ON THE EXTREMAL SOLUTIONS OF SEMILINEAR ELLIPTIC PROBLEMS

LAMIA BEN CHAABANE

Received 1 March 2004

We investigate here the properties of extremal solutions for semilinear elliptic equation $-\Delta u=\lambda f(u)$ posed on a bounded smooth domain of \mathbb{R}^{n} with Dirichlet boundary condition and with f exploding at a finite positive value a.

1. Introduction

We consider the following semilinear elliptic problem:
$\left(P_{\lambda}\right)$

$$
\begin{gather*}
-\Delta u=\lambda f(u) \quad \text { in } \Omega, \\
u>0 \tag{1.1}\\
u=0 \quad \text { in } \Omega \\
u \text { on } \partial \Omega
\end{gather*}
$$

where $\lambda>0, \Omega \subset \mathbb{R}^{n}$ is a bounded smooth domain and f satisfies the following condition:
(H) f is a C^{2} positive nondecreasing convex function on $[0, \infty)$ such that

$$
\begin{equation*}
\lim _{t \rightarrow+\infty} \frac{f(t)}{t}=+\infty \tag{1.2}
\end{equation*}
$$

It is well known that under this condition (H), there exists a critical positive value $\lambda^{*} \in$ $(0, \infty)$ for the parameter λ such that the following holds.
$\left(C_{1}\right)$ For any $\lambda \in\left(0, \lambda^{*}\right)$, there exists a positive, minimal, classical solution $u_{\lambda} \in C^{2}(\bar{\Omega})$. The function u_{λ} is minimal in the following sense: for every solution u of $\left(P_{\lambda}\right)$, we have $u_{\lambda} \leq u$ on Ω. In addition, the function $\lambda \mapsto u_{\lambda}$ is increasing and $\lambda_{1}\left(-\Delta-\lambda f^{\prime}\left(u_{\lambda}\right)\right)>0$, for example, for any $\varphi \in H_{0}^{1}(\Omega) \backslash\{0\}$,

$$
\begin{equation*}
\lambda \int_{\Omega} f^{\prime}\left(u_{\lambda}\right) \varphi^{2} d x<\int_{\Omega}|\nabla \varphi|^{2} d x \tag{1.3}
\end{equation*}
$$

$\left(C_{2}\right)$ For any $\lambda>\lambda^{*}$, there exists no classical solution for $\left(P_{\lambda}\right)$.

2 On the extremal solutions of semilinear elliptic problems
When λ tends to λ^{*},

$$
\begin{equation*}
u^{*}=\lim _{\lambda \rightarrow \lambda^{*}} u_{\lambda} \tag{1.4}
\end{equation*}
$$

always exists by the monotonicity of u_{λ}. In [3], Brezis et al. have introduced a notion of weak solution as follows: we say u is a weak solution for $\left(P_{\lambda}\right)$ if $u \in L^{1}(\Omega), u \geq 0$, $f(u) \delta \in L^{1}(\Omega)$ with $\delta(x)=\operatorname{dist}(x, \partial \Omega)$, and

$$
\begin{equation*}
\int_{\Omega} u(-\Delta \xi) d x=\lambda \int_{\Omega} f(u) \xi d x \tag{1.5}
\end{equation*}
$$

for all $\xi \in C^{2}(\bar{\Omega}),\left.\xi\right|_{\partial \Omega}=0$. They then proved the following.
$\left(C_{3}\right) u^{*}$ is always a weak solution of the problem $\left(P_{\lambda^{*}}\right)$, and for $\lambda>\lambda^{*}$ no solution exists even in the weak sense.

Later, Martel proved in [6] that u^{*} is the unique weak solution of $\left(P_{\lambda^{*}}\right)$, the so called extremal solution.

The typical examples are when the nonlinearity of f is either exponential $f(u)=e^{u}$ or power-like $f(u)=(1+u)^{p}, p>1$ (see $\left.[4,5,7]\right)$. For $f(u)=e^{u}, u^{*}$ is smooth when $n \leq 9$, if $n \geq 10, u^{*}=-2 \ln |x|$ is the extremal solution on $B_{1}(0)$. When $f(u)=(1+u)^{p}$, if $n<n_{p}=6+4(1+\sqrt{p(p-1)}) /(p-1), u^{*}$ is regular, and for $n \geq n_{p}, u^{*}=|x|^{-2 /(p-1)}-1$ is the extremal solution on $B_{1}(0)$. An immediate consequence is that with any $p>1$ and $n \leq 10, u^{*}$ is a smooth solution. It is natural to ask the following question: for small dimension n, is u^{*} always a classical solution for any function f satisfying (H) and any domain $\Omega \subset \mathbb{R}^{n}$? Nedev in [9] and Ye and Zhou in [10] had given some partial answers to this question.

Theorem 1.1 [9]. Suppose that f satisfies (H), then for $n=2$ or $3, u^{*}$ is always a classical solution. Moreover, when $n \geq 4, u^{*} \in L^{q}(\Omega)$, for any $q<n /(n-4)$ and $f\left(u^{*}\right) \in L^{q}(\Omega)$, for any $q<n /(n-2)$.

Theorem 1.2 [10]. Let f verify (H), rewrite $f(t)=f(0)+t e^{g(t)}$. Assume that there exists t_{0} positive such that $t^{2} g^{\prime}(t)$ is nondecreasing in $\left[t_{0}, \infty\right)$, then for any $\Omega \subset \mathbb{R}^{n}$ with $n \leq 9, u^{*}$ is a classical solution.

On the other hand, Brezis and Vazquez have given a characterization of unbounded extremal solutions in $H_{0}^{1}(\Omega)$ as follows: if $v \in H_{0}^{1}(\Omega)$ is an unbounded weak solution of $\left(P_{\lambda}\right)$ with $\lambda>0$ and satisfying the stability condition

$$
\begin{equation*}
\lambda \int_{\Omega} f^{\prime}(v) \varphi^{2} d x \leq \int_{\Omega}|\nabla \varphi|^{2} d x, \quad \forall \varphi \in C_{1}(\bar{\Omega}),\left.\varphi\right|_{\partial \Omega}=0 ; \tag{1.6}
\end{equation*}
$$

then $\lambda=\lambda^{*}$ and $v=u^{*}$. They remarked also that there exist unbounded weak solutions which satisfy (1.6), but do not belong to $H_{0}^{1}(\Omega)$, and which are not extremal solutions.

In this paper, we investigate some similar problems with f exploding at a finite positive value a. More precisely, let f satisfy the following condition:
$\left(H^{\prime}\right) f$ is a C^{1} positive, nondecreasing, convex function on $[0, a)$ with $a \in(0, \infty)$ and

$$
\begin{equation*}
\lim _{t \rightarrow a^{-}} f(t)=+\infty . \tag{1.7}
\end{equation*}
$$

We consider the following problem:
(E_{λ})

$$
\begin{gather*}
-\Delta u=\lambda f(u) \quad \text { in } \Omega, \\
u \in(0, a] \quad \text { in } \Omega, \tag{1.8}\\
u=0 \quad \text { on } \partial \Omega .
\end{gather*}
$$

By the work of Mignot and Puel (see [7]), we have always a critical value $\lambda^{*} \in(0, \infty)$ such that for any $\lambda \in\left(0, \lambda^{*}\right)$, there exists a positive, minimal, classical solution $u_{\lambda} \in C^{2}(\bar{\Omega})$, that is, $u_{\lambda}<a$ in $(\bar{\Omega})$ and for $\lambda>\lambda^{*}$, no classical solution exists. The aim of this work is to study the propriety of the solution of $\left(E_{\lambda}\right)$ at the extremal value $\lambda=\lambda^{*}$ and to prove the nonexistence of weak solution when $\lambda>\lambda^{*}$. We define that ω is a weak solution of $\left(E_{\lambda}\right)$, if $\omega \in L^{1}(\Omega,[0, a])$ such that $f(\omega) \delta \in L^{1}(\Omega)$, and for all $\zeta \in C^{2}(\bar{\Omega})$, with $\zeta=0$ on $\partial \Omega$,

$$
\begin{equation*}
-\int_{\Omega} \omega \Delta \zeta=\lambda \int_{\Omega} f(\omega) \zeta \tag{1.9}
\end{equation*}
$$

Similarly, we say that ω is a weak supersolution of $\left(E_{\lambda}\right)$, if $\omega \in L^{1}(\Omega,[0, a])$, such that $(\Delta \omega) \delta \in L^{1}(\Omega)$, and for all $\zeta \in C^{2}(\bar{\Omega}), \zeta \geq 0$ with $\zeta=0$ on $\partial \Omega$,

$$
\begin{equation*}
-\int_{\Omega} \omega \Delta \zeta \geq \lambda \int_{\Omega} f(\omega) \zeta \tag{1.10}
\end{equation*}
$$

Our main results are the following.
Theorem 1.3. Given f satisfying $\left(H^{\prime}\right)$, if $\lambda>\lambda^{*}$, then there is no weak solution of $\left(E_{\lambda}\right)$.
Theorem 1.4. The function $u^{*}=\lim _{\lambda \rightarrow \lambda^{*}} u_{\lambda}$ is the unique weak solution of $\left(E_{\lambda^{*}}\right)$. Moreover, for any $\varphi \in C^{1}(\bar{\Omega})$ with $\varphi=0$ on $\partial \Omega$,

$$
\begin{equation*}
\lambda^{*} \int_{\Omega} f^{\prime}\left(u^{*}\right) \varphi^{2} d x \leq \int_{\Omega}|\nabla \varphi|^{2} d x \tag{1.11}
\end{equation*}
$$

Theorem 1.5. Assume that $v \in H_{0}^{1}(\Omega)$ is a weak solution of $\left(E_{\lambda}\right)$ for some $\lambda>0$, assume also that $\sup _{\Omega}(v)=a$ and

$$
\begin{equation*}
\lambda \int_{\Omega} f^{\prime}(v) \varphi^{2} d x \leq \int_{\Omega}|\nabla \varphi|^{2} d x \tag{1.12}
\end{equation*}
$$

for all $\varphi \in C^{1}(\bar{\Omega}), \varphi=0$ on $\partial \Omega$, then $\lambda=\lambda^{*}$ and $v=u^{*}$.

2. Proof of Theorem 1.3

In fact, Theorem 1.3 is deduced from a general result, which is the following proposition.
Proposition 2.1. Given g satisfying $\left(H^{\prime}\right)$, if there exists a weak solution ω of

$$
\begin{gather*}
-\Delta \omega=g(\omega) \quad \text { in } \Omega, \\
\omega=0 \quad \text { on } \partial \Omega \tag{2.1}
\end{gather*}
$$

4 On the extremal solutions of semilinear elliptic problems
then, for any $\varepsilon \in(0,1)$, there exists a classical solution ω_{ε} of

$$
\begin{gather*}
-\Delta \omega_{\varepsilon}=(1-\varepsilon) g\left(\omega_{\varepsilon}\right) \quad \text { in } \Omega \\
\omega_{\varepsilon}=0 \quad \text { on } \partial \Omega . \tag{2.2}
\end{gather*}
$$

For the proof of this result, we need the following lemmas which are proved in [3].
Lemma 2.2. Given $g \in L^{1}(\Omega, \delta(x) d x)$, there exists a unique $v \in L^{1}(\Omega)$ which is a weak solution of

$$
\begin{gather*}
-\Delta v=g \quad \text { in } \Omega \\
v=0 \quad \text { on } \partial \Omega \tag{2.3}
\end{gather*}
$$

where $\|v\|_{L^{1}} \leq C\|g\|_{L^{1}(\Omega, \delta(x) d x)}$, for some C constant independent of g. In addition, if $g \geq 0$ a.e. in Ω, then $v \geq 0$ a.e. in Ω.

Lemma 2.3. Assume $g(0)>0$ and set

$$
\begin{equation*}
h(u)=\int_{0}^{u} \frac{d s}{g(s)}, \tag{2.4}
\end{equation*}
$$

for all $0 \leq u \leq a$. Let \tilde{g} be a C^{1} positive function on $[0, a)$ such that $\tilde{g} \leq g$ and $\tilde{g}^{\prime} \leq g^{\prime}$. Set

$$
\begin{equation*}
\tilde{h}(u)=\int_{0}^{u} \frac{d s}{\tilde{g}(s)}, \quad \Phi(u)=\tilde{h}^{-1}(h(u)) \tag{2.5}
\end{equation*}
$$

for all $u \in[0, a]$. Then,
(i) $\Phi(0)=0$ and $0 \leq \Phi(u) \leq u$ for all $0 \leq u \leq a$,
(ii) Φ is increasing, concave, and $\Phi^{\prime}(u) \leq 1$ for all $0 \leq u \leq a$,
(iii) $h(a)<\infty$ and $\Phi(a)<a$, if $\tilde{g} \not \equiv g$ in $[0, a]$.

Proof. It is easy to see that (i) and (iii) hold. We prove (ii), in fact $\Phi^{\prime}(u)=\tilde{g}(\Phi(u)) / g(u)>$ 0 , and

$$
\begin{equation*}
\Phi^{\prime \prime}(u)=\frac{g(u) \tilde{g}^{\prime}(\Phi(u)) \Phi^{\prime}(u)-\tilde{g}(\Phi(u)) g^{\prime}(u)}{g(u)^{2}}=\frac{\tilde{g}(\Phi(u))\left(\tilde{g}^{\prime}(\Phi(u))-g^{\prime}(u)\right)}{g(u)^{2}} . \tag{2.6}
\end{equation*}
$$

Since $\tilde{g}^{\prime}(\Phi(u)) \leq g^{\prime}(\Phi(u)) \leq g^{\prime}(u)$, it follows that Φ is concave, which completes the proof.

Proof of Proposition 2.1 and Theorem 1.3. Choosing $\tilde{g}=(1-\varepsilon) g$ in Lemma 2.3 and denote by $v=\Phi(\omega)$, where ω is the weak solution of (2.1) and using an approximating
argument for ω, we get

$$
\begin{align*}
-\int_{\Omega} v \Delta \zeta & =-\int_{\Omega} \Phi(\omega) \Delta \zeta=-\int_{\Omega} \Delta \Phi(\omega) \zeta=-\int_{\Omega}\left[\Phi^{\prime}(\omega) \Delta \omega+\Phi^{\prime \prime}(\omega)|\nabla \omega|^{2}\right] \zeta \\
& \geq \int_{\Omega} \Phi^{\prime}(\omega) g(\omega) \zeta=\int_{\Omega} \tilde{g}(\Phi(\omega)) \zeta=\int_{\Omega}(1-\varepsilon) g(v) \zeta \tag{2.7}
\end{align*}
$$

for any $\zeta \in C^{1}(\bar{\Omega}), \zeta \geq 0$ with $\zeta=0$ on $\partial \Omega$. Hence, v is a weak supersolution of (2.2). The result of Proposition 2.1 follows by standard barrier method as follows. We define a sequence $\left(\omega_{k}\right)_{k \geq 0}$ by

$$
\begin{gather*}
-\Delta \omega_{k+1}=(1-\varepsilon) g\left(\omega_{k}\right) \quad \text { in } \Omega \\
\omega_{k+1}=0 \quad \text { on } \partial \Omega \tag{2.8}
\end{gather*}
$$

for $k \in \mathbb{N}$, with $\omega_{0}=v$. Using Lemma 2.2, it is easy to check that $\omega_{k} \geq \omega_{k+1} \geq 0$, for all $k \in \mathbb{N}$, so the sequence ω_{k} is nonincreasing and converges in $L^{1}(\Omega)$ to a weak solution u of (2.2). Since $\sup _{\Omega}(u) \leq \sup _{\Omega}(v)<a, u$ is a classical solution, Proposition 2.1 is proved. Theorem 1.3 is deduced by taking $g=\lambda f$ in Proposition 2.1. For any $\lambda>\lambda^{*}$, let $\varepsilon \in(0,1)$ such that $\lambda^{*}<(1-\varepsilon) \lambda<\lambda$, since there is no classical solution of

$$
\begin{gather*}
-\Delta \omega_{\varepsilon}=(1-\varepsilon) \lambda f\left(\omega_{\varepsilon}\right) \quad \text { in } \Omega, \\
\omega_{\varepsilon}=0 \quad \text { on } \partial \Omega, \tag{2.9}
\end{gather*}
$$

it follows by Proposition 1.3 that there is no weak solution of $\left(E_{\lambda}\right)$.

3. Proof of Theorem 1.4

We know that u^{*} is the increasing limit of classical solution u_{λ} with positive first eigenvalue, that is, for any $\varphi \in C^{1}(\bar{\Omega})$ with $\varphi=0$ on $\partial \Omega$,

$$
\begin{equation*}
\lambda \int_{\Omega} f^{\prime}\left(u_{\lambda}\right) \varphi^{2} d x \leq \int_{\Omega}|\nabla \varphi|^{2} d x . \tag{3.1}
\end{equation*}
$$

Passing to the limit, the inequality (1.11) holds. To prove the uniqueness, we will in fact also prove a slightly stronger result.

Proposition 3.1. Let $v \in L^{1}(\Omega,[0, a])$ be a weak supersolution of $\left(E_{\lambda^{*}}\right)$, then $v=u^{*}$.
Proof. We proceed in two steps. First, we show that v is a weak solution of $\left(E_{\lambda^{*}}\right)$. Next, we prove that if $v \not \equiv u^{*}$, then we obtain a contradiction.

Step 1. Suppose that v is not a weak solution of $\left(E_{\lambda^{*}}\right)$, then we can assume that there exists $\beta>0$ and $\xi_{0} \in C^{2}(\bar{\Omega}), \xi_{0} \geq 0$, with $\left.\xi_{0}\right|_{\partial \Omega}=0$ such that

$$
\begin{equation*}
-\int_{\Omega} v \Delta \xi_{0}=\lambda^{*} \int_{\Omega} f(v) \xi_{0}+\beta \tag{3.2}
\end{equation*}
$$

it follows that there exists a nonnegative measure $\mu \not \equiv 0$, with $\mu \delta$ bounded on Ω, such that

$$
\begin{equation*}
-\int_{\Omega} v \Delta \xi=\int_{\Omega}\left(\lambda^{*} f(v)+\mu\right) \xi \tag{3.3}
\end{equation*}
$$

6 On the extremal solutions of semilinear elliptic problems

for all $\xi \in C^{2}(\bar{\Omega})$ with $\left.\xi\right|_{\partial \Omega}=0$. Consider φ and χ, the solutions of

$$
\begin{array}{llll}
-\Delta \varphi=\mu & \text { in } \Omega, & \varphi=0 & \text { on } \partial \Omega \\
-\Delta \chi=1 & \text { in } \Omega, & \chi=0 & \text { on } \partial \Omega . \tag{3.4}
\end{array}
$$

By $\mu \not \equiv 0$, it follows from the properties of the Laplacian that there exists $\varepsilon>0$ such that $\varepsilon \chi \leq \varphi$. Set $z=v+\varepsilon \chi-\varphi \leq \nu$. Then, since f is nondecreasing,

$$
\begin{equation*}
-\int_{\Omega} z \Delta \xi=\int_{\Omega}\left(\lambda^{*} f(v)+\varepsilon\right) \xi \geq \int_{\Omega}\left(\lambda^{*} f(z)+\varepsilon\right) \xi \tag{3.5}
\end{equation*}
$$

for all $\xi \in C^{2}(\bar{\Omega}), \xi \geq 0$, with $\left.\xi\right|_{\partial \Omega}=0$. This means that z is a weak supersolution for $-\Delta \omega=g(\omega)$, where $g(v)=\lambda^{*} f(v)+\varepsilon$. Using the proof of Proposition 2.1 and Lemma 2.3 with $\tilde{g}(v)=\lambda^{*} f(v)+\varepsilon / 2$, we can get a classical solution v_{1} of

$$
\begin{gather*}
-\Delta v_{1}=\lambda^{*} f\left(v_{1}\right)+\left(\frac{\varepsilon}{2}\right) \quad \text { in } \Omega \tag{3.6}\\
v_{1}=0 \quad \text { on } \partial \Omega
\end{gather*}
$$

Moreover, there exists $\alpha>0$, such that $2 \alpha v_{1} \leq \varepsilon \chi$. Set $z=v_{1}+\alpha v_{1}-(\varepsilon / 2) \chi$. It is clear that $0<z \leq v_{1}$ and z satisfies $-\Delta z \geq(1+\alpha) \lambda^{*} f\left(v_{1}\right) \geq(1+\alpha) \lambda^{*} f(z)$ in Ω. Thus, the classical barrier method gives a solution of $\left(E_{(1+\alpha) \lambda^{*}}\right)$, which contradicts then the definition of λ^{*}, so v is a solution of $\left(E_{\lambda^{*}}\right)$.

Step 2. Clearly, $v \geq u_{\lambda}$ for any $\lambda<\lambda^{*}$, hence $v \geq u^{*}$. Suppose that $v \not \equiv u^{*}$, take $\Psi=f(v)-$ $f\left(u^{*}\right) \geq 0$, it is clear that $\Psi \delta \in L^{1}(\Omega)$. We have then $\Psi \not \equiv 0$, because otherwise $f(v)=$ $f\left(u^{*}\right)$ a.e. on Ω, and Lemma 2.2 will give $v=u^{*}$ a.e. on Ω. Let g be the weak solution of

$$
\begin{gather*}
-\Delta g=\Psi \quad \text { in } \Omega \\
g=0 \quad \text { on } \partial \Omega \tag{3.7}
\end{gather*}
$$

By the maximum principle, we have $g \geq c \delta$ on Ω for some $c>0$. Hence,

$$
\begin{equation*}
-\int_{\Omega}\left(v-u^{*}-\lambda^{*} g\right) \Delta \xi=0 \tag{3.8}
\end{equation*}
$$

for all $\xi \in C^{2}(\bar{\Omega})$, with $\left.\xi\right|_{\partial \Omega}=0$. We obtain by Lemma 2.2 that $v-u^{*}=\lambda^{*} g \geq \lambda^{*} c \delta$ a.e. on Ω, set $Z=\left(v+u^{*}\right) / 2$, then

$$
\begin{equation*}
-\int_{\Omega} Z \Delta \xi=\frac{\lambda^{*}}{2} \int_{\Omega}\left(f(v)+f\left(u^{*}\right)\right) \xi=\lambda^{*} \int_{\Omega}(f(Z)+h) \xi>\lambda^{*} \int_{\Omega} f(Z) \xi \tag{3.9}
\end{equation*}
$$

for all $\xi \in C^{2}(\bar{\Omega}), \xi \geq 0$, with $\left.\xi\right|_{\partial \Omega}=0$, where h is given by

$$
\begin{equation*}
h=\frac{1}{2}\left(f(v)+f\left(u^{*}\right)\right)-f\left(\frac{v+u^{*}}{2}\right)=\frac{1}{2} \int_{u^{*}}^{v} d s \int_{\left(s+u^{*}\right) / 2}^{s} f^{\prime \prime}(\sigma) d \sigma \tag{3.10}
\end{equation*}
$$

Clearly, $h \delta \in L^{1}(\Omega)$. Suppose first that $h \equiv 0$, then $f^{\prime \prime}(\sigma)=0$ if $\sigma \in\left[u^{*}, v\right]$, hence $f(\sigma)=$ $f(0)+f^{\prime}(0) \sigma$ on $\cup_{x \in \Omega}\left[u^{*}(x), v(x)\right]=\left[0, \sup _{\Omega} v\right]$, since $v>u^{*}$ in Ω. Then, if $\sup _{\Omega} v=a$, we obtain a contradiction by (1.7), and if $\sup _{\Omega} v<a$, both u^{*} and v are classical solutions of a linear problem with $f(t)=A+B t$ for which the uniqueness is known (see, for instance, [8]). If $h \not \equiv 0$, it follows that Z is a strict supersolution of $\left(E_{\lambda^{*}}\right)$ and we obtain also a contradiction by Step 1 .

4. Proof of Theorem 1.5

Suppose that $\lambda<\lambda^{*}$. We observe that by a density argument, the inequality (1.12) holds for every $\Phi \in H_{0}^{1}(\Omega)$. Taking $\Phi=v-u_{\lambda}$ in (1.12), we get

$$
\begin{equation*}
\lambda \int_{\Omega} f^{\prime}(v)\left(v-u_{\lambda}\right)^{2} d x \leq \int_{\Omega}\left|\nabla\left(v-u_{\lambda}\right)\right|^{2} d x=\lambda \int_{\Omega}\left[f(v)-f\left(u_{\lambda}\right)\right]\left(v-u_{\lambda}\right) d x \tag{4.1}
\end{equation*}
$$

that is,

$$
\begin{equation*}
\lambda \int_{\Omega}\left[f(v)-f\left(u_{\lambda}\right)-f^{\prime}(v)\left(v-u_{\lambda}\right)\right]\left(v-u_{\lambda}\right) d x \geq 0 \tag{4.2}
\end{equation*}
$$

Since f is convex and $v \geq u_{\lambda}$, we get $f(v)=f\left(u_{\lambda}\right)+f^{\prime}(v)\left(v-u_{\lambda}\right)$ a.e. on Ω. Hence, f must be linear in the interval $\left[u_{\lambda}(x), v(x)\right]$ for a.e. $x \in \Omega$. If $v>u_{\lambda}$, we get that f is linear in $\cup_{x}[u(x), v(x)]=\left[0, \sup _{\Omega} v\right)=[0, a)$, which contradicts (1.7). So, $v=u_{\lambda}$, as v is not a classical solution, we get a contradiction, so $\lambda=\lambda^{*}$. The similar argument with (1.11) shows that $v=u^{*}$.

5. Application

Now, we consider a special case $f(u)=1 /(1-u)^{p}$ with $p>0$ and $\Omega=B_{1}(0)$, this problem was studied by Brauner and Nicolaenko in [1, 2]. When $p=1$, this equation appears as a limit of some problem of disruption in biochemistry; it allows then to justify some phenomenon in kinetic enzymatic and the kinetic of reactors associated to some limit coat. For $n \geq 2$, we know an explicit weak solution

$$
\begin{equation*}
U(x)=1-|x|^{2 /(p+1)} \tag{5.1}
\end{equation*}
$$

which is obviously in $H_{0}^{1}(\Omega)$, it corresponds to the parameter value

$$
\begin{equation*}
\lambda^{\#}(n, p)=\frac{2}{p+1}\left(n-\frac{2 p}{p+1}\right)>0 . \tag{5.2}
\end{equation*}
$$

The linearized operator is

$$
\begin{equation*}
L_{\#} \Phi=-\Delta \Phi-\frac{2 p}{p+1}\left(n-\frac{2 p}{p+1}\right) \frac{\Phi}{r^{2}}, \tag{5.3}
\end{equation*}
$$

8 On the extremal solutions of semilinear elliptic problems
where $r=|x|$. By Theorem 1.5, U is the extremal solution if and only if for any $\Phi \in$ $H_{0}^{1}(\Omega)$,

$$
\begin{equation*}
\frac{2 p}{p+1}\left(n-\frac{2 p}{p+1}\right) \int_{B} \frac{\Phi^{2}}{r^{2}} \leq \int_{B}|\nabla \Phi|^{2} d x . \tag{5.4}
\end{equation*}
$$

Thanks to Hardy's inequality, this holds if and only if (see [4])

$$
\begin{equation*}
\frac{2 p}{p+1}\left(n-\frac{2 p}{p+1}\right) \leq H=\frac{(n-2)^{2}}{4} . \tag{5.5}
\end{equation*}
$$

Thus, we have the following proposition.
Proposition 5.1. For any $p>0$, let

$$
\begin{equation*}
n_{0}(p)=\frac{2}{p+1}[(3 p+1)+2 \sqrt{p(p+1)}] \tag{5.6}
\end{equation*}
$$

Then,
(i) if $n \geq n_{0}(p), u^{*}(x)=1-|x|^{2 /(p+1)}$, and $\lambda^{*}=\lambda^{\#}$;
(ii) if $n<n_{0}(p), \lambda^{*}>\lambda^{\#}$ and u^{*} is smooth.

Proof. By an easy computation, we have that $n \geq n_{0}(p)$ is equivalent to (5.5), so (i) is proved by Theorem 1.5. The proof of (ii) is given in [7].

We remark that when p tends to $0, n_{0}(p)$ tends to 2 . So, for any $n \geq 3$, we can meet some nonlinearities f (by choosing appropriate p) such that the extremal solution is no longer classical, this fact is different from the situation for $a=\infty$, if we compare with the results in $[9,10]$. Thus, a natural question is raised, for f satisfying $\left(H^{\prime}\right)$ and Ω bounded smooth domain in \mathbb{R}^{2}, do we have always that u^{*} is a classical solution?

Acknowledgment

The author would like to thank D. Ye and S. Baraket for bringing his attention to this problem and for insightful comments and assistance through this work.

References

[1] C.-M. Brauner and B. Nicolaenko, Sur une classe de problèmes elliptiques non linéaires, C. R. Acad. Sci. Paris Sér. A-B 286 (1978), no. 21, A1007-A1010 (French).
[2] ,__ Sur des problèmes aux valeurs propres non linéaires qui se prolongent en problèmes à frontière libre, C. R. Acad. Sci. Paris Sér. A-B 288 (1979), no. 2, A125-A127 (French).
[3] H. Brezis, T. Cazenave, Y. Martel, and A. Ramiandrisoa, Blow up for $u_{t}-\Delta u=g(u)$ revisited, Adv. Differential Equations 1 (1996), no. 1, 73-90.
[4] H. Brezis and J. L. Vázquez, Blow-up solutions of some nonlinear elliptic problems, Rev. Mat. Univ. Complut. Madrid 10 (1997), no. 2, 443-469.
[5] M. G. Crandall and P. H. Rabinowitz, Some continuation and variational methods for positive solutions of nonlinear elliptic eigenvalue problems, Arch. Ration. Mech. Anal. 58 (1975), no. 3, 207-218.
[6] Y. Martel, Uniqueness of weak extremal solutions of nonlinear elliptic problems, Houston J. Math. 23 (1997), no. 1, 161-168.
[7] F. Mignot and J.-P. Puel, Sur une classe de problèmes non linéaires avec non linéairité positive, croissante, convexe, Comm. Partial Differential Equations 5 (1980), no. 8, 791-836 (French).
[8] P. Mironescu and V. D. Rădulescu, The study of a bifurcation problem associated to an asymptotically linear function, Nonlinear Anal. 26 (1996), no. 4, 857-875.
[9] G. Nedev, Regularity of the extremal solution of semilinear elliptic equations, C. R. Acad. Sci. Paris Sér. I Math. 330 (2000), no. 11, 997-1002.
[10] D. Ye and F. Zhou, Boundedness of the extremal solution for semilinear elliptic problems, Commun. Contemp. Math. 4 (2002), no. 3, 547-558.

Lamia Ben Chaabane: Département de Mathématiques, Faculté des Sciences de Tunis, Campus Universitaire, 2092 Tunis, Tunisia

E-mail address: lamia.benchaabane@fst.rnu.tn

