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Abstract

The classical Cantor set discovered and introduceg the famous
mathematicians Henery Smith and George Cantor hamyminteresting
properties in the field of set theory, Topology drattal geometry. One of the
way in which the behavior of Cantor sets can becifipd is through the use of
Iterated Function System. In (2008), Gerald Edgahis book gave a systematic
study of classical Cantor ternary set in iterateshdtion system and introduced
some beautiful properties. Our goal in this papeta present two new examples
of Cantor variants using iterated function system.

Keywords. Cantor one-fifth set, Cantor middle one-half $tdrated function
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1 Introduction

Cantor set is a classical example of perfect subk#te closed interval [0, 1],
which has the same cardinality as the real linevilubse Lebesgue measure is
zero [12]. It was discovered in 1875 by Henry J&ephen Smith [27] and first
introduced by German mathematician George Can®5* 1918) that became
known as Cantor ternary set [4-9]. Later on, Devdnd other researchers gave
graphical representation of Cantor set in the fofrstaircases [17, 18, 23].

In the words of the mathematician David Hilbert,0‘Nne shall expel us from the
paradise that Cantor has created for us” [12].debailed study on Cantor set and
on its applications, one may refer to Beardon[&yaney [10], Falconer [13] and

Peitgen, Jurgen & Saupe [21]. The Cantor set hawsy nmaeresting properties and
consequences in the field of set theory, topol@gy fractal theory [15, 16, 17,

18, 28]. In 1999, P. Mendes, showed that the sutwofhomogenous Cantor set
is often a uniformly contracting self-similar sehder some conditions [20].

Dovgoshey et. al. [11] gave a systematic surveyhenproperties of the Cantor
ternary map. In the recent years, Michael Barn§ley2] gave the concept of

iterated function system that is an efficient wagecifying many of the sets that
we will be interested in. Also, for more applicatsoof Cantor set in discrete
dynamical system and mathematical analysis, onerefayto [14, 19, 22].

In 2008, Gerald Edgar in his book “Measure, Topglagnd Fractal Geometry”

[12] presented various properties of Cantor semgusierated function system.
Furthermore, Shaver [26] studied many other gen@ahtor sets that were
constructed by removing different parts of diffdreangths from the initiator and

also presented some properties using iterated iim&ystem. The interesting
point here is that some of the Cantor sets giverRagi and Prasad [23] are
common to Cantor sets given by Shaver [26]. RegeR&ni, Ashish and Chugh

[25] studied the variants of Cantor sets using mrathtical feedback system and
in [24] they introduced new examples of fractaingfr

In this paper we study some properties of variafit€antor sets using iterated
function system. In Section 2, we deal with somsiddefinitions pertaining to
the notion of fractal string with several new ottegt have been taken into sequel.
In Section 3 and 4, the main results of our stualyehbeen presented, followed by
the concluding remarks in Section 5.

2 Preliminaries

Throughout this paper we study the various progemif Cantor one-fifth set and
Cantor middle one-half set using the iterated fiamcsystem. In 2008, Gerald
Edgar presented the following definitions of ralist, iterated function system,
invariants sets or attractors etc.
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Definition 2.1: Ratio list: A finite list of positive numbers,,r,,...r,), where
r.r,,...r, R denote the ratios, in which the interval [0, 1] che divided is
called the ratio list [12].

Definition 2.2: Iterated Function SystemA system realizing a ratio list
(r.,r,,...r, ), in a metric spaceX into alist(f,, f,,...,f ), wheref : X - Xis a

similarity contraction mapping with ratio; is called iterated function system
[12].

Definition 2.3: Invariant set or attractor: A non-empty compact &l X is
called an invariant set or attractor for the iteeat function systen(f,, f,,...,f,)

ifand only ifY = f[Y]O ff YO.....O f[ Y for nON[12].

For example, the triadic Cantor dust is invariatitfer an iterated function system
realizing the ratio lisfl/3, 1/3). The Sierpinski gasket is an invariant set for an

iterated function system realizing the ratio(s2, 1/2, 1/ 2.

Definition 2.4: Similarity value of ratio lisfr,,r,,...r, ), is the positive numbées'
such thatr® +r, +....+r °=1[12].

Definition 2.5: The number's' is called the similarity dimension of a non-empty
compact sev if and only ifY satisfies a self-referential equation of the type

v={J v,
i=1
where(f, f,,...,f )is a hyperbolic iterated function system of similas whose

ratio list has similarity values'.

For example, let us take the Sierpinski gasket.réhe listis(1/2,1/2,1/2. So,
we get
@/2p+@/2y+ (a/2y=1

Thus, the similarity dimension ieg 3/log 2= 1.58¢.

Proposition 2.1: [12, p. 6] The triadic Cantor dust C satisfies the self —
referential equatiorC= f[C] O f[ J .

Throughout this paper- be a Cantor one-fifth set arfd a Cantor middle one-
half set.
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3 Cantor One-Fifth Set

In this section we considelr be a Cantor one-fifth set having ratio=1/5,
centeralJR and f :R —» R be a similarity contraction mapping dh with ratio

‘r’, defined by f(x) =rx+(-r)a. Also, throughout this section, we call the
ordered pair(f,, f,, f;) as iterated function system.

The Cantor one-fifth set is a subset of the intef®al]. That is constructed by,
dividing the initiator [0, 1] into five line segmenwith dividing ratio 1/5 and by
dropping the second and fourth line segment 14, /5) and (3/5, 4/5), we call
them Holes (i.e. the parts that are removed). Tlies,setF, is obtained by
leaving0,1/5]0([2/5,3/5]0 [4/5,1. Again, after repeating the same process
with the remaining closed line segments, we getstiteof holes that have been
removed during the process. Then, thefsg$ obtained by leaving

F,=[0,1/25]0[2/25,3/ 250 [4/25,1/5]

f1(x)

0[2/5,11/ 250 [12/25,13/ 28] [14/25,3/¢

f2(x)

0[4/5,21/ 250 [22/25,23/25] [24/25,1

f3(x)

Further, repeating the same process over and gaén,dy removing the holes of
second and fourth position at each step from eéated interval, we obtain a

sequenceH  of holes. The number of holed, consists of2.3™ for n = 1, 2,
3,... open interval andr, consists of3"disjoint closed interval. Thus, the Cantor
one-fifth set would be the limitF ' of the sequencé&, of sets. We also analyze
that i, OF OF, O....... So, we define limitF ' as the intersection of the sdts

ie.
F=F..

nON

Fig. 1 shows the graphical representation of Caat@-fifth set constructed as
above.
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Fig. 1. Cantor One-Fifth Set

In the following theorem, we state without prooé tivell-known result of quinary
Cantor one-fifth set (see [24]).

Theorem 3.1: Let x[1[0,1], then x belongs to the Cantor one-fifth §etif and
only if x has a base 5 expansion using the digisénd 4.

Now, we prove the main theorem of this section Wisatisfies the self-referential
equation of Cantor one-fifth set using functiofs f, andf,.

Theorem 3.2: Let f,, f, and f, be the similarity contraction mappings dh

defined by
f,(x)=x/5, f,(X)=(x+2)/5, f,(x)=(x+4)/5, (2)

where all the mappings have the rafi6é5. Then, the Cantor one-fifth sd%
satisfies the self - referential equation

F=f[FIDf{FAUH 2
for the iterated function systeff,, f,, f,).

Proof: In the starting of this section, we study the Gamne-fifth set by simply
removing the one-fifth open intervals (holes) fréme initiator [0, 1]. Now, using
the iterated function systgffi, f,, f;), we generate the Cantor one-fifth set which
is quite different from above said method. The gewital representation of
Cantor one-fifth set using IFS is as follows:

x+2 x+4

Si&=— Sx=—
/ ’ Vo

1

X
SGo= g

[
]
]
i

N
—

0 1/5

Fig. 2: Representation of IF$f,, f,, f.)
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In Fig. 2, by using the mapping§, f, and f, on the initiatof, =[0,1], we study
the Cantor one-fifth set in the following way, subhat

f,[[0,1]] =[0,1/5], f,[[0,1]] =[2/5,3/5], f,[[0,1]] =[4/5,1]
Thus,
F,=[0,1/5]0[2/5,3/5[0 [4/5,1F f, F, [0 f,[F,]0 f.[F,] (3)

Further, repeating the same process and subsgytikie value ofF, in the
mappingsf,, f, and f,, we obtain Table 1, 2 and 3.

fl(x):g, xOF f2(x):%2, x0 F £(X =X—;4, x0 F
0 |0 f,(0) 215 £.(0) 4/5
f(1/5) |1/25 f,(1/5) | 11/25 f,A/5) | 21/ 25
f(2/5) | 2/25 f,(2/5) | 12/25 f,(2/5) | 22125
f.(3/5) | 3/25 £,(3/5) | 13/25 £,(3/5) | 23/25
f(4/5) | 4125 f,(4/5) | 14/25 f,(4/5) | 24725
f.(1) 1/5 £, 3/5 £, 1

Tablel Table2 Table3
Thus,

F,=[0,1/25]0[2/25,3/ 251 [4/25,1/5]

f1(x)

0[2/5,11/ 25 [12/25,13/25] [14/25,3/¢

f2(x)

O[4/5,21/ 2510 [22/25,23/25] [24/25,1

f3(x)

F= 1RO T{F UTLF] (4)
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Now, by using induction on [0, 1], we obtain

Foa= BIRIO TR O L F] (5)
forn=0,1, 2, .....

To prove Eq. (2), we will first prove thaf O f,[F]O fJF] O ff § and then
converse. LexOF, which impliesxOF,. Then, eitherxJ[0,1/5], xO[2/5,3/5]
orx[4/5,1]. In order to prove the above inequali®yd f,[FIOfJF O ff A ,
we study these three cases one by one.

First, letx(J4/5, 1]. Now, using Eq. (5) for any, xOF,,,= f[F] 0O f] F] O f} F].
But we know that

f,[F,] 0 f,[[0, 1]] =[0, 1/5] and f,[F,] O f,[[0, 1]] =[2/5, 3/5].

So that, it impliesxO f,[F] or 5x— 40F , foreacm=1, 2, 3,...

Hence, %~ 41| F,=F. Thus, we get

nON
x0 f,[ F] (6)
Secondly, letx(J[2/5,3/5] and using Eq. (5) for any,
xOF, =f[F]Of[F O A, .
But we know that
f,[F.]1 0 f,[[0, 1]] =[0, 1/5] and f,[F,] O f,[[0, 1]] =[4/5, 1]
So that, it implies thakU f,[F] or 5x—- 20 F , foreacm=1, 2, 3, ...,

whence, %~ 21("| F,=F. Thus, we get

nON
XU f,[F] ()
Last, considerx[0,1/5] and using Eg. (5) for any
xOF,,=f[F1Of[F] O F

T

But we know that
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f,[F.1 0 f,[[0, 1]] =[2/3, 3/5] and f,[F,]1 O f,[[0, 1]] =[4/5, 1]

So that, it impliesxd f[F] or 5xO F,, for eachn=1, 2, ..., hencdeDﬂ F =F.
N

Thus, we get
xU f[F] (8)

Hence, using Eq. (6), (7) and (8) the inequakty! f,[F]O fJF O f{ H holds
true.

Conversely,

To prove thaF O f[FJOf[JF OffH, let x be any number, such that
xOf[FIOffH O ff A . Then, eitherxUO f[F], xO f,[F] or xO f,[F] . We take
the casex[ f,[F], other two cases are similar. This—-4U0F. Also, we can
write 5x— 40 F or xO f,[F] O F,,,. Thus,

xO(F..=[|F.=F
N

nON

This implies that the inequality O f,[F] O fJF] O ff § holds true. Hence, this
completes the proof of the theorem.

Remark 3.1: By using Proposition 2.1 and Theorem 3.2, the Gamne-fifth set
IS unique non-empty compact invariant set for tkerated function system

(fl' f2' f3) '

Proposition 3.1: There also exits some sdth # F that also satisfy the inequality
M=f[M]Of[M]Of[M .
Sef - Similarity

As discussed in Fig. 2, the first step of divisiah initiator [0, 1] is
F, =[0,1/5]00[2/5,3/5]J [4/5,1 corresponding to the ratio 1{@/5,1/5,1/5.
Then from the Definition 2.4, the similarity valoé a ratio list(r,,r,,...r, )is the
value's' such that® +r,; +.....+r *=1. Thus,

(1/5)° + (L/ 55+ (L/5)=:

S:Ioglls
logl/5

=0.6867
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Thus, s=0.6867. Hence, from Definition 2.5 and Theorem 3.2, tailarity
dimension of Cantor one-fifth set is a8 0.6867.

4 Cantor Middle One-Half Set

Throughout this section we considét, be a Cantor middle one-half set having
ratio r =1/2, centeraldR and g:R - R be a mapping orR with ratio r’,

defined byg(x) = rx+(1-r)a. Here, we call the ordered pdig,, g,) as iterated
function system.

Under the construction of Cantor middle one-hatf se begin with the interval
0< x<1. First, remove the middle one half intenddld< x< 3/4, call as holes,
from the initiator that gives rise to two closedteivals 0<x<1/4and

3/4<x<1, denote ash. Again, repeating the same process with the rangin

closed intervals, the s&, is obtained by leaving

P,=[0,1/16]0[3/16,1/4]0 [3/4,13/16] [15/16,1

9 () 92(x)

Further, repeating the same process again, atstaplremoving the holes from
the middle of each successive closed interval, atetlie sequenc&, of holes.
The number of holesS, consists of 2" open interval andP,consists of 2"

disjoint closed intervals. Further, what is leftie limit is the Cantor middle one-
half set denoted by. Fig. 3 shows the geometrical representation aft@a
middle one-half set constructed as above.

0 1

c,'"':l

Fig. 3: Cantor Middle One-Half Set

In the following results, we state without proofettwell-known result of
guarternary Cantor middle one-half set (see [25]).

Proposition 4.1: Let x[1[0,1]. Then x belongs to the Cantor middle one-half set
P if and only if x has a quaternary expansion ugimgdigits 0 and 3.

Now, we prove the main theorem of this section, clwhsatisfies the self
referential equation of Cantor middle one-halfissahg functionsg, andg, .
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Theorem 4.2: Let g, and g, be the similarity contraction mappings @&defined

by
0,(X)=x/4, andg,(X)=(x+3)/4, 9)

where all the mappings have the ratio 1/4. ThemQhantor middle one-half s
satisfies the self — referential equation

P=g[AOg R (10)

for the iterated function systgm,, 9,) .

Proof. First, let us consider the geometrical repngation of the Cantor middle
one-half set for the iterated functions systéq g,) shown in Fig. 4.

0 1 0 1

+3
Eﬂixﬁl:% ‘( \ gg(ﬂ=x4
g4

0 1 34 1

Fig. 4: Representation of IF§gy,, 9,)

In Fig. 4, using the mappingg and g,, we study the Cantor middle one-half set
in the following way, such that

g,[[0,1]] =[0,1/4] and g,[[0,1]] =[3/4,1]
Thus,
R=[0,1/4]0[3/4,1]= g,[R]U g,[ Rl (11)

Again, repeating the process and substituting gleevof P, in the given iterated
function systenfg,, 9,) , we obtain Table 4 and 5.

0.9=2, X R 0.(0="32 X0 R
0,(0) 0 9,(0) 3/4
0,(1/4) |1/16 g,(1/4) 13/16
0,(3/4) |3/16 0,(3/4) 15/16
0,(2) 1/4 9,2 1

Table4 Table5
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Thus,
P,=[0,1/16]0[3/16,1/4]0 [3/4,13/16] [15/16,]

9:(x) 92(x)

FR=ag[RlUd[ R (12)
Now, by using induction on [0, 1], we obtain

P.=alRIU 9 A (13)
forn=0,1, 2, ....

To prove Eq. (10), we first prove th&UO g[A U gf B and then converse. Let
xOP, which implies xOR. Then, eitherxd[0,1/4] or x[[3/4,1]. In order to
prove the above inequality, we prove two casesbyrane.

In first case, letx[][3/4,1] and using Eq. (13) for any xOP,,=g[P10 g A .
But we know that

0,[ P10 g,[[0,1]] =[0,1/ 4]

So that, it implies thak g,[ R] or 4x—30PR,, for eachn = 1, 2, 3, ..., hence,
4x-30(] B,= P. Thus, we get
nON
xOg,[H (14)

Secondly, lex[J[0,1/4], and using Eq. (13) for amy xOP,,=g[Rl0 d B . But
we know that

9,[P10 g,[[0,1]] =[3/4,1] .

So that, it implies thak g[ P] or 4xO P, this holds for each=1, 2, 3, ...,
whence, 40("| B,=P. Thus, we get

xUg[F (15)

Hence, from Eq. (14) and (15) the inequaly! g[FA U gf B holds true.
Conversely,

To prove thaP O g[A L g B, let xbe any number, such thatig[HA LU gf B .
Then, eitherxOg[H, or xOg,[H . Let us take the casgllg,[ A, other is
similar. Thus,4x—30P. Also, we can say> 3P or xUg,[RP] O P,,. Thus,
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xO(R.=[)R=P.

nON N

This completes the pro&0 g[F [ gf B . Hence, the theorem is proved.

Remark 4.1: By using Proposition 2.1, and Theorem 4.2, the @amiddle one-
half set is unique non-empty compact invarianf@ethe iterated function system

(91, 9,) -
Sef - Similarity

As discussed in Fig. 3, the first step of divisiah initiator [0, 1] is
B =[0,1/4]0[3/4,1] corresponding to the ratio (@7 4,1/4). Then, from the

Definition 2.4, the similarity value of a ratiotigl/ 4,1/ 4)is as follows:

@/4y+@/4ay=1
=|091/2=0_5
logl/4

Thus s=0.5. By using Definition 2.5 and Theorem 4.2, the $amily dimension
of Cantor middle one half set is a8 0.5.

4 Conclusion

The Cantor one-fifth set and Cantor middle one-lself both are examples of
fractal sets. In this paper, properties of both@aator sets have been studied and
following results and conclusions were drawn:

1. The Cantor one-fifth set and Cantor middle oaké-$et have been defined.

2. After studying the iterated function systém, f,,...,f, ), a new approach
to construct the Cantor one-fifth set and Cantaddie one-half set have
been analyzed which is quite different from pregiomethods in the
literature.

3. In Section 3, using iterated function sysfdmf,, f;), we proved that

Cantor one-fifth set satisfies the self-referenéigliation for the ratio list
(a/5,1/5,1/5.

4. In Section 4, using the iterated function systgng,), we proved that
Cantor one-fifth set satisfies the self-referenéigliation for the ratio list
@r/4,1/4).

5. For both the Cantor sets, we also establishedsilf similarity value is

equivalent to the similarity dimension.
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