standards and aircraft manufacturers re-
quire flight angle evolution as follows: attack angle αai ∈ [αio, αif ], the
inclination angle θi ∈ [θi0, θif ] and the roll angle φi ∈ [φio, φif ].

5. The aircraft control δ(t) = (δli(t), δmi(t), δni(t), δxi(t)) keeps still between
the position δli0 and δlif for the roll control, δmi0 and δmif for the pitch
control, δni0 and δnif for the yaw control and δxi0 and δxif for the thrust.

6. The mass mi of the aircraft Ai is variable: mi0 < mi < mif , i = 1, 2.
This constraint results in energy consumption of the aircraft [8, 24].

On the whole, the constraints come together under the relationship:

k1i(yi(t), ui(t)) ≤ 0
k2i(yi(t), ui(t)) ≥ 0

(11)
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where

k(t) : R12 ×R4 −→ R16,
(yi(t), ui(t)) −→ ki(yi(t), ui(t))

k1i(yi(t), ui(t)) = (αi(t)− αif , θi(t)− θif , ψi(t)− ψif , φi(t)− φif ,
Vai(t)− Vaif , XGi(t)−XGif , YGi(t)− YGif , ZGi(t)− ZGif ,
pi(t)− pif , qi(t)− qif , ri(t)− rif , δli(t)− δlif , δmi(t)− δmif ,
δni(t)− δnif , δxi(t)− δxif ,mi(t)−mif )

k2i(yi(t), ui(t)) = (αi(t)− αi0, θi(t)− θi0, ψi(t)− ψi0, φi(t)− φi0,
Vai(t)− Vai0, XGi(t)−XGi0, YGi(t)− YGi0, ZGi(t)− ZGi0,
pi(t)− pi0, qi(t)− qi0, ri(t)− ri0, δli(t)− δli0, δmi(t)− δmi0,
δni(t)− δni0, δxi(t)− δxi0,mi(t)−mi0).

The following values reflect the digital applications considered for the two-
aircraft [1, 7, 8, 36].

Table of limit digital values for the two-aircraft in approach phase

Constraint denomination maximum value minimum value

The Aircraft speed Va1f = Va2f = 200 m/s Va10 = Va20 = 69 m/s
The A1 Aircraft altitude ZG1f = 35× 102 m ZG10 = 0 m

The A2 Aircraft altitude ZG2f = 41× 102 m ZG20 = 0 m
The aircraft roll control δl1f = δl2f = 0.0174 δl10 = δl20 = −0.0174
The pitch control δm1f = δm2f = 0.087 δm10 = δm20 = 0

The yaw control δn1f = δn2f = 0.314 δn10 = δn20 = −0.035
The thrust control δx1f = δx2f = 0.6 δx10 = δx20 = 0.2
The attack angle αa1f = αa2f = 12◦ αa10 = αa20 = 2◦

The inclination angle θa1f = θa2f = 7◦ θa10 = θa20 = −7◦

The air-path inclination angle γa1f = γa2f = 0◦ γa10 = γa20 = −5◦

The aerodynamic bank angle µa1f = µa2f = 3◦ µa10 = µa20 = −2◦

The air-path azimuth angle χa1f = χa2f = 5◦ χa10 = χa20 = −5◦

The roll angle φa1f = φa2f = 1◦ φa10 = φa20 = −1◦

The cup ψa1f = ψa2f = 3◦ ψa10 = ψa20 = −3◦

The limits of time t1f = 600 s,t2f = 645 s t10 = 0 s, t20 = 45 s

The mass of the A1 Aircraft m10 ' 1.1× 105 kg, m1f ' 1.09055× 105 kg,
The mass of the A2 Aircraft m20 ' 1.10071× 105 kg m2f ' 1.09126× 105 kg

The A300 inertia moments [8] A = 5.555× 106 kg m2 B = 9.72× 106 kg m2

C = 14.51× 106 kg m2 E = −3.3× 104 kg m2

The Aircraft vertical separation Z12 = 2× 103 ft ' 6× 102 m
The Aircraft longitudinal separation XG12

= 5 NM ' 9× 103 m

The Aircraft roll velocity relative to the
earth

p1f = p2f = 1◦s−1 p10 = p20 = −1◦s−1

The Aircraft pitch velocity relative to the
earth

q1f = q2f = 3.6◦s−1 q10 = q20 = 3◦s−1

The Aircraft yaw velocity relative to the

earth

r1f = r2f = 12◦s−1 r10 = r20 = −12◦s−1

Table 1

The two-aircraft acoustic optimal control problem
The combination of the aircraft dynamic equation (3) and (7), the aircraft
objective function from equations (10) and the the aircraft flight constraints
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(11), the two-aircraft acoustic optimal control problem is given as follows:

min
(y,u)∈Y×U

JG12(y(.), u(.)) =
∫ t1f

t10
g1(y1(t), u1(t), t)dt+∫ t1f

t20 g12(y1(t), u1(t), y2(t), u2(t), t)dt+
∫ t2f
t20 g2(y2(t), u2(t), t)dt+ φ(y(tf ))

ẏ(t) = f(u(t), y(t)), u(t) = (u1(t), u2(t)), y(t) = (y1(t), y2(t)),
∀t ∈ [t10, t2f ], t10 = 0, y(0) = y0, u(0) = u0

k1i(yi(t), ui(t)) ≤ 0
k2i(yi(t), ui(t)) ≥ 0

(12)
where g12 shows the aircraft coupling noise function and JG12 is the SEL of the
two A300-aircraft.

3 The Numerical Processing

The problem as defined in the relation (12) is an optimal control problem with
instantaneous constraints. We aim to solve this problem with the Trust Region
Sequential Quadratic Programming method. Applying SQP methods[10, 32] ,
we write the system (12) as:

min JG12(x), x = (y(.), u(.))
ẏ = f(x)
nj(x) ≤ 0, j ∈ Ξ
nj(x) ≥ 0, j ∈ Γ

(13)

where the expressions Ξ and Γ are the sets of equality and inequality indices.
The function JG12(x), f(x), n(x) must be twice continuously differentiable. The
Lagrangian of the system (13) is defined by the function L(x, λ) = JGP12(x) +
λT [b(ẏ, x) + n(x)] where the vector λ is the Lagrange multiplier and b(ẏ, x) =
ẏ − f(x) = 0. Considering the feasible points of (12), one transforms the
system (13) into a quadratic problem. A SQP method solves a succession of
quadratic problems. The mathematical formulation of sub-problems obtained
at the k-th step ∆xk is the following:

min
∆xk

[KG12(xk)] = ∇TJG12(xk)∆xk +
1

2
(∆xk)

THk∆xk

∇T b(ẏk, xk)∆xk + b(ẏk, xk) = 0
∇TnΞ(xk)∆xk + nΞ(xk) ≤ 0
∇TnΓ(xk)∆xk + nΓ(xk) ≥ 0

(14)

The vector ∆xk is a primal-dual descent direction, Hk = ∇2L(xk, λk) is the
Hessian matrix of Lagrangian L from system ( 13) and KG12(xk) the quadratic
model. The estimation of gradients is, in principle, calculated by finite dif-
ferences or the calculation of the adjoint systems for problems with many
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parameters and finally by the sensitivity analysis. This last technique is very
effective in the case of a large number of variables with few parameters [3,
11]. The SQP method is a qualified local method. Its convergence is quadratic
if the first iterate is close to a solution ỹ satisfying the sufficient optimality
conditions [9, 18, 21]. This algorithm above must be transformed because the
two-Aircraft problem is non-convex. For improving the robustness and global
convergence behavior of this SQP algorithm, it must be added with the trust
radius of this form:

||D∆xk||p ≤ ∆, p ∈ [1,∞] (15)

where D is uniformly bounded. The relations (14) and (15) form a quadratic
program when p = ∞. So, the trust-region constraint is restated as −∆e ≤
Dx ≤ ∆e, e = (1, 1, 1, ..., 1)T . If p = 2, one has the quadratic constraint
∆xTkD

TD∆xk ≤ ∆2. In the following, we develop the convergence theory for
any choice of p just to show the equivalence between the ||.||p and ||.||2. By the
combination of some relation of (13) and the relation (14), all the components
of the step are controlled by the trust region. The two-aircraft problem takes
the following form

min
∆xk

[KG12(xk)] = ∇TJG12(xk)∆xk +
1

2
(∆xk)

THk∆xk

∇T b(ẏk, xk)∆xk + b(ẏk, xk) = 0
∇TnΞ(xk)∆xk + nΞ(xk) ≤ 0
∇TnΓ(xk)∆xk + nΓ(xk) ≥ 0
||D∆xk||p ≤ ∆, p ∈ [1,∞]

(16)

In some situations, all of the components of the step are not controlled by the
trust region because of some hypotheses on D. There is an other alternative
which allows the practical SQP methods by using the merit function or the
penalty function to measure the worth of each point x.

Several approaches like Byrd-Omojokun and Vardi approaches exist to solve
the system (13) [42]. It can also be solved with the KNITRO, the SNOPT and
other methods [34]. In the latter case, we have an ordinary differential system
of non-linear and non-convex equations. The uniqueness of the solution of the
quadratic sub-problem is not guaranteed. It therefore combines the algorithm
with a merit function for judging the quality of the displacement. The merit
function can therefore offer a way to measure all progress of iterations to the
optimum while weighing the importance of constraints on the objective func-
tion. It is chosen in l2 norm particularly the increased Lagrangian LI because
of its smooth character. So, in the equation above, one replaces L by LI . Thus,
this transforms the SQP algorithm in sequential quadratic programming with
trust region globalization ’TRSQP’. Its principle is that each new iteration
must decrease the merit function of the problem for an eligible trust radius.
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Otherwise, we reduce the trust radius ∆xK for computing the new displace-
ment. A descent direction is acceptable if its reduction is emotionally positive.
The advantages of the method are that the merit function will circumvent the
non-convexity of the problem. This approach shows that only one point is
sufficient to start the whole iterative process [19, 25, 31].

Meanwhile, we use an algorithm called feasibility perturbed SQP in which
all iterates xk are feasible and the merit function is the cost function. Let us
consider the perturbation ∆̃xk of the step ∆xk such that

1. The relation

x+ ∆̃xk ∈ F (17)

where F is the set of feasible points for (12),

2. The asymptotic exactness relation

||∆x− ∆̃xk||2 ≤ φ(||∆xk||2)||∆xk||2 (18)

is satisfied where φ : R+ −→ R+ with φ(0) = 0.

These two conditions are used to prove the convergence of the algorithm and
the effectiveness of this method. The advantages gained by maintaining feasi-
ble iterates for this method are:

• The trust region restriction (15) is added to the SQP problem (14) with-
out concern that it will yield an infeasible subproblem.

• The objective function JG12 is itself used as a merit function in deciding
whether to take a step.

• If the algorithm is terminated early, we will be able to use the latest
iterate xk as a feasible suboptimal point, which in many applications is
far preferable to an infeasible suboptimum.

Here are some considerations that are needed for the KKT optimality condi-
tions.

• An inequality constraint nj is active at point x̃ = (y∗, u∗) if nj(x̃) = 0.
Γ(x̃) = Γ∗ is the set of indices j corresponding to active constraints in x̃,

Γ+
∗ = {j ∈ Γ∗|(λ∗Γ)j > 0}

Γ0
∗ = {j ∈ Γ∗|(λ∗Γ)j = 0} (19)

where the constraints of index Γ+
∗ are highly active and those of Γ0

∗ weakly
active.
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• An element x̃ ∈ Γ∗ verifies the condition of qualifying for the constraints
n if the gradients of active constraint ∇nΞ(x̃),∇nΓ(x̃) are linearly inde-
pendent. This means that the Jacobian matrix of active constraints in x̃
is full.

• An element x̃ ∈ Γ∗ satisfies the qualification condition of Mangasarian-
Fromowitz for constraints n in x̃ if there exists a direction d such that

∇nΞ(x̃)Td = 0∇nj(x̃)Td < 0∀j ∈ Γ(x̃) (20)

where the gradients {∇n(x̃)} are linearly independent.

The Karush-Kuhn-Tucker optimality conditions are obtained by considering
that J, n functions of C1 class and x̃ a solution of the problem (12) which
satisfies a constraints qualification condition. So,there exists λ∗ such that:

∇yL(x̃, λ∗) = 0, nΞ(x̃) = 0, nΓ(x̃) ≤ 0, λ∗Γ ≥ 0, λ∗ΓnΓ(x̃) = 0 (21)

These equations are called the conditions of Karush-Kuhn-Tucker(KKT). The
first equation reflects the optimality, the second and third the feasibility con-
ditions. The others reflect the additional conditions and Lagrange multipliers
corresponding to inactive constraints nj(x̃) are zero. The couple (x̃, λ∗) such
that the KKT conditions are satisfied is called primal-dual solution of (19).
So, x̃ is called a stationary point.

For the necessary optimality conditions of second order [5], taking x̃ a
local solution of (19) and satisfying a qualification condition, then there ex-
ist multipliers (λ∗) such that the KKT conditions are verified . So we have
∇2
xxL(x̃, λ∗)d.d > 0∀h ∈ C∗ where C∗ is a critical cone defined by C∗ = {h ∈

Y ×U : ∇nj(x̃).h = 0 ∀j ∈ Ξ ∪ Γ+
∗ ,∇nj(x̃).h ≤ 0∀j ∈ Γ0

∗}. The elements of
C∗ are called critical directions.

For the sufficient optimality conditions of second order [5], suppose that
there exists (λ∗) which satisfy the KKT conditions and such that
∇2
xxL(x̃, λ∗)d.d > 0∀h ∈ C∗\{0}. So x̃ is a local minimum of(12).

4 The TRSQP Algorithm and Convergence Anal-

ysis

Assume that for a given SQP step ∆xk and its perturbation ∆̃xk, the ratio to
predict decrease is

rk =
JG12(xk)− JG12(xk + ∆̃xk)

−KG12(∆̃xk)
(22)

The two-aircraft acoustic optimal control TRSQP algorithm is written as:
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1. Let x0 a given starting point, ∆ ≥ 1 the trust region upper bound,
∆0 ∈ (0,∆) an initial radius, ε ∈ [ε0, εf ) and p ∈ [1,∞]

2. Calculate ∆xk by solving the system

min
∆xk

[KG12(xk)] = ∇TJG12(xk)∆xk +
1

2
(∆xk)

THk∆xk

∇T b(ẏk, xk)∆xk + b(ẏk, xk) = 0
∇TnΞ(xk)∆xk + nΞ(xk) ≤ 0
∇TnΓ(xk)∆xk + nΓ(xk) ≥ 0
||D∆xk||p ≤ ∆, p ∈ [1,∞]

Seek also ∆̃xk by using the system

x+ ∆̃xk ∈ F

||∆x− ∆̃xk||2 ≤ φ(||∆xk||2)||∆xk||2

3. If no such for the perturbed counterpart ∆̃xk is found, the following
affectations are considered.

∆xk+1 ← (1
2
)||Dk∆xk||p

xk+1 ← xk;Dk+1 ← Dk;

4. Otherwise, calculate rk = JG12(xk)−JG12(xk+ ˜∆xk)

−KG12( ˜∆xk)
;

if rk ≤ εf ,∆k+1 ← (1
2
)||Dk∆xk||p;

else if rk > a0 × ε0 and ||Dk∆xk||p = ∆k

∆k+1 ← min(2∆k,∆);
else ∆k+1 ← ∆k;

5. If rk > ε xk+1 ← xk + ∆̃xk; Choose the new matrix Dk+1;
else xk+1 ← xk;Dk+1 ← Dk;

6. end.

At each major iteration a positive definite quasi-Newton approximation of the
Hessian of the Lagrangian function, H, is calculated using the BFGS method,
where λi, i = 1, ...,m, is an estimate of the Lagrange multipliers.

Hk+1 = Hk +
qkq

T
k

qTk sk
− HT

k s
T
k skHk

sTkHksk

where
sk = xk+1 − xk,
qk = (∇JG12(xk+1 +

∑n
j=1 λj.∇n(xk+1) + b(xk+1))

− (∇JG12(xk +
∑n
j=1 λj.∇n(xk) + b(xk))
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A positive definite Hessian is maintained providing qTk sk is positive at each up-
date and that H is initialized with a positive definite matrix. This algorithm
is implemented by AMPL language programming and the KNITRO solver [33].

Analysis of the algorithm and its convergence
Let us define the set F0 as follows: F0 = {x|∇T b(ẏ, x)∆x+b(ẏ, x) = 0,∇TnΞ(x)∆x+
nΞ(x) = 0,∇TnΓ(x)∆x+nΓ(x) ≥ 0, JG12(x) ≤ JG12(x0)} ∈ F The trust-region
bound ||D∆xk||p ≤ ∆, p ∈ [1,∞] specifies the following assumption.

1. There exists a constant β such that for all points x ∈ F0 and all matrix
D used in the algorithm, we have for any ∆x satisfying the following
equations

∇T b(ẏ, x)∆x+ b(ẏ, x) = 0,
∇TnΞ(x)∆x+ nΞ(x) = 0,
∇TnΓ(x)∆x+ nΓ(x) ≥ 0.

that

β−1||∆x||2 ≤ ||D∆x||p ≤ β||∆x||2 (23)

2. The level set F0 is bounded and the functions JG12, b, η are twice contin-
uously differentiable in an open neighborhood M(F0) of this set.

Under certain assumptions as shown in [30], this algorithm is well defined.

In this paragraph, one wants to prove that the algorithm has a conver-
gence to stationary point of (13). If we consider that all assumptions hold
for each feasible point x̃ for (12), the Mangasarian-Fromowitz are satisfied for
constraints. After all, the KKT optimality conditions are specified and that
shows that there is at least a local convergence. With other added conditions
as shown in [30], the global convergence is held.

5 Numerical Results

The observation points are taken on the ground under the flight path and are
independent of each other. Numerical processing is implemented by AMPL
and KNITRO solver. KNITRO output optimality conditions for the obtained
solution is achieved as follow:
Multistart stopping, found local optimal solution.

MULTISTART: Best locally optimal point is returned.
EXIT: Locally optimal solution found.
Final Statistics:
Final objective value = 4.91134561926630e+01
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Final feasibility error (abs / rel) = 5.79e-09 / 1.96e-10
Final optimality error (abs / rel) = 2.58e-07 / 2.58e-07
Number of iterations = 72
Number of CG iterations = 3
Number of function evaluations = 85
Number of gradient evaluations = 73
Number of Hessian evaluations = 72
Total program time (secs) = 258.19754 ( 258.104 CPU time)
Time spent in evaluations (secs) = 240.00644

The observation positions are:
(−20000 m,−20000 m, 0 m), (−19800 m,−19800 m, 0 m), ..., (0 m, 0 m, 0 m),
for a space step of 200 m for x and y. The touch point on the ground is
(0 m, 0 m, 0 m) while the temporal separation of aircraft is 90 s. At each
point, it is a vector of N noise levels as shown in the discretization process. It
is very important to consider the maximum value among the N values, which
value corresponds to the shortest distance between the noise source and the
observation point.

Figure 1: Aircraft noise at the indicated reception point

Figure 1 shows the noise levels when the optimization is applied and the
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solutions obtained. The observation positions are (−20000 m,−20000 m, 0 m)
for ONL1 , (−19800 m,−19800 m, 0 m) for ONL1,..., (−200 m,−200 m, 0 m)
for ONL10. In this figure, the legend ONL means optimal noise level. As spec-
ified, noise level increases (till 550 sec) and is maximum when the observation
point lies below the aircraft. Noise levels decrease gradually as the aircraft
moves away from the observation point. This is confirmed by Khardi analysis
[26]. By comparison, this result is also close to standard values of jet noise on
approach as shown by Harvey [2, 23]. To conclude, numerical calculations car-
ried out in this paper are efficient and fitted with experimental and theoretical
researches related to acoustical developments.

Figure 2: Aircraft optimal flight paths and speeds

Figure 2 shows the trajectories which reflect a path in one level flight fol-
lowed by a continuous descent till the aircraft touch point. The aircrafts’
landing procedures are sufficiently separated. It is obvious that each aircraft
follows its optimal trajectory when considering the separation distance. Con-
straints on speeds described in the previous table are considered, allowing a
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subsequent landing on the same track. Thus, as recommended by ICAO, the
security conditions are met and flight procedures are good as shown by the
presented results. The maximum altitudes considered are 3500 m and 4100 m
for the first and the second aircraft. The duration approach is 600 s for the
first aircraft and 690 s for the second. This figure shows that after some time,
we have obtained the same optimal trajectory for the two-aircraft even the
procedures are different. This shows the aircraft trajectory resulting from the
two trajectories combination. This figure also shows aircraft speed evolution
during landing. For the first, the aircraft speed decreases from 200 m/s to
140 m/s and keeps a constant position till the end of the aircraft landing.
This evolution remains the same for the speed of the second aircraft. The
final velocity is left free. This explains the speed values of 140m/s instead of
1.3Vsm/s when the plane touches the ground. This model remains theoretical.

Figure 3: Flight-path angles of the aircraft

Figure 3 shows the aircraft angles versus time as recommended by ICAO
during aircraft landing. As specified by this figure, the aircraft roll angles
oscillate around zero, the flight-path angles are negative and keep the rec-
ommended position for aircraft landing procedures. This is the same for the
attack angles. Angular variations confirmed the aircraft aerodynamic stability
and the flight safety.
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Figure 4: Aircraft finesse

Figure 4 shows the finesse for the two aircraft. The behavior of the finesse
confirms the stability of the aircraft flight. That reflects the flight procedures
characteristic as shown by figures 2, 3 and 4. Processing calculation provided
that the aircraft throttle position is kept constant (0.6) during the landing
procedures. The two-aircraft roll velocity p1, p2, pitch velocity q1, q2 and
yaw velocity r1, r2, both related to earth frame, are obtained and they have a
constant behavior.

6 Conclusion

We have developed a mathematical model in the case of two approaching air-
craft landing in succession on the same track. An algorithm for solving the
optimal control model has been developed. Theoretical considerations and
practices of the feasible TRSQP algorithm are used by KNITRO for the estab-
lishment of a non-linear program, implementing the considered problem. The
algorithm minimizes a sequence of merit function using a sub-problem of the
quadratic problem at each step for all active constraints to generate a search
trust direction for all primal and dual variables. An optimal solution to the
discretized problem is found through a local convergence. The results show a
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reduction of noise at reception points during the approach of the two-aircraft.
The obtained trajectories exhibit optimal characteristics and are acoustically
effective. Some added conditions are necessary to prove the global convergence
of the considered algorithm. We found that the aircraft optimal trajectories
coincide for a large portion of the flight as soon as the continuous descent is
initiated. Further researches are needed to complete the problem processing.

Acknowledgements

This work is supported by the Agence Universitaire de la Francophonie-Région
Afrique Centrale. This is also supported by the International Join Research
and International Publication Project (Universitas Indonesia - Indonesia and
IFSTTAR - France), Memorandum of Understanding between Universitas In-
donesia and IFSTTAR, the French Embassy in Indonesia, and DIKTI (In-
donesia).

References

[1] L. Abdallah, Minimisation des bruits des avions commerciaux sous con-
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misation non-linéaire et en commande optimale,Rapport LTE N◦ : 0911,
(2009).

[32] J. Nocedal and S.J. Wright, Numerical Optimization, (Second Edition),
Springer Series in Operations Research, Springer Verlag, (2006).

[33] R-H. Byrd, J. Nocedal and R-A. Waltz, KNITRO: An Integrated Package
for Nonlinear Optimization, University of Colorado [en ligne] disponible
sur http://www.ziena.com, http://www.ampl.com, (2006).

[34] M. Ouriemchi, Résolution de problèmes non-linéaires par les méthodes des
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