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It is the aim of this paper to show how the classical theory, based on fundamental solu-
tions and explicit representations, via special functions can be combined with the func-
tional analytical approach to partial differential equations, to produce semiclassical rep-
resentation formulae for the solution of equations in cylinder-like domains.

1. Introduction

Partial differential equations (PDEs) in unbounded domains are often encountered in
practical applications. If one considers the special case of cylindrical domains

Rm×Ω (1.1)

for Ω ⊂ Rn open and bounded, m,n ∈N, then there are essentially two ways to analyze
boundary value problems (BVPs) in such domains which can be found in the literature.
On the one hand, we have the classical approach of looking for a fundamental solution,
that is, a distribution

G∈�′(Rm×Ω
)

(1.2)

such that PDOG= δ for a given partial differential operator PDO. If a fundamental solu-
tion can be found, then a solution of PDO, u= f , can be produced in the form

u=G∗ f (1.3)

whenever the convolution makes sense. If boundary conditions are imposed, one needs
to modify the approach in order to be able to take care of them, but the basic principle
remains the same. On the other hand, we have a fully abstract approach based on oper-
ator sums. Letting PDO1 and PDO2 be the differential operators which act on the first
m variables and on the second n ones, respectively, one tries to construct the solution
operator (PDO1 +PDO2)−1 by using functional calculus formulae. Choosing an integral
representation based on the resolvents of the two operators, one can obtain results of
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46 Semiclassical fundamental solutions

Da Prato-Grisvard type (see [7]), whereas using an imaginary powers integral represen-
tation one can produce Dore-Venni-type results (see [8]).

We choose a mixed approach which combines the classical approach with the func-
tional analytical one. The basic idea is to treat the unbounded directions as in the classical
theory and to condense the problem in the bounded part of the domain into an abstract
operator. To implement this idea, we will need to introduce the concept of operator-
valued fundamental solution which is a natural extension of the classical definition. In
doing so, we are able to integrate the explicit formulae provided by the classical theory
and the abstract operator formulations for BVPs in bounded domains. The result are
semiabstract formulae which give a more suggestive and clear insight into the structure
of the solution operators to many initial and BVPs. The proposed approach has the ad-
vantage of applying equally well to elliptic, parabolic, and hyperbolic problems.

The main results are general representation formulae for the solution of various PDEs
and are presented in Theorems 3.1, 3.2, 3.3, 3.4, and 3.6. The tools used in our analy-
sis are the theory of vector-valued distributions as developed in [13] combined with re-
cent results concerning operator-valued Fourier multiplier theorems obtained by [5] and
functional calculus results for sectorial and selfadjoint operators. It should be observed
that a variety of generalizations for Fourier multipliers theorems to the vector-valued case
have been obtained in recent years, see, for instance, [6, 16, 17]. We choose the one in [5]
because it does not rest on the assumption that underlying function spaces are UMD.
Function spaces of classical regularity are therefore not ruled out.

The paper is organized as follows. In Section 2, we give a brief review of results about
vector-valued distribution theory and introduce the concept of generalized fundamental
solution. In Section 3, we analyze prototype elliptic, parabolic, and hyperbolic equations
to illustrate the simplicity and the strength of the approach.

Although we only consider the linear case, applications to the nonlinear case are pos-
sible; see, for instance, [10], where this approach is implicitly followed to analyze singular
elliptic BVPs arising in the analysis of a certain degenerate free boundary problem.

2. Generalized fundamental solutions

In this section, we will give a very brief survey of the main concepts and results concerning
vector-valued distributions. We will avoid the core issues encountered when attempting
to generalize the concept of distribution to the nonscalar case and refer the interested
reader to [2, 13]. Since we are especially interested in working with distributions in con-
nection with the Fourier transform, we will limit our attention to tempered distributions.

As in the scalar case, one defines the space of rapidly decreasing test functions by{
ϕ∈ C∞

(
Rm,E

)∣∣∀k, j ∈N sup
x∈Rm,|α|≤k

(
1 + |x|2) j/2∣∣∂αϕ(x)

∣∣≤ ck, j <∞
}

, (2.1)

where E is a Banach space. For our purposes, we will choose E to be either a space of
functions or of linear and continuous operators between function spaces. The seminorms

qk, j(ϕ)= sup
x∈Rm,|α|≤k

∣∣∂αϕ(x)
∣∣ (2.2)
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generate the standard locally convex topology of �(Rm,E). If we denote by �′(Rm) =
�(�(Rm),K) the space of scalar tempered distributions, then the corresponding space of
vector-valued distributions is given by

�′(Rm,E
)=�

(
�
(
Rm
)
,E
)
. (2.3)

Now, as in the scalar case, we have that[
ϕ �−→

∫
Rm

f (x)ϕ(x)dx
]

: �
(
Rm
)−→ E (2.4)

defines a tempered distribution for any locally integrable E-valued function. It follows
that

L1,loc
(
Rm,E

)
↩�′(Rm,E

)
, (2.5)

and any distribution which can be represented by a locally integrable function is called
regular. The Fourier transform is given by

�ϕ= ϕ̂= 1
(2π)n/2

∫
Rm

e−ixξϕ(x)dx (2.6)

for any test function ϕ∈�(Rm,E) and by

〈�u,ϕ〉 = 〈û,ϕ〉 = 〈u, ϕ̂〉, ϕ∈�
(
Rm,E

)
(2.7)

for any tempered distribution u∈�′(Rm,E). It can be proven that

�∈��
(
�
(
Rm,E

))∩��
(

L2
(
Rm,E

))∩��
(
�′(Rm,E

))
. (2.8)

In [5], vector-valued Besov spaces

�
(
Rm,E

)
↩Bs

p,q

(
Rm,E

)
↩�′(Rm,E

)
(2.9)

for s∈R and p,q ∈ [1,∞] are introduced via diadic resolutions of the identity in Fourier
space. We refer the reader to the cited paper for the details. The scala of Besov spaces com-
prises several special function spaces. For instance, classical spaces of Hölder continuous
functions

BUCk+α (Rm,E
)={u∈ BUCk (Rm,E

)∣∣[∂αu]α = sup
x =y

∥∥∂αu(x)− ∂αu(y)
∥∥
E

|x− y|α <∞, |α| = k

}
,

(2.10)

where k ∈ N and α ∈ (0,1), are obtained from the general scala setting s = k + α and
p = q =∞. The intrinsic norm

‖ · ‖BUCk+α = sup
|α|≤k

∥∥∂α ·∥∥∞ + sup
|α|=k

[
∂α · ] (2.11)
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is equivalent to the Besov norm. Other spaces which fall into the Besov category are for
instance Sobolev-Slobodeskii spaces

Ws
p

(
Rm,E

)
=
{
u∈W[s]

p

(
Rm,E

)∣∣[∂αu]s−[s]=
∫
Rm×Rm

∥∥∂αu(x)− ∂αu(y)
∥∥p
E

|x− y|m+(s−[s])p d(x, y) <∞, |α| = [s]

}
.

(2.12)

They correspond to choosing s ∈ R+ \N and p = q ∈ (1,∞) and their intrinsic integral
norms

‖ · ‖Ws
p
=
 ∑
|α|≤[s]

∥∥∂α ·∥∥pLp
+
∑

|α|=[s]

[
∂α · ]ps−[s]

1/p

(2.13)

are equivalent to the Besov ones. We recall that [s]=maxk∈N{k ≤ s} and that W[s]
p (Rm,E)

are the classical Sobolev spaces. In analyzing the mapping properties of generalized fun-
damental solutions below, we will at times make use of a Fourier multiplier theorem by
Amann [5]. To formulate the theorem, we need to introduce multiplier spaces first. Let E
and F be Banach spaces and �(E,F) the space of linear and continuous operators from E
into F. Define

Sk
(
Rm,�(E,F)

)
=
{
a∈ Cm+1 (Rm \ {0},�(E,F)

)∣∣∥∥∂αa(x)
∥∥

�(E,F)≤c
(
1 + |x|)k−|α|, x = 0, |α| ≤m+ 1

}
(2.14)

for k ∈R.

Theorem 2.1. Let k ∈R. Then,

a(D)=�−1a�∈�
(

Bs+k
p,q

(
Rm,E

)
,Bs

p,q

(
Rm,F

))
(2.15)

for s∈R and p,q ∈ [1,∞] whenever a∈ Sk(Rm,�(E,F)).

This theorem is a special case of [5, Theorem 6.2]. We are now ready for the definition
of generalized fundamental solutions.

Definition 2.2. Let P=∑|α|≤k pα∂α be a differential operator onRm with coefficients aα ∈
�(E,F). Then, a distribution

G∈�′(Rm,�(F,E)
)

(2.16)

is called a fundamental solution for P if and only if

PG= 1�(E,E)δx. (2.17)

Now, a convolution can be introduced for vector-valued functions and distributions
spaces based on continuous multiplication operators for the underlying image spaces. In
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our situation, we choose the multiplication given by

�(E,F)×E −→ F, (A,x) �−→ Ax. (2.18)

Then, it is a consequence of [5, Theorem 3.1] that the convolution operator

�′(Rm,�(E,F)
)×�

(
Rm,E

)−→ C∞
(
Rm,F

)
, (u,ϕ) �−→ u∗ϕ (2.19)

is bilinear and hypocontinuous (which means continuous in both variables, uniformly
with respect to each variable separately if the other is restricted to a bounded subset). If u
satisfies integrability properties, then the convolution is realized as an integral

(u∗ϕ)(x)=
∫
Rm

u(x− x̃)ϕ(x̃)dx̃. (2.20)

As in the scalar case, once the existence of a fundamental solution

G∈�′(Rm,�(F,E)
)

(2.21)

has been established, one can produce solutions for

Pu= f ∈�′(Rm,F
)

(2.22)

by convolution u = G∗ f , whenever the convolution makes sense. Furthermore, if the
Fourier transform of the fundamental solution Ĝ can be computed, Theorem 2.1 allows
us to analyze its mapping properties. In the next section, we will consider some particular
situations in which the above anisotropic fundamental solution approach can be applied
directly or indirectly. We will give examples in the elliptic, parabolic, and hyperbolic cases.

3. Applications to linear problems

Many results in nonlinear functional analysis are obtained through a combination of fine
linear results and perturbation lemmas which show how to reduce the nonlinear prob-
lem to a linear one, at least locally. Green functions in the elliptic case and the variation
of constants formula for parabolic problems are only two but very prominent examples.
In this spirit, we present the following formulae based on operator-valued fundamental
solutions which have the advantage of applying equally well to elliptic, parabolic, and hy-
perbolic problems. In the parabolic case, they coincide with those obtained by semigroup
theory, whereas for the other two classes of problems they give new insightful represen-
tations for their solutions and solution operators. In [11], we investigate concrete sit-
uations in which operator-valued fundamental solutions can be successfully employed,
such as validity of maximum principles, large space behavior, singular perturbations, and
the problem of imposing appropriate boundary conditions on numerically introduced
artificial boundaries.

3.1. Elliptic boundary value problems. We first consider the case of elliptic BVPs on
cylinder-like domains and illustrate how to use the Fourier transform and Dunford func-
tional calculus techniques to obtain generalized fundamental solutions. We illustrate
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the idea with the help of a general second-order problem and a special fourth-order one.
We choose to work in classical spaces of bounded and uniformly Hölder continuous func-
tions and in Sobolev-Slobodeskii spaces. We therefore set

Es
p(Ω)=

Ws
p(Ω), 1 < p <∞,

BUCs(Ω), p =∞,
(3.1)

for s∈R+ if p ∈ (1,∞) and s∈R+ \N if p =∞. Consider the uniformly strongly elliptic
BVP

�(y,∂)u= f in Ω,

�(y,∂)u= g on ∂Ω,
(3.2)

for differential and boundary operators given by

�(y,∂)u=−div(Λ∇u+ bu) + (c|∇u) +du,

�(y,∂)u= (1− δ)u+ δ
(
∂νΛu+

[(
γ∂b|ν

)
+β0

]
γ∂u
)
.

(3.3)

Assume for simplicity that all data are smooth and that δ ∈ C(∂Ω,{0,1}). Then, ∂Ω has
disconnected components Γ j = δ−1( j), j = 0,1. The vector ν is the unit outward normal
to ∂Ω, ∂νΛu = (∇u|Λν) is the conormal derivative of u and γ∂ is the trace operator. The
uniform ellipticity assumption means that there exists α > 0 with

(
Λ(y)η|η)≥ α|η|2 for any η ∈Rm, y ∈Ω. (3.4)

Classical regularity results imply

(�,�)∈��
(

E2+s
p (Ω),Es

p(Ω)×E
2+s−1/p
p

(
Γ0
)×E

1+s−1/p
p

(
Γ1
))

, (3.5)

where we have set 1/∞= 0 and defined the boundary spaces in the natural way. These
facts can be found in [3, 12]. An abstract operator A on Lp(Ω) for p ∈ (1,∞) can be
associated to (�,�) with

dom(A)= E2+s
p,�(Ω)= {u∈ E2+s

p (Ω)
∣∣�u= 0

}
(3.6)

and Au=�u for u∈ dom(A), where we choose s= 0 if p ∈ (1,∞) and s∈ (0,1) if p =∞.
It can be proved that the operator A is sectorial, see [3, 12], where a definition of sectorial
operator can also be found. If δ = 1 or, if δ = 1 but β0 = 0, we have that 0∈ ρ(A). We as-
sume that this is the case from now on. The case of inhomogeneous boundary conditions
can be reduced to the homogeneous case by trace theorems (extension theorems), as it is
sketched in [11] or in [3].

We are now ready to analyze elliptic BVPs in cylinder-like domains. Consider

−�xu+ �(y,∂)u= f in Rm×Ω,

�(y,∂)u= 0 on Rm× ∂Ω,
(3.7)
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which in view of the above sketch can be reformulated as an abstract elliptic problem

−�u+Au= f in Rm (3.8)

in Es
p(Ω) which fits into the framework of generalized fundamental solutions. Either by

taking a Fourier transform or, directly by analogy to the scalar case, a fundamental solu-
tion can be found. The following theorem deals with dimensions 1, 2, and 3. Analogous
formulae are valid in higher dimensions.

Theorem 3.1. A generalized fundamental solution can be found for−�+A and is given by

Gm(x,A)=



1
2
A−1/2e−|x|A1/2

, m= 1,

K0
(|x|A1/2

)
, m= 2,

1
|x|e

−|x|A1/2
, m= 3,

x ∈Rm. (3.9)

A proof of this result which is based on the Dunford functional calculus for sectorial
operators can be found in [11]. It is interesting to observe that the fundamental solu-
tion can be understood in terms of an analytic function of the pseudodifferential opera-
tor

√
A. In odd dimensions, even in terms of the semigroup generated by

√
A. Based on

Theorem 2.1, it is also easy to obtain associated regularity results in anisotropic spaces.

Theorem 3.2.[
f �−→Gm(·,A)∗ f

]
∈�is

(
Bt
q,r

(
Rm,Es

p(Ω)
)
,Bt+2

q,r

(
Rm,Es

p(Ω)
)∩Bt

q,r

(
Rm,Es+2

p,�(Ω)
))
.

(3.10)

Proof. We know that Ĝm(·,A) = (ξ2 +A)−1. Our assumptions for BVP (3.2) entail that
the operator A is sectorial. In particular, we have∥∥(ξ2 +A

)−1∥∥
�(Es

p(Ω),Es+2
p (Ω)) ≤ c,∥∥(1 + ξ2)(ξ2 +A

)−1∥∥
�(Es

p(Ω)) ≤ c.
(3.11)

Moreover,

∂αξ
(
ξ2 +A

)−1 = pα(ξ)
(
ξ2 +A

)−|α|−1
(3.12)

for any α ∈ Nm and some polynomial pα of order at most |α|. Theorem 2.1 therefore
applies and we obtain the desired regularity results. �

To further illustrate the applicability of ideas, we consider a fourth-order BVP in an
infinite strip. The BVP reads

�2u= f (x, y) in R× (0,1)� (x, y),

u= ∂yu= 0 on R×{0},
u= ∂yu= 0 on R×{1}.

(3.13)
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Again, we can “pack” the part of the operator acting on the bounded direction into an
abstract operator

A= ∂yyyy : dom(A)⊂ Es
p(0,1)−→ Es

p(0,1) (3.14)

defined through

dom(A)= {u∈ E4+s
p,�(0,1) | u( j)= uy( j)= 0, j = 0,1

}
(3.15)

and look for a solution satisfying the abstract (infinite-dimensional) elliptic problem

(
∂xxxx − 2

√
A∂xx +A

)
u= f (x) (3.16)

for the vector-valued function u :R→ Es
p(0,1). As in the second-order case, we choose s=

0 if p ∈ (0,∞) and s∈ (0,1) otherwise. Dunford-Schwartz operator calculus and Fourier
transform allow us to explicitly compute the fundamental solution in this case too.

Theorem 3.3. The abstract elliptic problem (3.16) possesses an operator-valued fundamen-
tal solution G∈ L1(R,�(Lp(0,1))) given by

G(x,A)= 1
2
A−1/2(|x|+A−1/4)e−|x|A1/4

, x ∈R. (3.17)

Proof. The fourth root of the sectorial operator A can be defined by functional calculus
and G can be interpreted by means of the semigroup generated by −A1/4. A direct calcu-
lation then shows that it is indeed a fundamental solution. Alternatively, the use of the
Fourier transform allows us to relate the operator-valued case to the underlying scalar
one. In fact,

2G(x,A)= A−1/2(|x|+A−1/4)e−|x|A1/4

=
∫
Γ
λ−1/2(|x|+ λ−1/4)e−|x|λ1/4

(λ−A)−1dλ

=
∫
Γ

�−1(ξ2 + λ
)−2

(λ−A)−1�dλ=�−1(ξ2 +A
)−2

�,

(3.18)

where the first integral converges since A is an invertible sectorial operator and the scalar
factor is exponentially decaying along any path of integration avoiding (enclosing) the
spectrum of A. The second equality is valid since the Fourier transform is continuous,
for instance on L1(R,Lp(0,1)), and because of the smooth dependence of the functional
calculus on the variable x ∈R (cf. [4, Lemma 4.1.1]). In the last equality, we made use of
the fact that the Fourier transform of the scalar factor in the integrand is known, see, for
instance, [9, Chapter 17]. �

The solution can therefore be understood in terms of semigroups generated by first-
order pseudodifferential operators and their resolvents. This shows how “the different
directions” contribute to the full solution operator. Using Theorem 2.1, it is possible to
characterize the anisotropic mapping properties of the associated convolution operator.
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Theorem 3.4. The following holds:[
f �−→G(·,A)∗ f

]
∈�is

(
Bt
q,r

(
R,Es

p(0,1)
)
,Bt+4

q,r

(
R,Es

p(0,1)
)∩Bt

q,r

(
R,E4+s

p,�(0,1)
))
.

(3.19)

Proof. The proof follows from an easy estimate of the polynomial symbol (ξ2 + A)−1

since, again, A is a sectorial operator on Lp(0,1). �

Remark 3.5. It should be observed that the availability of a representation formula for the
fundamental solution allows for another, direct way to analyze its mapping properties.
Thus, on the one hand, one does not really need to resort to Fourier multiplier theorems
to obtain regularity results and on the other, one also gains insight into the qualitative
behavior of the solution operator.

3.2. Parabolic equations. Based on the properties of the underlying elliptic operators, it
is possible to obtain existence, uniqueness, and regularity results in anisotropic spaces for
parabolic evolution equations as well. As the example will show, this approach allows one
to work in space of mixed classical and generalized regularity, which can be advantageous
in dealing with nonlinear problems.

Theorem 3.6. Let ρ ∈ (0,1) and assume that

f ∈ Cρ (J ,bucs(Rn,Lp(Ω)
))

,

g ∈ C1+ρ (J ,bucs(Rn,W
2−1/p
p

(
Γ0
)×W

1−1/p
p

(
Γ1
)))

∩Cρ (J ,bucs+2(Rn,W
2−1/p
p

(
Γ0
)×W

1−1/p
p (Γ1)

))
,

u0 ∈ bucs
(
Rn,Lp(Ω)

)
.

(3.20)

Then, there exists a unique solution u of

ut −�u+ �u= f , (t,x, y)∈ (0,∞)×Rn×Ω,

�u= g, (t,x, y)∈ (0,∞)×Rn× ∂Ω,

u(0)= u0

(3.21)

with

u∈ Cρ (J \ {0},bucs+2(Rn,Lp(Ω)
)∩ bucs

(
Rn,W2

p(Ω)
))

∩C1+ρ (J \ {0},bucs(Rn,Lp(Ω)
))
.

(3.22)

Proof. The proof is an immediate consequence of [11, Main Theorem 3] and of [4, The-
orem 1.2.1]. �

The solution of the above initial BVP can be represented in terms of a generalized
fundamental solution which can be easily computed since the spatial operators commute.
It is given by

G(t,x)=H(t)e−|x|
2/4te−tA, (3.23)
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where H is the Heaviside function and e−tA is the semigroup generated by the operator
−A. In this case, apart from the fact that we can consider anisotropic spaces, the presented
approach does not lead to any insights which cannot already be obtained by semigroup
theory.

3.3. Hyperbolic equations. We now consider a specific instance of a hyperbolic equation
which shows that our approach is capable of producing solution formulae revealing more
of the solution structure than a purely abstract (semigroup) approach. It also retains some
of the transparency of the abstract approach as opposed to the fully concrete classical
approach based on special functions. Consider the wave equation in a tube-like domain

utt − ∂xxu−�yu= f in R×R×Ω� (t,x, y),

u= 0 in R×R× ∂Ω,

u(0,·)= u0 in R×Ω,

ut(0,·)= u1 in R×Ω.

(3.24)

In the classical approach, the role of a fundamental solution is played by the Rie-
mann function (see, e.g.,[15, page 221]) which solves the system for the data ( f ,u0,u1)=
(0,0,δ(x,y)).

In this case, we take a Hilbert space approach working in L2 and taking advantage of
the functional calculus for selfadjoint operators (see, e.g., [14, Chapter 5]). We need to
resort to this Hilbert space only functional calculus, because of the well-known lack of
regularization of the wave equation and the possibility of exactly characterizing Fourier
multipliers in a Hilbert space setting. We go through the same steps as before. Firstly, we
reformulate the equation as an abstract equation in L2(Ω), which allows us to incorporate
the boundary condition into the function space. Let A : dom(A) ⊂ L2(Ω) → L2(Ω) be
defined by

dom(A)= {u∈H2(Ω)
∣∣γ∂Ωu= 0

}
, Au=−�yu for u∈ dom(A) (3.25)

and rewrite the above system as the following L2(Ω)-valued wave equation on R for u :
R×R→ L2(Ω):

utt − ∂xxu+Au= f in R×R� (t,x),

u(0,·)= u0 in R,

ut(0,·)= u1 in R.

(3.26)

A generalized Riemann function Rt would now be a distribution satisfying this equation
for ( f ,u0,u1)= (0,0,1�(L2(Ω))δx). At this point, we take a vector-valued Fourier transform
in the x-direction to obtain the equivalent system

ûtt +
(
ξ2 +A

)
û= f̂ in R×R� (t,x),

û(0,·)= û0 in R,

ût(0,·)= û1 in R,

(3.27)
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from which the solution R̂t can be easily computed by semigroup theory,

R̂t =
(
ξ2 +A

)−1/2
sin
(
t
√
ξ2 +A

)
. (3.28)

Here, we of course use the calculus for selfadjoint operators to make sense of the formula
and to lift the formula for the inverse Fourier transform for R̂t from the scalar to the
vector-valued situation. In fact, we have

R̂t =
∫
σ(A)

(
ξ2 + λ

)−1/2
sin
(
t
√
ξ2 + λ

)
dP(λ) (3.29)

for the spectral measure associated to A (see, e.g., [14]).

Remark 3.7. Since we are considering the case of Ω bounded here, the spectral represen-
tation can actually be rewritten as

R̂t =
∞∑
k=1

(
ξ2 + λk

)−1/2
sin
(
t
√
ξ2 + λk

)( · |ϕk
)

L2(Ω) (3.30)

in terms of the eigenvalues (λk)k∈N and associated eigenfunctions (ϕk)k∈N of A. For-
mula (3.29), however, shows that the result remains valid on more general assumptions
about Ω.

By continuity of the functional calculus for selfadjoint operators, the Fourier trans-
form can be taken inside the integral in (3.29). This gives the following theorem.

Theorem 3.8. The Riemann function for (3.26) is given by

Rt(x,A)=
J0
(√

A
(
t2−|x|2)1/2

)
, |x| < t,

0, otherwise.
(3.31)

The general solution can consequently be written as

u(t,x)= d

dt

(
Rt(·,A)

)∗x u0 +Rt(·,A)∗x u1 +
∫ t

0
Rt−τ(·,A)∗x f (τ)dτ, (3.32)

where J0 is the Bessel function of first kind of order 0 (see [1]). Since J ′0 =−J1, for the Bessel
function J1 of order 1, (d/dt)(Rt(·,A)) can also be represented by classical functions.

It should be pointed out that a pure semigroup approach would have led to the in-
troduction of the cosine and sine families generated by the full spatial operator. In the
corresponding representation formula for the solution, though equivalent, the light cone
would not appear. The above formula retains both the concision and the transparency
of the semigroup representation without giving up all the details of an explicit repre-
sentation via classical functions. This is very important since a direct approach gives us
quantitative insight into the solution, whereas the functional analytical one leads to a
better understanding of the mapping properties of the solution operator.

In this particular case, we can use the representation formula (3.31) to obtain the
following physically interesting solution.
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Remark 3.9. Define the light cone L by

L := {(t,x)∈R×R | |x| ≤ t
}

(3.33)

and consider the solution u of (3.26) with initial datum

(
u0,u1

)= (0,δx ⊗ f
)

(3.34)

for f ∈ L2(Ω) and where δx is the Dirac distribution supported at x = 0. Then, by (3.31)
and (3.32), u is given by

u(t,x,·)=
J0
(√

A
(
t2−|x|2)1/2

)
f , (t,x)∈ L,

0, otherwise.
(3.35)

Since J0(0)= 1, it can be seen from (3.29) or (3.30) that

[
s �−→ J0

(
s
√
A
)]

(3.36)

is strongly continuous, that is, for every f ∈ L2(Ω),

[
s �−→ J0

(
s
√
A
)
f
]∈ C

(
[0,∞),L2(Ω)

)
. (3.37)

Notice that convergence in (3.30) is ensured by

(
f |ϕk

)
k∈N ∈ l2(N). (3.38)

Moreover, J0(0
√
A)= idL2(Ω). We therefore obtain

[
(t,x) �−→ u(t,x)

]∈ C
(
L,L2(Ω)

)
, u(t,±t)= f . (3.39)

Thus, the initial impulse f produces a wave which appears of shape f propagating down
the wave guide.

Taking into account the decay properties of the Bessel function

∣∣J0(s)
∣∣≤ c

s1/2
, s≥ 0, (3.40)

we also obtain some regularization in the interior of the light cone, that is,

[
(t,x) �−→ u(t,x)

]∈ C
(◦
L,H1/2−ε(Ω)

)
(3.41)

for any 0 < ε ≤ 1/2. This follows from (3.30) and the fact that

dom
(
Aα
)⊂H2α(Ω), α∈ (0,1). (3.42)
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