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Abstract

A grid is called orthogonal if all grid lines intersect at a right angle. An or-
thogonal grid offers significant advantages in the solution of systems of partial
differential equations and in the simulations of computational fluid dynamics.
In this paper we present a variational method which generates nearly orthogo-
nal grids with suitable parameter values. We optimize a cost functional which
consists of only area and orthogonality quantities. A significant contribution is
that no volume functional needs to be added to the cost functional. We achieve
to generate nearly orthogonal grids without changing the cell size distribution
of the initial grids by well-achieved deformation based grid generation method.
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Figure 1: An illustration of intersection of grid lines

1 Introduction

Grids (or meshes) are significant tools and have broad application areas in
many different areas of computational science. Typical uses of grids are sim-
ulation of physical domains in the computational fluid dynamics and solving
partial differential equations (PDEs). A poorly constructed grid may cause
erroneous results and effect the numerical computations negatively. A well-
designed grid should be orthogonal. The orthogonality of a grid is character-
ized by the intersection angle θ between the grid lines (see Figures 1 and 3).
A grid is called orthogonal if all grid lines intersect at a right angle.

In order to solve PDEs posed on spatial domains, a grid is imposed on the
computational domain. There are several local features of the grids that are
important for the accuracy and the efficiency of a computation. Some of these
local properties are the expansion rate of adjacent grid cells, the ratio of the
side lengths of the grid cells, and the orthogonality of the grid lines. In this
paper our major concern will be the latter one.

This paper is organized as follows: In the second section we overview some
related work for orthogonal grid generation. Section third deals with the so-
called deformation based grid generation method which plays an important
role for generating the initial non-orthogonal grid. In the section four we
present our method which generates nearly orthogonal grids with suitable pa-
rameter values. We achieve this by minimizing a cost functional from which
we obtain some Euler-Lagrange equations. In the final chapter we show how to
solve these equations via successive-over-relaxation method and present some
computational examples to illustrate the power of our method.

2 Orthogonal Grid Generation Methods

In this section we briefly review some of the other approaches for orthogonal
grid generation. The algebraic, trajectory and field methods are the most
common types of orthogonal grid generating methods in the literature.
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The algebraic grid generation methods [1], [22] usually adopt transfinite
interpolations combined with Bezier and B-spline curves to improve grid qual-
ities. These techniques are usually good, however, they can not guarantee the
orthogonality and the grid may be overlapped.

Trajectory methods generate an orthogonal grid from an existing non-
orthogonal grid. In general, the trajectory methods use a marching process
to recalculate the grid node distribution along the retained set of grid lines in
such a way that the intersection between the new grid lines and the retained
set of grid lines is orthogonal. These types of methods allow the specification
of the grid node distribution on three of the four boundaries of the domain.
The major shortcomings with the trajectory methods are the dependency of
the orthogonal system on the non-orthogonal original grid and the require-
ment that in singly connected regions, the components of the boundary must
be orthogonal; because, otherwise, trajectories may leave the physical domain.
Further information about trajectory methods can be seen in [6], [22] and [23]
and in the references therein.

The field methods are based on the solution of a system of PDEs. We
can separate this approach to two main groups as hyperbolic systems and
elliptic systems. Hyperbolic systems of PDEs which has some similarities with
the orthogonal trajectories methods imply that one of the boundaries must
be completely free. The solution is obtained by a marching procedure which
starts from a known boundary and proceeds toward the free boundary. Elliptic
systems of PDEs are based on conformal mappings. Drawbacks and advantages
of field methods based on the solutions of elliptic PDEs are discussed in [22]
and [23] in detail.

In our method we use a well-achieved method known as the deformation
based grid generation method (or grid deformation method (GDM) in short)
by means of which we first generate initial (non-orthogonal) grids and then
we obtain nearly orthogonal grids with suitable parameters. The GDM is able
to generate a grid with desired grid density distribution that is free from grid
folding. This method gives direct control over the cell size of the adaptive
grid and determines the node velocities directly. The adaptive grid system
naturally distributes more grids to deprived areas. The positive monitor func-
tion disallows grid folding and provides a mean to control the ratio of the
areas between the original and transformed domain. Next we present a formal
description of the GDM.

3 The Grid Deformation Method

In this section we overview the grid deformation method (GDM) that is used
for construction of differentiable and invertible transformations to solve mesh
adaption problems. We formulate a moving-grid algorithm by means of the
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deformation method. The idea of this method is to move the nodes with correct
velocities so that the nodal mapping has a desirable Jacobian determinant.
This method was developed in ([10],[11], [16]) and was improved in [13] and
[15]. It was used with a finite-volume solver in flow calculations in [18]. A
2D dimension version of the method was proposed in [14] and used with a
discontinuous Galerkin finite-element method in solving a convection-diffusion
problem in [20]. The method was applied to the registration of non-rigid 2D
images and data set alignment at [9] and [12], respectively. Three versions of
the grid deformation method are available [17] in the literature. In this paper
we adopt the first version of the grid deformation method which is one of
the steady versions of deformation method where the transformation Jacobian
determinant is specified on the old grid before adaption. Next we describe the
first version of the GDM.
Problem statement: Let Ω ⊂ Rn be a bounded convex set with Lipschitz
continuous boundary ∂Ω, and a differentiable function f : Ω → R+, namely,
monitor (or weight) function, is given such that∫

Ω

(f − 1) = 0, or equivalently

∫
Ω

f = |Ω|,

where |Ω| is the volume of the domain Ω. Find a mapping function

φ1 : Ω→ Ω, ∂Ω→ ∂Ω,

such that

J(φ1) := det∇φ1(x) = f(x), x = (x1, x2) for n = 2. (3.1)

Construction of such a map: Using the following steps, we construct φ1.

(1) Find a vector field u(x) which satisfies

div u(x) = f(x)− 1 in Ω

n · u(x) = 0 on ∂Ω.

(2) Form a velocity vector field,

h(t,x) =
u(x)

t+ (1− t)f(x)
, 0 < t ≤ 1

and then, find φt(x) = φ(t,x), φ1(x) = φ(1,x) by solving the ordinary
differential equation

dφ(t,x)

dt
= h(t, φ(t,x)), 0 < t ≤ 1

φ(0,x) = x,
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Figure 2: GDM applied to a circle centered at (0.6, 0.6) with radius 0.1. (Image
provided by D. L. Fleitas [8])
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In [17], J. Liu proved that the map φ1 constructed in this way satisfies the
equality (3.1) by showing that the equality given as

∂H(t,x)

∂t
= 0, where H(t,x) = J(φt(x))[t+ (1− tf(φt(x))]

holds for each t ∈ [0, 1]. Notice that the monitor function f which controls the
movement of the grid nodes can be chosen any function with the properties de-
scribed above. In realistic situations, however, f is subject to some additional
constraints. The monitor function f should reflect the need for grid refinement
of the underlying problem, i.e., one has to choose the mechanism under which
the changes in the exact or approximate solution will be accounted for by the
monitor function. Here we give some examples for possible relations between
solutions u and the monitor function f :

f(t,x) =
C

1 + α1|∇u(t,x)|2 + α2|u(t,x)|2
,

where C is a normalizing factor that may depend on t. Another possibility is
to consider relations of the form

f(t,x) =
C√

1 + α|∇u(t,x)|2
,

or even simpler monitor function

f(t,x) =
C

1 + |u(t,x)|
,

where u(t,x) is the solution of some PDEs. Interested reader can read [17]
in conjunction with this paper to have more information about GDM and
further applications of it. Figure 2 illustrates an application of the GDM to a
circle centered at (0.6, 0.6) with radius 0.1. Next we describe our method for
orthogonal grid generation.

4 Method for Orthogonal Grid Generation

In this section we present a variational approach that generates nearly or-
thogonal grids with suitable parameter values. We optimize a continuous cost
functional which consists of only area and orthogonality quantities. It does
not require the use of any volume functional, which is one of the significant
improvement of our method.

A continuous grid generation functional is a quantity of the form

J(ϕ) :=

∫
Ω

I(ϕ),
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Figure 3: Rotations in grid nodes

where I is a function containing information about certain geometric quantities
to be controlled in order to generate enough grids on Ω. The problem of
continuous variational grid generation is to find ϕ∗, boundary conforming and
minimizing the value of J(ϕ). In other words, it is required to calculate ϕ∗

such that
J(ϕ∗) = minϕ J(ϕ).

From Variational Calculus it follows that ϕ∗ must be a solution of a boundary
value problem (BVP) [22], [23]. The resulting system from the solution of
this BVP is a system of PDEs (mostly coupled and non-linear) with boundary
conditions given by the value of the grid on the contour. Very often these
conditions are called Euler-Lagrange equations. Perhaps the most widely used
cost functionals are area, IS, volume, IV , and orthogonality, IO. These func-
tionals were typically combined ([1], [3]-[5], [21]) into one functional in different
forms and in general the combined functional is given as

I = λS IS + λV IV + λO IO,

where

IS =
1

2

∫
Ω

|∇ϕ|2

IV =
1

2

∫ ∫
Ω

(
D(ϕ1, ϕ2)

D(x1, x2)

)
dx1 dx2,

IO =
1

2

∫
Ω

(ϕx1 · ϕx2)
2 ,

where λS, λV , λO are non-negative numbers, ∇ϕ is the gradient of ϕ(ϕ1, ϕ2),
D(x,y)
D(ξ,φ)

is the Jacobian determinant. Detailed discussion on the applications of
these variational functionals to the orthogonal grid generation methods can be
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seen in ([1], [3]-[5], [21]). Next we describe our method for the orthogonal grid
generation.

Let Ω be a square domain in R2 and ϕ = (ϕ1, ϕ2) be a grid function
defined on Ω. We define the cost functional J(ϕ) to be minimized as follows:

J(ϕ) =
1

2

∫
Ω

(ϕx1 · ϕx2)
2 dx +

λ

2

∫
Ω

|∇ϕ(x)|2 dx,

=
1

2

∫
Ω

(ϕ1x1 ϕ1x2 + ϕ2x1 ϕ2x2 )2 dx +
λ

2

∫
Ω

(
ϕ2

1x1
+ ϕ2

1x2
+ ϕ2

2x1
+ ϕ2

2x2

)
dx

where λ ∈ R+, and ϕxi denotes partial derivative of ϕ with respect to xi for
i = 1, 2, and

ϕx1 · ϕx2
denotes the inner product of ϕx1 and ϕx2 . Notice that

ϕ(x) = ϕ0(x) + u(x),

where u(x) is the displacement which is added to the initial grid ϕ0(x) due
to movements of grid nodes. Now our goal is to obtain u(x) from the Euler-
Lagrange equations.

Define a small variation of ϕ as:

ϕ1 → ϕ1 + ε (δϕ1),

ϕ2 → ϕ2 + ε (δϕ2).

Taking the Fréchet derivative of the cost function J(ϕ) with respect to ϕ1 and
ϕ2, we obtain:

Jϕ1 :=
∂ J(ϕ+ εδϕ)

∂ϕ1

=
d

dε

∣∣∣
ε=0

1

2

∫
Ω

[(ϕ1x1+ε(δϕ1)x1)(ϕ1x2+ε(δϕ1)x2)+ϕ2x1ϕ2x2]2+
λ

2

∫
Ω

((ϕ1x1+ε(δϕ1)x1)
2+(ϕ1x2+ε(δϕ1)x2)

2+ϕ2
2x1

+ϕ2
2x2

) =
d

dε

∣∣∣
ε=0

1

2

∫
Ω

[ϕ1x1ϕ1x2+εϕ1x1(δϕ1)x2+εϕ1x2(δϕ1)x1+ε
2(δϕ1)x1(δϕ1)x2+ϕ2x1ϕ2x2 ]

2+
λ

2

∫
Ω

((ϕ1x1+ε(δϕ1)x1)
2+(ϕ1x2+ε(δϕ1)x2)

2+ϕ2
2x1

+ϕ2
2x2

) =

∫
Ω

[(ϕ1x1(δϕ1)x2+ϕ1x2(δϕ1)x1)(ϕ1x1ϕ1x2+ϕ2x1ϕ2x2)]+λ

∫
Ω

[(δϕ1)x1(ϕ1x1)+(δϕ1)x2(ϕ1x2)] =

∫
Ω

[(ϕ1x1(δϕ1)x2)(ϕ1x1ϕ1x2)+(ϕ1x1(δϕ1)x2(ϕ2x1ϕ2x2))+(ϕ1x2(δϕ1)x1(ϕ1x1ϕ1x2))+(ϕ1x2(δϕ1)x1(ϕ2x1ϕ2x2))+λ(δϕ1)x1(ϕ1x1)+λ(δϕ1)x2(ϕ1x2)] =

∫
Ω

(ϕ2
1x1
ϕ1x2+ϕ1x1ϕ2x1ϕ2x2+λϕ1x2)(δϕ1)x2+

∫
Ω

(ϕ2
1x2
ϕ1x1+ϕ1x2ϕ2x1ϕ2x2+λϕ1x1)(δϕ1)x1

In the similar way, next we obtain Jϕ2 .

Jϕ2 :=
∂ J(ϕ+ εδϕ)

∂ϕ2

=
d

dε

∣∣∣
ε=0

1

2

∫
Ω

[(ϕ1x1ϕ1x2(ϕ2x1+ε(δϕ2)x1)+(ϕ2x2+ε(δϕ2)x2)]
2+
λ

2

∫
Ω

(ϕ2
1x1

+ϕ2
1x2

)+(ϕ2x1+ε(δϕ2)x1)
2+(ϕ2

2x2
+ε(δϕ2)2

x2
) =

d

dε

∣∣∣
ε=0

1

2

∫
Ω

[ϕ1x1ϕ1x2+ϕ2x1ϕ2x2+ϕ2x1ε(δϕ2)x2+ϕ2x2ε(δϕ2)x1 ]
2+
λ

2

∫
Ω

[ϕ2
1x1

+ϕ2
1x2

+(ϕ2x1+ε(δϕ2)x1)
2+(ϕ2x2+ε(δϕ2)x2)

2] =

∫
Ω

[(ϕ2x1(δϕ2)x2+(ϕ2x2(δϕ2)x1 ](ϕ1x1ϕ1x2+ϕ2x1ϕ2x2)+λ

∫
Ω

((δϕ2)x1ϕ2x1+(δϕ2)x2ϕ2x2 =

∫
Ω

(ϕ2x1(δϕ2)x2ϕ1x1ϕ1x2+ϕ2x1(δϕ2)x2ϕ2x1ϕ2x2+ϕ2x2(δϕ2)x1ϕ1x1ϕ1x2+ϕ2x2(δϕ2)x1ϕ2x1ϕ2x2+λϕ2x1(δϕ2)x1+λϕ2x2(δϕ2)x2 =

∫
Ω

(ϕ2x1ϕ1x1ϕ1x2+ϕ
2
2x1
ϕ2x2+λϕ2x2)(δϕ2)x2+

∫
Ω

(ϕ2x2ϕ1x1ϕ1x2+ϕ
2
2x2
ϕ2x1+λϕ2x1)(δϕ)x1

For the ease of notation, we define following variables:

A := ϕ2
1x2

ϕ1x1 + ϕ1x2 ϕ2x1 ϕ2x2 (4.2)

B := ϕ2
1x1

ϕ1x2 + ϕ1x1 ϕ2x1 ϕ2x2 (4.3)

C := ϕ2
2x2

ϕ2x1 + ϕ2x2 ϕ1x1 ϕ1x2 (4.4)

D := ϕ2
2x1

ϕ2x2 + ϕ2x1 ϕ1x1 ϕ1x2 (4.5)

Ã := ϕ2
1x2

ϕ1x1 + ϕ1x2 ϕ2x1 ϕ2x2 + λϕ1x1

B̃ := ϕ2
1x1

ϕ1x2 + ϕ1x1 ϕ2x1 ϕ2x2 + λϕ1x2

C̃ := ϕ2
2x2

ϕ2x1 + ϕ2x2 ϕ1x1 ϕ1x2 + λϕ2x1

D̃ := ϕ2
2x1

ϕ2x2 + ϕ2x1 ϕ1x1 ϕ1x2 + λϕ2x2
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Now, letting Jϕ1 = 0, we can write 4 as∫
Ω

(
Ã · B̃

)
·
(
∇δϕ1

)
= 0 for every δϕ1,

and applying the divergence theorem and bearing in mind that δϕ1 = 0 on the
boundary of Ω, ∂Ω, we have∫

Ω

(
∇ · (Ã, B̃)

)
δϕ1 = 0 for every δϕ1,

which implies that
∇ · (Ã, B̃) = 0.

Applying the same argument to the equation (4) obtained from Jϕ2 = 0, we
have

∇ · (C̃, D̃) = 0.

Using the equations

ϕ(x) = ϕ0(x) + u(x),

(ϕ1(x), ϕ2(x)) = (ϕ01(x) + u1(x), ϕ02(x) + u2(x)),

(where ϕ0(x) = (ϕ01(x), ϕ02(x)) is the initial grid) and the equations (4.2)
and (4.3), we have the first Euler-Lagrange equation, see, for instance, [7] and
[19]:

∆ϕ1(x) = ∆ϕ01(x) + ∆u1(x) =
−div (A,B)

λ
, from which we get:

∆u1(x) =
−div (A,B)

λ
−∆ϕ01(x),

=
−Ax1 −Bx2

λ
−∆ϕ01(x),

=
−(ϕ2

1x2
ϕ1x1 + ϕ1x2ϕ2x1ϕ2x2)x1

λ
−

(ϕ2
1x1
ϕ1x2 + ϕ1x1ϕ2x1ϕ2x2)x2

λ
− ∆ϕ01(x).

By the equations (4.4) and (4.5) we have the second Euler-Lagrange equation:

∆ϕ2(x) = ∆ϕ02(x) + ∆u2(x) =
−div (C,D)

λ
, from which we get:

∆u2(x) =
−div (C,D)

λ
−∆ϕ02(x),

=
−Cx1 −Dx2

λ
−∆ϕ02(x),

=
−(ϕ2

2x2
ϕ2x1 + ϕ2x2ϕ1x1ϕ1x2)x1

λ
−

(ϕ2
2x1
ϕ2x2 + ϕ2x1ϕ1x1ϕ1x2)x2

λ
− ∆ϕ02(x).
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We want to obtain u(x) = (u1(x), u2(x)) by solving these Poisson equa-
tions. Although there are several sophisticated methods for solving these types
of Poisson equations, we use finite-difference successive-over relaxation (SOR)
method. Next we briefly overview the SOR method for the convenience of the
reader and detailed treatment to this method can be seen, for example, in [8].

Successive Over Relaxation Method (SOR): SOR is a modified version
of the Gauss-Seidel method for solving a linear system of equations, which
results in faster convergence than Gauss-Seidel method.

We first illustrate the solution of 2D Poisson equations via finite-differences
SOR method in detail. Let us consider a general Poisson equation given by

∆u = f,

where f and u stand for smooth functions defined on Ω. Using finite-differences
method, we can express a 2D Poisson equation in a discrete form as

ui−1,j−2ui,j+ui+1,j

∆x2
+

ui,j−1−2ui,j+ui,j+1

∆y2
= fi,j

Suppose that ∆x = ∆y = h, then, for all the interior points we have

ui,j =
1

4

(
ui−1,j + ui+1,j + ui,j−1 + ui,j+1 − h2 × fi,j

)
.

The resulting system of linear algebraic equations is then solved by using
SOR method in the following two steps:

ũi,j =
1

4

(
unew
i−1,j + uold

i+1,j + unew
i,j−1 + uold

i,j+1 − h2 × fi,j
)

unew
i,j = (1− ρ)uold

i,j + ρ ũi,j

It is possible to express this discretized equations as a system of n× n linear
equations with unknown x :

Ax = b, (4.6)

Next decompose A into a diagonal component D, and strictly lower and upper
triangular components L and U as A = D+L+U. Hence, the system of linear
equations (4.6) can be expressed as

(D + νL)x = ν b− [νU + (ν − 1)D]x (4.7)

for some constant ν > 0. SOR is an iterative method which solves the left
hand side of (4.7) for x, using forward substitution:

x
(k+1)
i = (1− ν)x

(k)
i +

λ

aii

(
bi −

∑
j>i

aijx
(k)
i −

∑
j<i

aijx
(k+1)
j

)
,

for i = 1, . . . , n. The choice of relaxation factor, ν, depends upon the properties
of the coefficient matrix. It can be proven that 0 < ν < 2 leads to convergence
for symmetric, positive-definite matrices.
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Table 1: Case 1
Parameters Value Explanation

λ 1 Control parameter in cost functional
µ 0.2 Quantity level for adding change u
ρ 0.001 Tolerance value for each iteration

Number of Iterations 200 Maximum number of iterations
ν 1.1 Relaxation factor for solving SOR

boundary type 1 1-fixed boundary; 2-mirror boundary
bdfactor 0 1-compute on boundary, 0-do not compute

tolr 0.001 Tolerance value in SOR method

5 Experimental Results

We use an initial grid with the size of 25×25 whose monitor function is defined
as follows:

f(x, y) =


0.1, d(x, y) ≤ 0;
0.1 + 9 ∗ d(x, y), 0 ≤ d(x, y) ≤ 0.1;
1, 0.1 ≤ d(x, y).

where

d(x, y) =
√

(x− 0.6)2 + (y − 0.5)2 − (0.16)2

Figure 3 represents the initial grid. Table 1 illustrates the use of some of the
parameters used in SOR procedure. Explanations under the Figure from 4 to
Figure 12 contain information for each case.
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Figure 4: Initial Grid: ϕ0

Figure 5: Case 1: λ = 1, µ = 0.2
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Figure 6: Case 2: λ = 0.7, µ = 0.4

Figure 7: Case 3: λ = 0.7, µ = 0.9
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Figure 8: Case 4: λ = 0.69, µ = 0.4

Figure 9: Case 5: λ = 0.69, µ = 0.9
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Figure 10: Case 6: λ = 0.75, µ = 0.4

Figure 11: Case 7: λ = 50, µ = 0.2
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Figure 12: Case 8: λ = 100, µ = 0.2

6 Discussion and Conclusion

In this paper we present a variational method which generates nearly orthogo-
nal grids with suitable parameter values. We optimize a cost functional which
consists of only area and orthogonality quantities. A significant contribution
is that no volume functional needs to be added to the cost functional. We
generate the initial non-orthogonal grid via deformation based grid generation
method. We achieve to generate nearly orthogonal grids without changing the
cell size distribution of the adaptive (initial) grids. Our computational results
show that if the weighting parameters λ appearing in the smoothing regular-
izer in the cost functional is located between 0.6− 1.0 and the variation term
µ of the initial grid is located between 0.1− 1.0, our method generates nearly
orthogonal grids. We observe that the larger µ (close to 1.0) and the smaller
λ (close to 0.6) increases the orthogonality of the grid. As we observe, larger
λ such as λ = 50, 100 result in less orthogonal grids.

The algorithm was implemented in Fortran language on Intel Pentium D
workstation running on the UNIX operating system. The computational exam-
ples given in the previous section were used to test the algorithm. Preliminary
experiments show promising results and great potential for future extensions.
Codes used in the implementation of our algorithm can be found in the web-
page of the corresponding author [2].
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