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We consider an initial boundary value problem related to the equation ut −∆u+
∫ t

0 g(t−
s)∆u(x,s)ds= |u|p−2u and prove, under suitable conditions on g and p, a blow-up result
for certain solutions with positive initial energy.

1. Introduction

In this paper, we are concerned with the finite-time blow-up of solutions for the initial
boundary value problem

ut −∆u+
∫ t

0
g(t− s)∆u(x,s)ds= |u|p−2u, x ∈Ω, t > 0,

u(x, t)= 0, x ∈ ∂Ω, t ≥ 0,

u(x,0)= u0(x), x ∈Ω,

(1.1)

where g : R+ → R+ is a bounded C1 function, p > 2, and Ω is a bounded domain of Rn

(n≥ 1), with a smooth boundary ∂Ω.
This equation arises from a variety of mathematical models in engineering and physi-

cal sciences. For example, in the study of heat conduction in materials with memory, the
classical Fourier’s law of heat flux is replaced by the following form:

q =−d∇u−
∫ t

−∞
∇[k(x, t)u(x,τ)

]
dτ, (1.2)

where u is the temperature, d is the diffusion coefficient, and the integral term represents
the memory effect in the material. The study of this type of equations has drawn a con-
siderable attention, see [3, 4, 10, 12, 13]. From a mathematical point of view, one would
expect the integral term to be dominated by the leading term in the equation. Therefore,
the theory of parabolic equations applies to this type of equations.

In the absence of the memory term (g = 0), problem (1.1) has been studied by various
authors and several results concerning global and nonglobal existence have been estab-
lished. For instance, in the early 1970s, Levine [6] introduced the concavity method and
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showed that solutions with negative energy blow up in finite time. Later, this method was
improved by Kalantarov and Ladyzhenskaya [5] to accommodate more general situations.
Ball [2] also studied (1.1) with f (u,∇u) instead of |u|p−2u and established a nonglobal
existence result in bounded domains. This result had been extended to unbounded do-
mains by Alfonsi and Weissler [1].

For the quasilinear case, Junning in [14] studied

ut −div
(|∇u|m−2∇u)= f (u), x ∈Ω, t > 0,

u(x, t)= 0, x ∈ ∂Ω, t ≥ 0,

u(x,0)= u0(x), x ∈Ω,

(1.3)

and established a global existence result. He also proved a nonglobal existence result un-
der the condition

1
m

∫
Ω

∣∣∇u0(x)
∣∣mdx−

∫
Ω
F
(
u0(x)

)
dx ≤− 4(m− 1)

mT(m− 2)2

∫
Ω
u2

0(x)dx, (1.4)

where F(u) = ∫ u0 f (s)ds. More precisely he showed that if there exists T > 0, for which
(1.2) holds, then the solution blows up in a time less than T . This type of results have
been extensively generalized and improved by Levine, Park, and Serrin in [7], where the
authors proved some global, as well as nonglobal, existence theorems. Their result, when
applied to problem (1.3), requires that

1
m

∫
Ω

∣∣∇u0(x)
∣∣mdx−

∫
Ω
F
(
u0(x)

)
dx < 0. (1.5)

We note that the inequality (1.5) implies (1.4). In a note, Messaoudi [8] extended the
blow-up result to a solution with an initial datum satisfying

1
m

∫
Ω

∣∣∇u0(x)
∣∣mdx−

∫
Ω
F
(
u0(x)

)
dx ≤ 0. (1.6)

In the present work, we consider (1.1) and show that, for suitable conditions on p and
g, the blow-up can be obtained even for some solutions with positive initial energy. The
present paper improves the one in [8] as it is only a special case.

2. Blow-up

In order to state and prove our result, we introduce the “modified” energy functional

E(t)= 1
2

(g �∇u)(t) +
1
2

(
1−

∫ t

0
g(s)ds

)∥∥∇u(t)
∥∥2

2−
1
p

∥∥u(t)
∥∥p
p, (2.1)

where

(g � v)(t)=
∫ t

0
g(t− τ)

∥∥v(t)− v(τ)
∥∥2

2dτ. (2.2)
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For the relaxation function g and the number p, we assume that

g(s)≥ 0, g′(s)≤ 0, 1−
∫∞

0
g(s)ds= l > 0, (2.3)

2 < p ≤ 2(n− 1)
n− 2

, n > 2, p > 2, n= 1,2. (2.4)

We also set

α= B−p/(p−2), E1 =
(

1
2
− 1

p

)
α2, (2.5)

where B = C∗/l for C∗ the best constant of the Sobolev embedding H1
0 (Ω)↩Lp(Ω).

By multiplying the equation in (1.1) by ut and integrating over Ω, we get, after some
manipulations, see [9],

d

dt
E(t)=−

(
1
2
g(t)

∥∥∇u(t)
∥∥2

2−
1
2

(
g′ �∇u)(t) +

∫
Ω

∣∣ut∣∣2
utdx

)
≤ 0, (2.6)

for regular solutions. The same result can be established, for almost every t, by a simple
density argument.

Similar to [11], we give a definition for a strong solution of (1.1).

Definition 1. A strong solution of (1.1) is a function u ∈ C([0,T);H1
0 (Ω))∩C1([0,T);

L2(Ω)), satisfying (2.6) and

∫ t

0

∫
Ω

(
∇u ·∇φ−

∫ s

0
∇u(τ) ·∇φ(s)dτ +utφ−|u|p−2uφ

)
dxds= 0, (2.7)

for all t in [0,T) and all φ in C([0,T),H1
0 (Ω)).

Remark 2.1. Condition (2.4) is needed so that |u|p−2u ∈ L2(Ω); hence
∫
Ω |u|p−2uφdx

makes sense. The condition 1− ∫∞0 g(s)ds= l > 0 is necessary to guarantee the parabolic-
ity of system (1.1).

Lemma 2.2. Let u be a strong solution of (1.1) with initial data satisfying

E(0) < E1,
∥∥∇u0

∥∥
2 > α. (2.8)

Then there exists a constant β > α such that

[(
1−

∫ t

0
g(s)ds

)
‖∇u‖2

2 + (g ◦∇u)(t)
]1/2

≥ β, (2.9)

‖u‖p ≥ Bβ ∀t ∈ [0,T). (2.10)
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Proof. We first note that, by (2.1) and the Sobolev embedding, we have

E(t)= 1
2

(
1−

∫ t

0
g(s)ds

)
‖∇u‖2

2 +
1
2

(g ◦∇u)(t)− 1
p
‖u‖pp

≥ 1
2

(
1−

∫ t

0
g(s)ds

)
‖∇u‖2

2 +
1
2

(g ◦∇u)(t)− 1
p
Bplp‖∇u‖p2

≥ 1
2

(
1−

∫ t

0
g(s)ds

)
‖∇u‖2

2 +
1
2

(g ◦∇u)(t)

− Bp

p

[(
1−

∫ t

0
g(s)ds

)
‖∇u‖2

2 + (g ◦∇u)(t)
]p/2

= 1
2
ζ2− Bp

p
ζ p = h(ζ),

(2.11)

where

ζ =
[(

1−
∫ t

0
g(s)ds

)
‖∇u‖2

2 + (g ◦∇u)(t)
]1/2

. (2.12)

It is easy to verify that h is increasing for 0 < ζ < α, decreasing for ζ > α, h(ζ)→−∞ as
ζ → +∞, and

h(α)=
(

1
2
− 1

p

)
B−2p/(p−2) = E1, (2.13)

where α is given in (2.8). Therefore, since E(0) < E1, there exists β > α such that h(β) =
E(0).

By using (2.11) we have

h
(∥∥∇u0

∥∥
2

)≤ E(0)= g(β), (2.14)

which implies that ‖∇u0‖2 ≥ β.
Now to establish (2.9), we suppose by contradiction that

[(
1−

∫ t0

0
g(s)ds

)
‖∇u‖2

2 + (g ◦∇u)
(
t0
)]1/2

< β, (2.15)

for some t0 > 0 and, by the continuity of

(
1−

∫ t

0
g(s)ds

)
‖∇u‖2

2 + (g ◦∇u)(t), (2.16)

we can choose t0 such that

[(
1−

∫ t0

0
g(s)ds

)
‖∇u‖2

2 + (g ◦∇u)(t0)
]1/2

> α. (2.17)
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Again the use of (2.11) leads to

E
(
t0
)≥ h

([(
1−

∫ t0

0
g(s)ds

)
‖∇u‖2

2 + (g ◦∇u)
(
t0
)]1/2

)
> h(β)= E(0). (2.18)

This is impossible since E(t)≤ E(0), for all t ∈ [0,T). Hence (2.9) is established.
To prove (2.10), we exploit (2.1) and (2.6) to obtain

1
2

[(
1−

∫ t

0
g(s)ds

)
‖∇u‖2

2 + (g ◦∇u)(t)
]
≤ E(0) +

1
p
‖u‖pp. (2.19)

Consequently

1
p
‖u‖pp ≥ 1

2

[(
1−

∫ t

0
g(s)ds

)
‖∇u‖2

2 + (g ◦∇u)(t)
]
−E(0)

≥ 1
2
β2−E(0)

≥ 1
2
β2−h(β)= Bp

p
βp.

(2.20)

Therefore (2.20) yields the desired result. The proof is completed. �

Theorem 2.3. Assume that (2.3) and (2.4) hold. Given u0 ∈H1
0 (Ω) satisfying

∥∥∇u0
∥∥

2 > α, E(0) < E1, (2.21)

if
∫∞

0
g(s)ds <

1− c0

1− (3/4)c0
, c0 = 2 + (p− 2)(α/β)p

p
< 1, (2.22)

then any strong solution of (1.1) blows up in finite time.

Proof. We define

L(t)= 1
2

∫
Ω
u2(x, t)dx (2.23)

and differentiate L to get

L′(t)=
∫
Ω
uut(x, t)dx

=
∫
Ω
u∆udx−

∫
Ω
u(x, t)

∫ t

0
g(t− s)∆u(x,s)dsdx+

∫
Ω
|u|pdx

=−
∫
Ω
|∇u|2dx+

∫
Ω

∫ t

0
g(t− s)∇u(x, t) ·∇u(x,s)dsdx+

∫
Ω
|u|pdx

≥−
∫
Ω
|∇u|2dx+

∫ t

0
g(t− s)

∥∥∇u(t)
∥∥2

2dτ +
∫
Ω
|u|pdx

−
∫ t

0
g(t− s)

∫
Ω

∣∣∇u(t) · [∇u(s)−∇u(t)
]∣∣dxdτ.

(2.24)
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By using Schwarz inequality, (2.24) takes the form

L′(t)≥
∫
Ω
|u|pdx−

(
1−

∫ t

0
g(s)ds

)∥∥∇u(t)
∥∥2

2

−
∫ t

0
g(t− τ)

∥∥∇u(t)
∥∥

2

∥∥∇u(τ)−∇u(t)
∥∥

2dτ.

(2.25)

By applying Young’s inequality to the last term of (2.25), we arrive at

L′(t)≥
∫
Ω
|u|pdx−

[
1− 3

4

∫ t

0
g(s)ds

]∥∥∇u(t)
∥∥2

2− (g �∇u)(t). (2.26)

We then substitute for ‖∇u(t)‖2
2 from (2.1); hence (2.26) becomes

L′(t)≥
∫
Ω
|u|pdx+ 2

[
1− (3/4)

∫ t
0 g(s)ds

]
(
1− ∫ t0 g(s)ds

) H(t)− 2

[
1− (3/4)

∫ t
0 g(s)ds

]
(
1− ∫ t0 g(s)ds

) E1

+

(
1− (3/4)

∫ t
0 g(s)ds

(1− ∫ t0 g(s)ds)
− 1

)
(g �∇u)(t)

− 2
p

1− (3/4)
∫ t

0 g(s)ds(
1− ∫ t0 g(s)ds

)
∫
Ω
|u|pdx.

(2.27)

By using (2.5) and (2.9), the estimate (2.27) takes the form

L′(t)≥ 2

[
1− (3/4)

∫ t
0 g(s)ds

]
(
1− ∫ t0 g(s)ds

) H(t) +

([
1− (3/4)

∫ t
0 g(s)ds

]
(
1− ∫ t0 g(s)ds

) − 1

)
(g �∇u)(t)

+

[
1−

(
2
p

+
p− 2
p

(
α

β

)p)1− (3/4)
∫ t

0 g(s)ds(
1− ∫ t0 g(s)ds

)
]∫

Ω
|u|pdx

≥ γ
∫
Ω
|u|pdx,

(2.28)

where

γ = 1−
(

2
p

+
p− 2
p

(
α

β

)p
)

1− (3/4)
∫∞

0 g(s)ds(
1− ∫∞0 g(s)ds

) > 0 (2.29)

because of (2.22). Next we have, by the embedding of the Lq spaces,

Lp/2(t)≤ C‖u‖pp. (2.30)
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By combining (2.28) and (2.30) we get

L′(t)≥ ΓLp/2(t). (2.31)

A direct integration of (2.31) then yields

Lp/2−1(t)≥ 1
L1−p/2(0)−Γt

. (2.32)

Therefore L blows up in a time t∗ ≤ 1/ΓL(p/2)−1(0). �
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