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We establish the existence of positive solutions of some m-point boundary value
problems under weaker assumptions than previously employed. In particular,
we do not require all the parameters occurring in the boundary conditions to be
positive. Our results allow more general behaviour for the nonlinear term than
being either sub- or superlinear.

1. Introduction

Recently, much attention has been paid to the study of certain nonlocal bound-
ary value problems (BVPs), whose study has been motivated by the work of Bit-
sadze and Samarskii [1] and Il’in and Moiseev [7].

In particular, existence of solutions for the so-called m-point BVPs

u′′(t) + g(t) f
(
u(t)

)= 0 (0 < t < 1) (1.1)

under one of the boundary conditions (BCs)

u′(0)= 0, u(1)=
m−2∑
i=1

αiu
(
ηi
)
, 0 < η1 < η2 < ··· < ηm−2 < 1, (1.2a)

u(0)= 0, u(1)=
m−2∑
i=1

αiu
(
ηi
)
, 0 < η1 < η2 < ··· < ηm−2 < 1, (1.2b)

has been thoroughly studied by Gupta et al., see, for example, [3, 4, 5].
The existence of positive solutions has been investigated by other authors. For

example, Ma [11] has studied the second set of boundary conditions when all the
αi are nonnegative and

∑m−2
i=1 αiηi < 1 under the assumption that f is either sub-

or superlinear.
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More general boundary conditions have been studied by Ma and Castaneda
[12], again when f is either sub- or superlinear.

The special case of the 3-point BVP has been studied in greater detail, one
reason being that the m-point BVP can be reduced to a 3-point BVP when all
the coefficients αi are positive [3, 7]. The existence of a positive solution for
the 3-point version of (1.2b) was established by Ma [10] under the condition
0 < αη < 1 for f either sub- or superlinear. Under weaker conditions on f , He
and Ge [6] showed the existence of three (and multiple) nonnegative solutions
for the 3-point version of (1.2b) when 0 < αη < 1 while Webb [14] studied the
existence of multiple positive solutions when 0 < α < 1 for (1.2a) and 0 < αη < 1
for (1.2b).

The usual approach has been to write the BVP as an equivalent Hammerstein
integral equation

u(t)=
∫ 1

0
k(t, s)g(s) f

(
u(s)

)
ds=: Tu(t) (1.3)

and find a solution as a fixed point of the operator T by using the classical theory
of fixed-point index in cones. A different method is employed by Palamides [13],
which also allows f to depend on first-order derivatives and has a more general
boundary condition at 0, namely, au(0)− bu′(0)= 0.

In the present paper, we want to show that requiring all the αi to be non-
negative is much too restrictive, and that positive solutions exist more generally
for both sets of boundary conditions. As in [14], our results allow more general
behaviour on f than being either sub- or superlinear.

In order to keep the calculations at a reasonable level, we concentrate on the
4-point BVPs. We suppose η1, η2 are given and we determine in each case nec-
essary conditions on the parameters α1, α2 so that the kernel k(t, s) ≥ 0 for all
0 ≤ t, s ≤ 1. This determines a region in the (α1,α2) plane which is unbounded
and is much larger than the triangle

α1 ≥ 0, α2 ≥ 0, α1η1 +α2η2 < 1, (1.4)

which has been previously used for the BVP (1.2b).
We then show that if the parameters lie strictly inside these regions, then one

or multiple positive solutions exist under suitable conditions on f . Our method
utilises some known results of Lan [8] for the Hammerstein integral equation.

2. Positive solutions of some Hammerstein integral equations

We begin by recalling some results for the following Hammerstein integral equa-
tion:

u(t)=
∫ 1

0
k(t, s)g(s) f

(
u(s)

)
ds≡ Tu(t). (2.1)
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Although it is possible to give more general results (e.g., it is possible to re-
place g(s) f (u(s)) by f (s,u(s)) which satisfies Carathéodory conditions, and we
can treat some discontinuous kernels k), for simplicity in the sequel, we will
make the following assumptions on f , g, and the kernel k:

(C1) k : [0,1]× [0,1]→ [0,∞) is continuous;
(C2) f : R→ [0,∞) is continuous;
(C3) g ∈ L1(0,1) and g(s)≥ 0 a.e.;
(C4) there exist a measurable function Φ : [0,1]→ [0,∞), a subinterval [a,b]

on which
∫ b
a g(s)ds > 0, and c ∈ (0,1] such that

k(t, s)≤Φ(s) for t, s∈ [0,1],

k(t, s)≥ cΦ(s) for t ∈ [a,b], s∈ [0,1].
(2.2)

This allows us to use the following cone K , of a type due to Guo (see, e.g.,
[2]), which is a subset of the cone P of positive functions:

K = {u∈ C[0,1] : u≥ 0, min
{
u(t) : a≤ t ≤ b

}≥ c‖u‖}. (2.3)

Lemma 2.1 (see [8, 9]). Under the above hypotheses, the map T defined in (2.1)
maps K into K and is compact.

Definition 2.2. We define the following numbers:

m=
(

max
t∈[0,1]

∫ 1

0
k(t, s)g(s)ds

)−1

, M =
(

min
t∈[a,b]

∫ b

a
k(t, s)g(s)ds

)−1

,

f 0,ρ = max
u∈[0,ρ]

f (u)
ρ

, f 0 = limsup
u→0+

f (u)
u

, f ∞ = limsup
u→+∞

f (u)
u

,

fcρ,ρ = min
u∈[cρ,ρ]

f (u)
ρ

, f0 = liminf
u→0+

f (u)
u

, f∞ = liminf
u→+∞

f (u)
u

.

(2.4)

This notation allows us to state the following theorem, a special case of some
results from [8] proved by using the theory of fixed-point index.

Theorem 2.3. If (C1), (C2), (C3), and (C4) hold, then (2.1) has a positive solution
in K if one of the following conditions holds:

(h1) 0≤ f 0 <m and M < f∞ ≤∞;
(h2) M < f0 ≤∞ and 0≤ f ∞ <m.

Equation (2.1) has two positive solutions in K if there is ρ > 0 such that either of
the following conditions holds:

(S1) 0≤ f 0 <m, fcρ,ρ > cM, and 0≤ f ∞ <m;
(S2) M < f0 ≤∞, f 0,ρ < m, and M < f∞ ≤∞.

Under the hypothesis (S1), there are in fact 3 nonnegative solutions, but the
third may be 0. This result is similar to the result of [6], but the constant m here
is better (larger) than the constant used in [6].
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3. Positive solutions of the 4-point BVP (1.2a)

We now consider the two 4-point BVPs in detail. We first consider the BVP

u′′(t) + g(t) f
(
u(t)

)= 0, a.e on [0,1], (3.1)

with boundary conditions

u′(0)= 0, u(1)= α1u
(
η1
)

+α2u
(
η2
)
. (3.2)

If we write γ1 = 1− α1 − α2, then the solution of u′′ = −y subject to the BCs
(3.2) is

u(t)= 1
γ1

[∫ 1

0
(1− s)y(s)ds−α1

∫ η1

0

(
η1− s

)
y(s)ds−α2

∫ η2

0

(
η2− s

)
y(s)ds

]

−
∫ t

0
(t− s)y(s)ds.

(3.3)

Thus the kernel (Green’s function) is

k(t, s)= 1
γ1

(1− s)

− α1

γ1


η1− s, s≤ η1,

0, s > η1,
− α2

γ1


η2− s, s≤ η2,

0, s > η2,
−

t− s, s≤ t,

0, s > t.

(3.4)

For existence of positive solutions of (2.1), the standard assumption made
is that k(t, s) ≥ 0 for all t, s. If, for example, k(t0, s) < 0 for s in some interval,
then even the linear problem with a positive right-hand side can have a solution
with u(t0) < 0. Hence we will investigate when k(t, s) ≥ 0 for all t, s. This will
determine a region in the (α1,α2) plane and we will show that if (α1,α2) lies in
the interior of this region, then the hypothesis (C4) is also satisfied, and hence
positive solutions for the nonlinear problem can be shown to exist.

The requirement k(t, s) ≥ 0 for all t, s needs γ1 > 0, that is, α1 + α2 < 1 plus
some other conditions which we explore now.

For a given s, t→ k(t, s) is a decreasing function of t, so we investigate when
k(1, s)≥ 0 for each s.

For η2 < s < 1,

k(1, s)= 1− s

γ1
− (1− s)=

(
α1 +α2

)
γ1

(1− s). (3.5)

For η1 < s≤ η2,

k(1, s)= 1
γ1

[(
α1 +α2

)
(1− s)−α2

(
η2− s

)]
. (3.6)



G. Infante and J. R. L. Webb 1051

α1+α2=0

α1+α2=1

α1(1−η1)+α2(1−η2)=0

α1

α2

Figure 3.1. Region where the kernel is positive.

For 0 < s≤ η1,

k(1, s)= 1
γ1

[
α1
(
1−η1

)
+α2

(
1−η2

)]
. (3.7)

Thus we need α1 + α2 = 1− γ1 ≥ 0 and d1 := α1(1− η1) + α2(1− η2) ≥ 0. These
also ensure (α1 +α2)(1− s)−α2(η2− s)≥ 0 for η1 ≤ s≤ η2.

The region of the (α1,α2) plane for which k(t, s)≥ 0 is therefore as shown in
Figure 3.1.

Remark 3.1. We obtain the “region” for the 3-point BVP as the projection on the
line α1 = 0, which gives the known condition 0 < α < 1, see [14].

We now show that if (α1,α2) lies in the interior of the region of Figure 3.1
then the kernel satisfies (C4), that is, suitable Φ, subinterval [a,b], and c exist.

Upper bounds. For each s, the maximum of k(t, s) occurs when t = 0. So we may
take Φ(s)= k(0, s).

Hence we have

Φ(s)=




1
γ1

(1− s), η2 < s≤ 1,

1
γ1

(
1− s−α2

(
η2− s

))
, η1 < s≤ η2,

1
γ1

(
d2−

(
1−α1−α2

)
s
)
, 0 < s≤ η1,

(3.8)
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where d2 := 1− α1η1 − α2η2 and d2 > 1− α1 − α2 > 0 inside the region where
k ≥ 0.

Lower bounds on [a,b]. We take [a,b] = [0,η1]. The minimum of k(t, s) for
s fixed is k(η1, s). Hence we want to determine c as large as possible so that
k(η1, s)≥ cΦ(s).

For η2 < s < 1,

k
(
η1, s

)= 1
γ1

(1− s). (3.9)

For η1 < s≤ η2,

k
(
η1, s

)= 1
γ1

[
1− s−α2

(
η2− s

)]
. (3.10)

For 0 < s≤ η1, letting

d3 := 1−η1−α2
(
η2−η1

)= d1 +
(
1−η1

)
γ1 > 0, (3.11)

we have

k
(
η1, s

)= 1
γ1

[
1−η1−α2

(
η2−η1

)]= 1
γ1
d3. (3.12)

So, kmin ≥ cΦ(s) for t ∈ [a,b] if

1
γ1
d3 ≥ c

1
γ1

[
d2−

(
1−α1−α2

)
s
]

(3.13)

for 0 < s≤ η1. Thus c = d3/d2.
The constants m, M from Definition 2.2 can be calculated for an explicitly

given g. We give the results for the special case g(s)≡ 1 as follows:

1
m
= max

t∈[0,1]

∫ 1

0
k(t, s)ds=

∫ 1

0
k(0, s)ds= 1

2γ1

(
1−α1η

2
1−α2η

2
2

)
,

1
M
= min

t∈[0,η1]

∫ η1

0
k(t, s)ds=

∫ η1

0
k
(
η1, s

)
ds

= 1
γ1
η1
(
1−η1−α2

(
η2−η1

))= 1
γ1
η1d3.

(3.14)

This gives the following result.

Theorem 3.2. Let g(s)≡ 1, c = d3/d2, and let m, M be as given in (3.14). Then,
for (α1,α2) in the interior of the region of Figure 3.1, the BVP (3.1), (3.2) has at
least one positive solution if either (h1) or (h2) of Theorem 2.3 holds, and has two
positive solutions if there is ρ > 0 such that either (S1) or (S2) of Theorem 2.3 holds.
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4. Positive solutions of the 4-point BVP (1.2b)

We now study the BVP

u′′(t) + g(t) f
(
u(t)

)= 0 a.e on [0,1], (4.1)

with boundary conditions

u(0)= 0, u(1)= α1u
(
η1
)

+α2u
(
η2
)
. (4.2)

For the BCs (4.2), if we set γ = 1−α1η1−α2η2 > 0, the kernel is

k(t, s)= t

γ
(1− s)

− α1t

γ


η1− s, s≤ η1

0, s > η1
− α2t

γ


η2− s, s≤ η2

0, s > η2
−

t− s, s≤ t,

0, s > t.

(4.3)

We will show that k(t, s)≥ 0 for all t, s if 0 < γ ≤ 1 and

d1 := α1
(
1−η1

)
+α2

(
1−η2

)≥ 0. (4.4)

For s > η2 and t < s,

k(t, s)= 1
γ
t(1− s)≥ 0. (4.5)

For s > η2 and t ≥ s,

k(t, s)= 1
γ

[
t(1− s)− γ(t− s)

]= 1
γ

[
t(1− γ− s) + γs

]
(4.6)

and k(t, s)≥ 0 since k(s, s) and k(1, s) are both positive.
For η1 < s≤ η2 and t < s,

k(t, s)= 1
γ

[
t(1− s)−α2t

(
η2− s

)]= t

γ

[
1− s−α2

(
η2− s

)]
. (4.7)

Now

1− s−α2
(
η2− s

)≥min
{

1−η2,1−η1−α2
(
η2−η1

)}
, (4.8)

where

d4 := 1−η1−α2
(
η2−η1

)= γ
(
1−η1

)
+d1η1 ≥ 0. (4.9)

Note that d4 = d3, but we have different hypotheses from the previous BC, so the
positivity of d4 has to be shown. Then we have

k(t, s)≥ t

γ
min

{
1−η2,d4

}≥ 0. (4.10)
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For η1 < s≤ η2 and t ≥ s, the minimum occurs either when t = s or when t = 1,
so

k(t, s)≥min
{

1
γ
s
[
1− s−α2

(
η2− s

)]
,

1
γ

[
(1− γ)(1− s)−α2

(
η2− s

)]}
. (4.11)

Here

s
[
(1− s)−α2

(
η2− s

)]≥min
{
η2
(
1−η2

)
,η1d4

}≥ 0,

(1− γ)(1− s)−α2
(
η2− s

)≥min
{

(1− γ)
(
1−η2

)
,d1
}≥ 0.

(4.12)

For 0≤ s≤ η1 and t < s,

k(t, s)= 1
γ
t
[
γ− s

(
1−α1−α2

)]≥ 0 (4.13)

since γ−η1(1−α1−α2)= d4 ≥ 0.
For 0≤ s≤ η1 and t ≥ s, the minimum occurs either when t = s or when t = 1,

and we have

k(1, s)= 1
γ

[
γs− s

(
1−α1−α2

)]= 1
γ
s
(
d1
)≥ 0,

k(s, s)= 1
γ

[
γs− s2(1−α1−α2

)]≥ 0
(4.14)

since it is equal to 0 when s= 0, and when s= η1,

k
(
η1,η1

)= η1

γ

[
γ−η1

(
1−α1−α2

)]= 1
γ
d4 > 0. (4.15)

The region of the (α1,α2) plane for which k(t, s) ≥ 0 is therefore as shown in
Figure 4.1, which is clearly much larger than the triangle in the first quadrant
which is essentially the region previously used by other authors.

Remark 4.1. Projecting onto the line α1 = 0 gives the “region” for the 3-point
BVP, 0 < αη < 1.

We now determine Φ and show that we may take [a,b]= [η2,1].

Upper bounds. Since k(0, s)= 0 and t 	→ k(t, s) is linear, with a jump in the gra-
dient at t = s, the maximum occurs either when t = s or when t = 1.

For s > η2 and t < s,

k(t, s)= 1
γ
t(1− s)≤ 1− s

γ
. (4.16)

For s > η2 and t ≥ s,

k(t, s)= 1
γ

[
t(1− s)− γ(t− s)

]= 1
γ
t
[
(1− γ)− s

]
+ s. (4.17)
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α1η1+α2η2=0

α1η1+α2η2=1

α1(1−η1)+α2(1−η2)=0

α1

α2

Figure 4.1. Region for positive kernel.

Here k(s, s)= (1/γ)s(1− s)≤ (1/γ)(1− s) and

k(1, s)= (1− γ)
γ

(1− s)≤ 1− s

γ
. (4.18)

For η1 < s≤ η2,

k(s, s)= s

γ

[
1− s−α2

(
η2− s

)]
,

k(1, s)= 1
γ

[
(1− s)−α2

(
η2− s

)]
+ s

= 1
γ

[
(1− γ)(1− s)−α2

(
η2− s

)]
.

(4.19)

For 0≤ s≤ η1, the maximum is either

k(s, s)= s

γ

[
γ− (1−α1−α2

)
s
]

(4.20)

or

k(1, s)= 1
γ
s
[
γ− (1−α1−α2

)]= 1
γ
sd1. (4.21)
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Hence we can take Φ(s) as follows:

Φ(s)=




1
γ

(1− s), η2 < s≤ 1,

1
γ

(
1− s−α2

(
η2− s

))
, η1 < s≤ η2,

1
γ
s
(
γ− (1−α1−α2

)
s
)
, 0≤ s≤ η1, α1 +α2 ≤ 1,

1
γ
s
(
α1
(
1−η1

)
+α2

(
1−η2

))
, 0≤ s≤ η1, α1 +α2 > 1.

(4.22)

Lower bounds on [a,b]= [η2,1]. For the subinterval [a,b], we must have a > 0,
and, guided by our knowledge of the 3-point BVP, we choose [a,b]= [η2,1].

For s > η2 and η2 ≤ t < s,

k(t, s)= 1
γ
t(1− s)≥ 1

γ
η2(1− s). (4.23)

For s > η2 and t ≥ s,

k(t, s)= 1
γ

[
t(1− γ− s) + γs

]
, (4.24)

and the minimum occurs either at t = s or at t = 1 as follows:

k(s, s)= 1
γ

[
s(1− γ− s) + γs

]

= 1
γ
s(1− s)≥ 1

γ
η2(1− s),

k(1, s)= 1− γ

γ
(1− s).

(4.25)

Hence, kmin ≥ cΦ(s) for s > η2 if

c ≤min
{
η2,1− γ

}
. (4.26)

For η2 ≥ s > η1 and t ∈ [η2,1],

k(t, s)= 1
γ

[
t(1− s)−α2

(
η2− s

)− γ
]

+ s,

kmin =min
{

1
γ
η2
(
1− s−α2

(
η2− s

))−η2 + s,
1
γ

(
1− s−α2

(
η2− s

))− 1 + s
}
.

(4.27)

We want kmin ≥ cΦ(s), where

Φ(s)= 1
γ

(
1− s−α2

(
η2− s

))
for η1 < s≤ η2. (4.28)
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This requires

η2Φ(s)−η2 + s≥ cΦ(s), (4.29)

Φ(s)− 1 + s≥ cΦ(s). (4.30)

Condition (4.29) needs

η2− s≤ (η2− c
)
Φ(s) for η1 < s≤ η2. (4.31)

This is satisfied if c ≤ η2 and

η2−η1 ≤
(
η2− c

)
Φ
(
η1
)= (η2− c

)d4

γ
. (4.32)

Note that we must have

η2−
(
η2−η1

)
γ

d4
> 0 (4.33)

for c to exist. In fact, using (4.9), we have

η2−
(
η2−η1

)
γ

d4
> η2−

(
η2−η1

)
1−η1

= η1
(
1−η2

)
1−η1

> 0. (4.34)

Hence we want

c ≤ η2−
(
η2−η1

)
γ

d4
. (4.35)

Condition (4.30) needs

1− s≤ (1− c)Φ(s) for η1 < s≤ η2. (4.36)

When s= η2, (4.36) is

1−η2 ≤ (1− c)

(
1−η2

)
γ

, (4.37)

so c ≤ 1− γ suffices.
When s= η1, (4.36) is

1−η1 ≤ (1− c)
d4

γ
. (4.38)

Since η1d1 + (1−η1)γ = d4 from (4.9), this yields

c ≤ 1−
(
1−η1

)
γ

d4
= η1

d1

d4
. (4.39)



1058 Positive solutions of BVPs

For 0≤ s≤ η1 and t ≥ η2,

k(t, s)= 1
γ
t
(
α1 +α2− 1

)
s+ s. (4.40)

If α1 +α2 > 1, then k(t, s) is increasing in t, so the minimum is at t = η2 as follows:

kmin = 1
γ

[
η2
(
α1 +α2− 1

)
s+ γs

]= 1
γ

(
1−η2 +α1

(
η2−η1

))
s. (4.41)

In order that kmin ≥ cΦ(s), we need

c ≤
(
1−η2 +α1

(
η2−η1

))
d1

. (4.42)

Note that

1−η2 +α1η2−α1η1 = γ+η2
(
α1 +α2− 1

)
> γ > 0 (4.43)

since this is the case α1 +α2 > 1. Hence, for this case, we can take

c ≤ γ

d1
. (4.44)

When α1 +α2 ≤ 1, k(t, s) is decreasing in t, so

kmin = 1
γ

[(
α1 +α2− 1

)
s+ γs

]= s

γ
d1. (4.45)

We want

s

γ
d1 ≥ c

1
γ
s
(
γ− (1−α1−α2

)
s
)
, (4.46)

hence we want c ≤ d1/d4. The total requirement is therefore

c ≤min

{
1− γ,η1

d1

d4
,
γ

d1
,η2−

(
η2−η1

)
γ

d4

}
. (4.47)

As all the requisite conditions have been now verified, we immediately have the
following theorem.

Theorem 4.2. Let [a,b] = [η2,1] and suppose that
∫ 1
η2
g(s)ds > 0. Let c satisfy

(4.47) and let m, M be as in Definition 2.2. Then, for (α1,α2) in the interior of
the region of Figure 4.1, the BVP (4.1), (4.2) has at least one positive solution if
either (h1) or (h2) of Theorem 2.3 holds, and has two positive solutions if there is
ρ > 0 such that either (S1) or (S2) of Theorem 2.3 holds.
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In the special case when g(s)≡ 1, m, M are readily calculated. In fact,

1
m
= max

t∈[0,1]

∫ 1

0
k(t, s)ds

= max
t∈[0,1]

1
2γ

[
t
(
1−α1η

2
1−α2η

2
2

)− γt2]

= 1
8γ2

(
1−α1η

2
1−α2η

2
2

)2
,

1
M
= min

t∈[η2,1]

∫ 1

η2

k(t, s)ds

= min
t∈[η2,1]

1
2γ

[
t
(
1−η2

)2− γ
(
t−η2

)2
]

=min
{
η2,1− γ

}(1−η2
)2

2γ
.

(4.48)

Conclusion. It is possible to extend our methods to deal with 5,6, . . .-point BVPs,
but we feel this would be only worthwhile if required by an explicit application.
Our aim is to show that the “obvious” extension of the condition of the 3-point
BVP that requires positivity of the coefficients αi is far from optimal.
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