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We introduce and study some metric spaces of increasing positively homogeneous (IPH)
functions, decreasing functions, and conormal (upward) sets. We prove that the comple-
ments of the subset of strictly increasing IPH functions, of the subset of strictly decreas-
ing functions, and of the subset of strictly conormal sets are σ-porous in corresponding
spaces. Some applications to optimization are given.

1. Introduction

Consider a normed space X equipped with the order relation ≥ induced by a convex
open cone C such that clC is a pointed cone. (More general conic sets C are considered in
some parts of the paper.) We study metric spaces of increasing positively homogeneous
of degree one (IPH) functions defined on C, decreasing nonnegative functions defined
on C, and conormal (upward) subsets of C. Recall that the set V ⊂ C is called conormal if
(x ∈V , y ≥ x)⇒ y ∈V . We show that the complements of the subset of strictly increasing
IPH functions, of the subset of strictly decreasing functions, and of the subset of strictly
conormal sets are σ-porous in the corresponding spaces. First results of this kind were
presented in [10]. We use a modification of some constructions from [10] in this paper.

There are some links between IPH functions, decreasing functions, and conormal sets.
These links are based on the following observation: consider a setV ⊂ C∗ := C× (0,+∞).
Then the following assertions are equivalent.

(1) V is a closed and conormal set.
(2) V is the upper-level set {x : p(x)≥ 1} of an IPH function p defined on C∗.
(3) V is the epigraph of a lower semicontinuous nonnegative decreasing function g

defined on C.
Using corresponding bijections we can extend results obtained for metric spaces of

IPH functions to metric spaces of conormal sets and decreasing functions.
The main results are obtained for the set �0 of IPH functions p such that 0 <

infx∈C,‖x‖=1 p(x)≤ supx∈C,‖x‖=1 p(x) < +∞. The number

ρ(p,q)=max

(
sup
x∈C

p(x)
q(x)

, sup
x∈C

q(x)
p(x)

)
(1.1)
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can be considered as a natural measure for the estimation of the closeness of functions
p,q ∈ �0. This observation leads to the introduction of the natural metric d(p,q) =
lnρ(p,q) on the set �0. It is easy to see that the metric space (�0,d) is complete. Note that
d(p,q) does not depend on the “size” of the pair p, q in the sense that d(p,q)= d(λp,λq)
for all λ > 0. This number describes the distance in terms of the “shape” of this pair. Using
above-mentioned bijections we introduce metric spaces of conormal sets and decreasing
nonnegative functions and study their properties.

We also discuss applications of the results obtained to the examination of some ques-
tions arising in optimization. Consider the set H of optimization problems P( f ,g):

minimize f (x) subject to g(x)≤ 0, (1.2)

where f ,g :Rm→R are functions with some properties. Many questions related to prob-
lem P(f ,g) can be expressed in terms of the perturbation function β f ,g(y)=infx:g(x)≤y f (x).
This function is decreasing. We say that problems P( f ,g) ∈ H and P( f ′,g′) ∈ H are
equivalent if β f ,g = β f ′,g′ . Thus we can include the set � of classes of equivalent pairs
of optimization problems in the metric space of decreasing functions. Using results ob-
tained, we can prove that the subset of � that consists of pairs π such that at least one
problem from π has no solutions on the boundary of the set of feasible elements, is σ-
porous in the metric space under consideration.

2. Preliminaries

A set C in a normed space X is called conic if λx ∈ C for all x ∈ C and λ > 0. A convex
conic set is called a convex cone. A convex cone K generates the order relation ≥ on X ,
namely x ≥ y if x− y ∈ K . We will write x > y if x ≥ y and x �= y. Let C be a conic set.
A function p : C→R+∞ is called positively homogeneous of degree one (PH) if p(λx)=
λp(x) for all λ > 0. Denote by � the intersection of C and the unit ball and by � the
intersection of C and the unit sphere:

�= {x ∈ C : ‖x‖ ≤ 1
}

, �= {x ∈ C : ‖x‖ = 1
}
. (2.1)

Clearly each IPH function is completely defined by its trace on �: if p1, p2 are PH func-
tions and p1(x)= p2(x) for all x ∈�, then p1(x)= p2(x) for all x ∈ C. Let p : C→R be a
finite PH function. The quantity

‖p‖ = sup
{∣∣p(x)

∣∣ : x ∈�
}= sup

{∣∣p(x)
∣∣ : x ∈�

}
(2.2)

is called the norm of p. The following simple assertion is well known and can be easily
proved.

Proposition 2.1. A finite PH function p defined on a conic set C is continuous at zero if
and only if ‖p‖ < +∞.

Let C be a conic set in a normed space X with the order relation ≥ induced by a
closed convex pointed coneK ⊃ C. (Recall thatK is called pointed if eitherK ∩ (−K)=∅
or K ∩ (−K) = {0}.) A function p : C → R is called increasing if x ≥ y⇒p(x) ≥ p(y).
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A function p : C→ R is called strictly increasing if x > y⇒p(x) > p(y). In this paper, we
will study increasing and strictly increasing PH functions. We will use the abbreviation
IPH for increasing PH functions. Since the ordering convex cone K contains C, it follows
that x ≥ 0 for each x ∈ C.

The following proposition holds.

Proposition 2.2. LetC be a conic set with intC �= ∅ and let the order relation≥ be induced
by a closed convex cone K ⊃ C. Let p : C→R+∞ be an IPH function. Then

(i) p is nonnegative;
(ii) if there exists x ∈ C such that p(x)= +∞, then p(y)= +∞ for all y ∈ intC;

(iii) if there exists x ∈ C such that p(x) > 0, then p(y) > 0 for all y ∈ intC.

A proof of Proposition 2.2 for the case C = K can be found in [3, Proposition 6]. This
proof is valid in the general case and we omit it.

We denote by �∗ the set of all nonnegative PH functions defined on C and continuous
at zero. We assume that �∗ is equipped with a metric du defined by

du(p,q)= ‖p− q‖ := sup
{∣∣p(x)− q(x)

∣∣ : x ∈�
}
. (2.3)

Clearly du(p,q) = sup{|p(x)− q(x)| : x ∈�}. Clearly the metric space (�∗,du) is com-
plete.

3. Metric spaces of equivalent IPH functions

Let C be a conic set in a normed space X . Consider a conic set � ⊂�∗ of continuous
at zero nonnegative PH functions p : C→R. We assume that � is closed with respect to
uniform convergence on �= {x ∈ C : ‖x‖ = 1}. We give some examples of a set �: the set
of nonnegative and continuous at zero PH functions, the set of nonnegative continuous
PH functions, the set of continuous at zero IPH functions (it is assumed that there is an
order relation introduced by a closed convex pointed cone K ⊃ C). We say that functions
p,q ∈� are equivalent and write p ∼ q if there exist constants 0 < γ ≤ Γ < +∞ such that

γp(x)≤ q(x)≤ Γp(x) ∀x ∈ C. (3.1)

Clearly ∼ is an equivalency relation. Let r ∈�. Consider the class �r of functions equiv-
alent to a function r. It easily follows from the definition of the equivalence that �r is
a conic set. Assume in the sequel that 0/0 = 0. Then the ratio p(x)/q(x) is finite for all
x ∈ C. If p,q ∈�r , then

sup
x∈C

p(x)
q(x)

= inf
{
γ : p(x)≤ γq(x)∀x ∈ C} < +∞,

sup
x∈C

q(x)
p(x)

= inf
{
γ : q(x)≤ γp(x)∀x ∈ C} < +∞.

(3.2)

Let

ρ(p,q)=max

(
sup
x∈C

p(x)
q(x)

, sup
x∈C

q(x)
p(x)

)
, p,q ∈�r . (3.3)
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It is easy to check that the function ρ possesses the following properties:

ρ(p,q)= ρ(q, p) ∀p,q ∈�r ; (3.4)

ρ(p,q)≥ 1 ∀p,q ∈�r ; (3.5)

ρ(p,q)= 1 iff p = q; (3.6)

ρ(p,h)≤ ρ(p,q)ρ(q,h) ∀p,q,h∈�r ; (3.7)

ρ(λp,λq)= ρ(p,q) ∀p,q ∈�r , λ > 0. (3.8)

We only check (3.7). Let p,q ∈�r . Then we have for all x ∈ C

p(x)
h(x)

≤ p(x)
q(x)

q(x)
h(x)

≤ ρ(p,q)ρ(q,h);

h(x)
p(x)

≤ h(x)
q(x)

q(x)
p(x)

≤ ρ(q,h)ρ(p,q).
(3.9)

These inequalities imply (3.7). It follows from (3.4)–(3.7) that the function

d(p,q)= lnρ(p,q), p,q ∈�r (3.10)

is a metric on �r . Note that d is positively homogeneous of degree zero: d(λp,λq) =
d(p,q) for all p,q ∈�r and λ > 0. This follows from (3.8).

Proposition 3.1. Let α > 0 and let δ = eα− 1. Let p,q ∈�r . Then d(p,q)≤ α if and only
if

p(x)− q(x)≤ δq(x), q(x)− p(x)≤ δp(x) ∀x ∈ C. (3.11)

Proof. The definitions of d and ρ imply that

d(p,q)≤ α⇐⇒ ρ(p,q)≤ eα⇐⇒ (
p(x)≤ eαq(x), q(x)≤ eαp(x)∀x ∈ C). (3.12)

Since eα = 1 + δ, then (3.12) shows that d(p,q)≤ α if and only if (3.11) holds. �

It follows from Proposition 3.1 that a sequence pn converges to p in the metric space
(�r ,d) if and only if there exists a sequence δn > 0, δn→ 0 such that

pn(x)− p(x)≤ δnp(x) ∀x ∈ C, (3.13)

p(x)− pn(x)≤ δnpn(x) ∀x ∈ C. (3.14)

Proposition 3.2. Let pn ∈�r , n= 1, . . . , p ∈�r . If the sequence pn converges to p in the
metric space (�r ,d), then pn converges to p uniformly on the set �= {x ∈ C : ‖x‖ ≤ 1}.
Proof. Let d(pn, p)→ 0. Due to Proposition 3.1 there exists a sequence δn → 0 such that
(3.13) and (3.14) hold. It follows from (3.13) that pn(x)≤ (1 + δn)p(x). Applying (3.14)
we conclude that

p(x)− pn(x)≤ δn
(
1 + δn

)
p(x). (3.15)
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Since sup{p(x) : x ∈�} < +∞, it follows from (3.13) and (3.15) that pn(x)→ p(x) uni-
formly on �. �

Consider the set �0 of functions p ∈� such that inf{p(x) : x ∈�} > 0. Clearly each
two functions p,q ∈�0 are equivalent and �0 coincides with �r for arbitrary r ∈�0.
The following assertion demonstrates that the convergence in the space (�0,d) follows
from uniform convergence, therefore (see Proposition 3.2) coincides with the uniform
convergence.

Proposition 3.3. Let pn ∈�0, n= 1, . . . and let p ∈�0. If the sequence pn converges to p
uniformly on the set �, then pn converges to p in the metric space (�0,d).

Proof. Let c = inf{p(x) : x ∈�}. Then c > 0. Since pn converges to p uniformly on �, it
follows that cn = inf{pn(x) : x ∈ �} > c/2 for large enough n. Let δn → 0 be a sequence
such that |pn(x)− p(x)| ≤ δn for all x ∈ �. Then for all x ∈ � and large enough n we
have

pn(x)− p(x)≤ δn
c
p(x), p(x)− pn(x)≤ 2δn

c
pn(x), x ∈�. (3.16)

Since p and pn are positively homogeneous, it follows that (3.16) holds for all x ∈ C. �

Proposition 3.4. The metric space (�0,d) is complete.

Proof. Let pn ∈ �0 be a sequence such that for each ε > 0 there exists N with the fol-
lowing property: for all n > N and all natural m we have d(xn,xn+m) < ε. It follows from
Proposition 3.1 that for all x ∈ �, we have pn(x) < (1 + δ)pn+m(x) and pn+m(x) < (1 +
δ)pn(x) with δ = eε− 1. These inequalities imply infx∈� pn+m(x)≥ 1/(1 + δ) infx∈� pn(x)
and supx∈� pn+m(x) < (1 + δ)supx∈� pn(x), m= 1, . . . . It is clear that for each x ∈ C there
exists p(x)= limn pn(x) and p ∈�0. �

4. Porosity results for metric spaces of IPH functions

In this section, we consider a closed subspace � of the metric space (�∗,du) (see Section 2
for the definition of this space) that consists of IPH functions. In particular, it can be the
set of continuous at zero IPH functions or continuous everywhere IPH functions. Since
� is closed, it follows that the metric space (�,du) is complete. We will show that under
some natural assumptions the complement of the set of strictly increasing PH functions
from � is σ-porous in the space (�,du).

First we give the definition of porosity and σ-porosity, which will be used in the paper.
There are various definitions of porocity (see [6] for references and a discussion). We use
the following definition (see, e.g., [1, 2, 5, 10]). Let (P,d) be a complete metric space.
Denote the ball {q ∈ P : d(p,q) ≤ r} by B(p,r). A set Ω ⊂ X is called porous in (P,d) if
there exist α ∈ (0,1] and r0 > 0 such that for each positive r < r0 and each p ∈ P there
exists a ball B( p̄,αr) of radius αr such that B( p̄,αr)⊂ B(p,r) and B( p̄,αr)∩Ω is empty.
Later on we consider a set Ω that is the complement to a set P′. Then P \P′ is porous if
there exist α > 0 and r0 > 0 such that for each r ∈ (0,r0) and for each p ∈ P an element p̄
can be found for which B( p̄,αr)⊂ B(p,r)∩P′.

A set Ω is called σ-porous in (P,d) if Ω is a countable union of porous sets.
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Assume that the set � contains a strictly increasing function l such that

p+ λl ∈� ∀p ∈�, λ > 0. (4.1)

If � is a convex cone, then the property (4.1) is valid. We fix such a function l and assume
without loss of generality that ‖l‖ = 1. Note that the function p+ λl from (4.1) is strictly
increasing for each p ∈� and each λ > 0. The following definition is an extension of the
definition given in [10].

Definition 4.1. A function p ∈� is called strictly increasing with respect to l if for any
positive integer n there exists a δn > 0 such that

x, y ∈�, x ≤ y, l(x)≤ l(y)− 1
n
=⇒ p(x) < p(y)− δn. (4.2)

It is easy to check that each strictly increasing with respect to l function is strictly
increasing. Indeed, let x < y. Since l is strictly increasing, it follows that there exists n
such that l(x) < l(y)− 1/n. Then p(x) < p(y)− δn, hence p(x) < p(y). Denote by �l the
set of all strictly increasing with respect to l functions.

Theorem 4.2. The set � \�l is σ-porous in (�,du).

Proof. For each positive integer n consider the set �l
n of all IPH functions p ∈� such

that there exists δn > 0 with the property (4.2). It follows from the definition of �l that
�l =⋂∞n=1 �l

n, so

� \�l =
∞⋃
n=1

(
� \�l

n

)
. (4.3)

Thus we need to prove that the set � \�l
n is porous in �.

Let n be a natural number. Consider a number r ∈ (0,1] and numbers α and γ such
that

0 < α <
1

2(n+ 1)
, γ = α(2n+ 1)r. (4.4)

We have

γ

n
= α

(
2 +

1
n

)
r > 2αr, γ+αr = 2(n+ 1)αr < r. (4.5)

Let p ∈�. Consider the function p̄ defined on C by

p̄(x)= p(x) + γl(x). (4.6)
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Clearly p̄ ∈�. Since l is strictly increasing, it follows that p̄ is also strictly increasing. We
now show that p̄ ∈�l

n. Indeed, let x, y ∈�, x ≤ y, and l(x) < l(y)− 1/n. Then

p̄(y)− p̄(x)= p(y)− p(x) + γ
(
l(y)− l(x)

)≥ γ(l(y)− l(x)
)≥ γ 1

n
. (4.7)

This means that p̄ ∈�l
n with δn = γ/n. Since ‖l‖ = 1, it follows that d(p, p̄)= γ.

Let q ∈� and d( p̄,q) < αr. Using (4.5) we have

d(p,q)≤ d(p, p̄) +d( p̄,q)≤ γ+αr < r, (4.8)

so B( p̄,αr) ⊂ B(p,r). We now show that q ∈�l
n. Let x, y ∈�, x ≤ y, and l(x) < l(y)−

1/n. Since d( p̄,q) < αr, it follows that q(y) ≥ p̄(y)− αr and −q(x) ≥ − p̄(x)− αr. Using
these inequalities and (4.7) we have

q(y)− q(x)≥ p̄(y)− p̄(x)− 2αr ≥ γ 1
n
− 2αr. (4.9)

Let δn = γ/n− 2αr. It follows from (4.5) that δn > 0. Due to (4.9) we have q ∈�l
n.

We have proved that B( p̄,αr)⊂�l
n. This means that � \�l

n is a porous set. �

Remark 4.3. Porosity results for some metric spaces of increasing functions were estab-
lished in [10]. The set of IPH functions is a subset of some of these metric spaces, however
a porosity result for a whole space does not imply a similar result for its subspaces. Also
spaces with uniform metric were not considered in [10].

We now turn to the space (�0,d) where �0 is the set of functions from � with the
property infx∈� p(x) > 0 and d is a metric defined by (3.10). We need the following asser-
tion.

Lemma 4.4. LetM be a positive number. Then there exist α > 0 and r0 > 0 with the following
property: for each r ∈ (0,r0) there exists a number γ1 > 0 such that

γ1 +αr < r, (4.10)

eαr − 1 <
1
M

(
eγ1 − 1

)
. (4.11)

Proof. Assume that there exist α > 0 and r0 > 0 such that

M
(
eαr − 1

)
< e(1−α)r − 1, r ∈ (0,r0

)
. (4.12)

Then for each r ∈ (0,r0) we can find γ1 ≡ γ1(r) > 0 such that

M
(
eαr − 1

)
< eγ1 − 1 < e(1−α)r − 1. (4.13)

The left-hand side inequality in (4.13) is equivalent to (4.11). The right-side inequality in
(4.13) is equivalent to (4.10). Thus we only need to show that there exist α > 0 and r0 > 0
such that (4.12) holds.

Consider function

ϕ(r)= e(1−α)r −Meαr , r ≥ 0. (4.14)
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We have ϕ′(r)= e(1−α)r(1−α)−Meαrα. Choose α such that (1−α)/α >M. Then ϕ′(0)=
(1−α)−Mα > 0. Therefore there exists r0 > 0 such that ϕ(r) > ϕ(0) for r ∈ (0,r). Using
(4.14) we have for these r,

e(1−α)r −Meαr > 1−M, (4.15)

which is equivalent to (4.12). �

Assume that the set �0 contains a strictly increasing function l such that (4.1) holds.
We fix this function and assume without loss of generality that ‖l‖ = 1. Denote by �l

0 the
set of all strictly increasing with respect to l functions from �0 (see Definition 4.1).

Theorem 4.5. The set �0 \�l
0 is σ-porous in (�0,d).

Proof. For each natural n consider the set (�0)ln of all functions p ∈�0 such that there
exists δn > 0 with the property (4.2). We have

�l
0 =

∞⋂
n=1

(
�0
)l
n. (4.16)

For each natural m consider the set

Qm =
{
p ∈�0 : inf

x∈S
p(x)≥ 1

m
, ‖p‖ ≤m

}
. (4.17)

Since �0 =
⋃∞
m=1Qm, it follows that

�0 \
(
�0
)l
n =

∞⋃
m=1

(
Qm \

(
�0
)l
n

)
. (4.18)

Due to (4.16) we have

�0 \�l
0 =

∞⋃
n=1

∞⋃
m=1

(
Qm \

(
�0
)l
n

)
. (4.19)

Thus, in order to obtain the result, we need to prove that the set Qm,n := Qm \ (�0)ln is
porous for each of the positive integers n and m. We fix natural m and n. Without loss
of generality assume that m ≥ 2. Let M =m(4m+ 1)n. Due to Lemma 4.4, we can find
numbers α > 0 and r0 > 0 such that for each r ∈ (0,r0) there exists γ1 for which (4.10)
and (4.11) hold. We can assume without loss of generality that r0 ≤ 1. We fix a number
r ∈ (0,r0) and consider a number γ1 corresponding to r. We also need the number

γ = 1
m

(
eγ1− 1

)
. (4.20)

Note that γ < 1. Indeed due to (4.10), we have γ1 ≤ (1−α)r < r ≤ r0 ≤ 1. Hence

γ = 1
m

(
eγ1 − 1

)
<

1
m

(e− 1) < 2
1
m
≤ 1. (4.21)
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Let p ∈Qm,n and p̄(x)= p(x) + γl(x) for x ∈ C. Since (4.1) holds, it follows that p̄ ∈�0.
Let x, y ∈�, x ≤ y, and l(x) < l(y)− 1/n. Then

p̄(y)− p̄(x)≥ γ(l(y)− l(x)
)≥ γ 1

n
, (4.22)

so p̄ ∈ (�0)ln. Since ‖l‖ = 1, γ ≤ 1, and p ∈Qm it follows that

‖ p̄‖ ≤ ‖p‖+ γ ≤ ‖p‖+ 1≤m+ 1. (4.23)

We now estimate d(p, p̄). Since p(x)≤ p̄(x) for all x, it follows that

ρ(p, p̄)= sup
x∈C

p̄(x)
p(x)

= sup
x∈C

p(x) + γl(x)
p(x)

= 1 + γ sup
x∈C

l(x)
p(x)

= 1 + γ sup
{
l(x)
p(x)

: x ∈�
}
.

(4.24)

Since p ∈Qm, it follows that p(x)≥ 1/m for x ∈�. Therefore we have for x ∈�

l(x)
p(x)

≤ml(x)= ‖l‖m=m. (4.25)

Thus ρ(p, p̄)≤ 1 + γm. It follows from (4.20) that 1 + γm= eγ1 . Then

d(p, p̄)= lnρ(p, p̄)≤ ln(1 + γm)= lneγ1 = γ1. (4.26)

Let q ∈�0 and d( p̄,q) < αr. Since γ1 +αr < r, we have

d(p,q)≤ d(p, p̄) +d( p̄,q) < γ1 +αr < r, (4.27)

so B( p̄,αr)⊂ B(p,r). Let s= er − 1. Due to Proposition 3.1, we have q(x)− p(x)≤ sp(x)
for all x ∈ C. Since r < r0 ≤ 1, it follows that s= er − 1≤ e− 1 < 2. Since p ∈Qm, we have

q(x)≤ (1 + s)p(x)≤ 3m, x ∈�. (4.28)

We check that B( p̄,αr)⊂ (�0)ln. Let q ∈ B( p̄,αr) and let x, y ∈� be vectors such that x ≤
y and l(x) < l(y)− 1/n. Due to Proposition 3.1 and the inequality d( p̄,q) < αr, we have

p̄(y)− q(y)≤ (eαr − 1
)
q(y), q(x)− p̄(x)≤ (eαr − 1

)
p̄(x), (4.29)

hence

q(y)− q(x)≥ p̄(y)− p̄(x)− (eαr − 1
)(
p̄(x) + q(y)

)
. (4.30)

Due to (4.22), (4.23), (4.28), and (4.20) we have

q(y)− q(x)≥ γ

n
− (eαr − 1

)
(4m+ 1)=

(
eγ1 − 1

)
nm

− (eαr − 1
)
(4m+ 1). (4.31)
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Applying (4.11) we conclude that

δnm :=
(
eγ1 − 1

)
nm

− (eαr − 1
)
(4m+ 1) > 0. (4.32)

It follows from (4.31) that q ∈ (�0)ln. Thus B( p̄,αr) ⊂ (�0)ln. We have also proved that
B( p̄,αr)⊂ B(p,r). This means that the set Qm,n is porous. �

5. IPH functions and conormal sets

Let X be a normed space with the norm ‖ · ‖. Let C ⊂ X be a convex pointed cone with
the nonempty interior intC. Assume that X is equipped with the order relation ≥ gen-
erated by the closed convex cone clC and the norm ‖ · ‖ is semimonotone with respect
to this order. The latter means that there exists m> 0 such that ‖x‖ ≥m‖y‖ if x ≥ y ≥ 0.
Semimonotonicity of the norm is equivalent to the normality of the cone clC (see, e.g.,
[4]). We fix a point y ∈ intC. If the norm ‖ · ‖ is semimonotone, then (see, e.g., [4]) the
norm ‖ · ‖ is equivalent to the following norm ‖ · ‖y :

‖x‖y = inf{λ : x ≤ λy,−x ≤ λy}, x ∈ X. (5.1)

Clearly the norm ‖ · ‖y is monotone, that is, x1 ≥ x2 ≥ 0⇒‖x1‖ ≥ ‖x2‖. Note that the unit
ball {x : ‖x‖y ≤ 1} coincides with the set {x ∈ X :−y ≤ x ≤ y}.

Assume without loss of generality that ‖ · ‖ = ‖ · ‖y . It follows from this assumption
that X is equipped with a monotone norm. We have

� := {x ∈ C : ‖x‖ ≤ 1
}= {x ∈ C : x ≤ y}. (5.2)

If C is closed, then � = {x : 0 ≤ x ≤ y}. If C is open, then � = {x : 0� x ≤ y} where
x� y means that x− y ∈ intC. We need the following proposition.

Proposition 5.1. Let p : C→R+ be an IPH function. Then p is continuous on intC.

Proof. Let xk → x ∈ intC. Since x ∈ intC, it follows that there exists a number t such that
tx ≥ y, where y ∈ intC is a reference point which serves for the definition of the norm
‖ · ‖ = ‖ ·‖y . Let ε > 0 be a number such that 1− εt > 0. Then for large enough k, we have

x− εtx ≤ x− εy ≤ xk ≤ x+ εy ≤ x+ εtx. (5.3)

Since p is IPH, we have

(1− εt)p(x)= p(x− εtx)≤ p
(
xk
)≤ p(x+ εtx)= (1 + εt)p(x). (5.4)

Thus the result follows. �

We consider the cone C as a topological space equipped with the natural topology of a
subspace. Denote the closure, interior and boundary of a set U ⊂ C by clC, intC,bdC.

A set V ⊂ C is called upward or conormal if (x ∈ V , y ∈ C, y ≥ x)⇒ y ∈ V . Consider
the Minkowski cogauge νV of a conormal set V :

νV (x)= sup{λ > 0 : x ∈ λV}, x ∈ C. (5.5)
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We assume that the supremum of the empty set is equal to 0. The Minkowski cogauge can
be defined for an arbitrary coradiant set V . (Recall that V is coradiant if x ∈ V⇒λx ∈ V
for all λ ≥ 1.) A presentation of theory of Minkowski cogauges for coradiant sets and
in a finite-dimensional space can be found in [7]. Many results from [7] can be easily
generalized to an arbitrary normed space. In particular, if V is closed (in the topological
space C), then

V = {x ∈ C : νV (x)≥ 1
}
. (5.6)

Let V be a coradiant set. Then νV (x) = 0 if and only if ray Rx := {νx : ν > 0} does
not intersect V and νV (x) = +∞ if and only if Rx ⊂ V . Clearly C is a coradiant set and
νC(x)= +∞ for all x ∈ C.

Proposition 5.2. Let V be a conormal set. Then νV (x) > 0 for each x ∈ intC.

Proof. Let u∈ V . Since x ∈ intC, it follows that there exists λ > 0 such that λu≤ x. Since
V is conormal and (1/λ)x ≥ u, we have (1/λ)x ∈V . Thus ν(x)≥ λ > 0. �

It is easy to check that the Minkowski cogauge νV of a coradiant set V is a positively
homogeneous of degree one function.

Proposition 5.3. A coradiant set V is conormal if and only if νV is increasing.

Proof. Let V be a conormal set and x1 ≥ x2. Then x2 ∈ λV⇒x1 ∈ λV , so νV (x1)≥ νV (x2).
Thus νV is increasing. Assume now that νV is increasing. Let x1 ∈ V and x2 ≥ x1. Since
x1 ∈ V , it follows that νV (x1) ≥ 1. Then νV (x2) ≥ νV (x2) ≥ 1. This means that x2 ∈ V ,
therefore V is conormal. �

Corollary 5.4. A coradiant set V is conormal if and only if νV is an IPH function.

Let

�= {x ∈ C : ‖x‖ ≥ 1
}
. (5.7)

Since X is equipped with a monotone norm, it follows that the set � is conormal. An easy
calculation shows that ν�(x)= ‖x‖ for all x ∈ C.

Let V be a closed (in the topological space intC) coradiant set. Since the level sets
{
x ∈ C : νV (x)≥ r}= r{x ∈ C : νv(x)≥ 1

}= rV (5.8)

are closed for all r > 0 and the level set {x ∈ C : νV (x) ≥ 0} = C is also closed, it follows
that νV is an upper semicontinuous (in the topological space C) function. Conversely, if
νV is upper semicontinuous, then V is closed.

It is easy to check that

ν(αV) = 1
α

νV , α > 0 (5.9)

for a coradiant set V . Indeed, we have for x ∈ C,

ν(αV)(x)= sup
{
λ > 0 : x ∈ (λα)V

}= sup
{
λ′

α
: x ∈ λ′V

}
= 1
α

νV (x). (5.10)
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Note that if V is coradiant, then rV ⊂V for r ≥ 1. If V1,V2 are coradiant, then

V1 ⊂V2 ⇐⇒ νV1 ≤ νV2 . (5.11)

Indeed, it follows from the inclusion {λ : x/λ∈V1} ⊂ {λ : x/λ∈V2}.
Proposition 5.5. Let V be a conormal set which does not contain intC. Then there exists
r > 0 such that V ⊂ r� where � is defined by (5.7).

Proof. Let z ∈ intC be a point such that z /∈ V . Recall that the norm ‖ · ‖ = ‖ · ‖y in the
spaceX is defined by means of the reference point y ∈ intC. Since z ∈ int�, it follows that
there exists r > 0 such that r y ≤ z. Since V is conormal, we have r y /∈ V . Applying (5.2)
we conclude that r� := {x ∈ C : ‖x‖ ≤ r} = {x ∈ C : x ≤ r y}. It follows from conormality
of V that r�∩V =∅, hence V ⊂ {x ∈ C : ‖x‖ > y} ⊂ r�. �

Proposition 5.6. Let V be a conormal set which does not contain intC. Then the
Minkowski cogauge νV is continuous at zero.

Proof. Due to Proposition 2.1, νV is continuous at zero if and only if ‖νV‖ = supx∈� νV (x)
< +∞. Since �= {x ∈ C : x ≤ y} and νV is an increasing function, it follows that ‖νV‖ =
νV (y). If νV (y)= +∞, then (see Proposition 2.2) νV (z)= +∞ for all z ∈ intC. This means
that the ray Rz ⊂V for all z ∈ intC, that is, intC ⊂V which contradicts our assumption.
This contradiction shows that ‖νV‖ = νV (y) < +∞. �

It follows from this proposition that the Minkowski cogauge νV is finite ifV is a conor-
mal set which does not contain intC.

Proposition 5.7. Let V be a conormal set. Then inf{νV (x) : x ∈�} > 0 if and only if there
exists γ > 0 such that V ⊃ γ�. (Recall that �= {x ∈ C : ‖x‖ = 1}.)
Proof. Let r := inf{νV (x) : x ∈�} > 0. Then νV (x)≥ r‖x‖ = ν(γ�)(x) with γ = 1/r, hence
V ⊃ γ�. Clearly V ⊃ γ�⇒ inf{νV (x) : x ∈�} = 1/γ > 0. �

Denote by � the totality of all closed (in the topological space C) conormal sets V that
do not contain intC. If V ∈�, then νV is a finite lower semicontinuous IPH function
which is continuous at zero. On the other hand, a finite IPH lower semicontinuous and
continuous at zero function p : C→R+ coincides with the Minkowski cogauge νV of the
set V = {x : p(x) ≥ 1}. It is easy to check that V ∈�. Let � be the set of all IPH lower
semicontinuous and continuous at zero functions, and let ψ : � → � be the mapping
defined by ψ(V) = νV . It is well known and can be easily proved that ψ is a bijection
between � and � and ψ−1(p)= {x : p(x)≥ 1}.

Using mapping ψ, we can introduce a metric du on the set �. Namely du(V1,V2) =
du(νV1 ,νV2 ). Note that this metric is antihomogeneous, that is, positively homogeneous of
degree −1:

du
(
λV1,λV2

)= λ−1du
(
V1,V2

) ∀λ > 0. (5.12)

Since (�,du) is a complete space, it also follows that (�,du) is a complete space.
Consider now the space �0 of all conormal closed (in C) sets such that there exists

m > 0 with the property V ⊃m�. Let �0 be the subset of � which consists of functions
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p such that infx∈� p(x) > 0. Then the restriction of ψ to �0 is a bijection between �0 and
�0. Using this restriction we can introduce a metric d on the set �0, where d(V1,V2) =
d(νV1 ,νV2 ) and d(νV1 ,νV2 ) is defined by (3.10). Note the metric space (�0,d) is complete.

Recall that d(νV ,νU)= ln(maxρ1(U ,V),ρ2(U ,V)), where

ρ1(U ,V)= inf
{
γ : νV ≤ γνU

}
, ρ2(U ,V)= inf

{
γ : νU ≤ γνV

}
. (5.13)

Due to (5.9), (5.11) we have

d(V ,U)= lnmax
(
σ1(V ,U),σ2(V ,U)

)
, (5.14)

where

σ1(V ,U)= inf{γ : γV ⊂U}, σ2(V ,U)= inf{γ : γU ⊂V}. (5.15)

6. Conormal sets and decreasing functions

Let C be a convex cone in a normed space X such that intC �= ∅ and the cone clC is
pointed. Assume that X is equipped with the order relation ≥ generated by clC and with
the norm ‖ · ‖y defined by (5.1) with some y ∈ intC. Consider the normed space X∗ =
X ×R with the norm ‖(x,α)‖ = max(‖x‖,|α|) for (x,α) ∈ X∗. Let C∗ = C × (0,+∞).
Assume that X∗ is equipped with the order relation generated by clC∗. Let y∗ = (y,1).
We have

∥∥(x,α)
∥∥
y∗ = inf{λ : x ≤ λy,−x ≤ λy,α≤ λ,−α≤ λ}, (x,α)∈ X∗. (6.1)

It easily follows from this that

∥∥(x,α)
∥∥= ∥∥(x,α)

∥∥
y∗ , (x,α)∈ X∗. (6.2)

Let V ⊂ C∗ be a closed conormal set. The function gV : C→ [0,+∞] defined by

gV (x)= inf
{
α : (x,α)∈V}, x ∈ C (6.3)

is called the lower cover of V . (We assume that the infimum over the empty set is equal to
+∞.) For a function g : C→ [0,+∞], we define the domain domg and the epigraph epig
by

domg = {x ∈ C : 0 < g(x) < +∞}, epig = {(x,α)∈ C× (0,+∞) : α≥ g(x)
}

, (6.4)

respectively.

Proposition 6.1 [8, Propositions 6.1 and 6.2]. (1) Let V ⊂ C∗ be a closed conormal set.
Consequently, V coincides with the epigraph epigV of the lower cover gV , and gV is an lsc (in
the topological space C) and decreasing function.

(2) Let g : C→ [0,+∞] be an lsc decreasing function. Then the set V := epig is closed (in
C∗) and conormal.
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In the rest of this section we assume that C is an open cone, so C = intC. Then also
C∗ = intC∗.

Denote by � the set of lower semicontinuous decreasing functions g defined on C and
such that domg is not empty. Let �∗ be the totality of conormal closed (in C∗) subsets
V of C∗ such that V �=�∗ . Let χ : �→�∗ be the mapping defined by

χ(g)= epig. (6.5)

Then χ is a bijection between � and �∗. Using this bijection we can define the metric du
on the set �:

du(h,g) := du(epih, epig). (6.6)

We now consider the set �0 ⊂� that consists of functions g ∈� such that domg is
a bounded set and limx→0 g(x) < +∞. (Note that limx→0 g(x) exists since g is a decreasing
function defined on C = intC.)

Proposition 6.2. g ∈�0 if and only if there exists m > 0 such that epig ⊃m�∗, where
�∗ = {(x,λ)∈ C∗ : ‖(x,λ)‖ ≥ 1}.
Proof. Let g ∈�0. Since m1 := limx→0 g(x)= supx∈C g(x) < +∞, it follows that g(x) < +∞
for all x ∈ C, hence domg = {x ∈ C : g(x) > 0}. Due to the definition of the norm ‖ · ‖ :=
‖ · ‖y (see (5.1)), it follows that domg is bounded if and only if there exists m2 > 0 such
that x ≤m2y for all x ∈ domg. We also have g(x)≤m1 for all x ∈ domg. Let y∗ = (y,1).
Since the spaceX∗ is equipped with the norm ‖ · ‖y∗ (see (6.2)), it follows that there exists
a number m> 0 such that x ∈ domg ⇒‖(x,g(x))‖ <m. We now show that epig ⊃m�∗.
Let ‖(x,λ)‖ ≥m. First assume that x /∈ domg. Then (x,λ)∈ epig for all λ > 0. It follows
from this that if (x,λ)∈m�, then (x,λ)∈ epig. Let x ∈ domg, then g(x) <m. Let (x,λ)∈
m�. Then ‖(x,λ)‖ ≥m. Since ‖x‖ <m, it follows that λ≥m> g(x), so (x,λ)∈ epig.

Assume now that epig⊃m�∗ with somem> 0. Then the graph {(x,g(x)) : x ∈ domg}
of the function g is placed in the set m′� with some m′ > m. It follows from this that
g ∈D0. �

The restriction of the mapping χ on �0 is a bijection between �0 and the set �∗,0 of all
subsets from �∗ that contain m�∗ with some m. Using this bijection we can introduce
the metric d on the set �0:

d(h,g)= d(epih, epig), (6.7)

where d(epih, epig) is defined by (5.14). Due to (5.14) and (5.15), we have

d(h,g)= lnmax
(
σ1(epih, epig),σ2(epih, epig)

)
, (6.8)

where

σ1(epih, epig)= inf{γ : γepih⊂ epig},
σ2(epih, epig)= inf{γ : γepig ⊂ epih}. (6.9)

We need the following assertion.
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Lemma 6.3. Let g,h∈�0 and γ > 0. Then γepig ⊂ epih if and only if

γg(x)≥ h(γx), x ∈ C. (6.10)

Proof. Let γepig ⊂ epih and x ∈ C. Then (γx,γg(x)) ∈ epih, therefore γg(x) ≥ h(γx).
Assume now that (6.10) holds and (x,ν)∈ epig. Then

ν≥ g(x)≥ 1
γ
h(γx), (6.11)

that is, γν≥ h(γx). This means that γ(x,ν)∈ epih. �

It follows from this lemma that

ξ1(h,g) := σ1(epih, epig)= inf
{
γ : g(x)≥ 1

γ
h(γx), x ∈ C

}
, (6.12)

ξ2(h,g) := σ2(epih, epig)= inf
{
γ : h(x)≥ 1

γ
g(γx), x ∈ domh

}
. (6.13)

It follows from the aforesaid that

d(h,g)=max
(
ξ1(h,g),ξ2(h,g)

)
, h,g ∈�0, (6.14)

where ξ1(h,g), ξ2(h,g) are defined by (6.12) and (6.13), respectively.

7. Strictly conormal sets and strictly decreasing functions

Let C be an open convex cone in a Banach space X . Assume that the cone clC is pointed
and X is equipped with the order relation ≥ generated by clC. Assume that the norm
in X coincides with the norm ‖ · ‖y defined by (5.1) with y ∈ C. Let � be the set of all
conormal closed (in C) subsets of C that are different from C. It is easy to see that for
each V ∈ �, the boundary bdC V is nonempty. Indeed, as it is shown in the proof of
Proposition 7.1 below, the set {x : νV (x)= 1} coincides with bdC V .

A conormal setU ⊂� is called strictly conormal if for each boundary point x ∈ bdCU ,
the inequality z < x⇒z /∈U . (By definition, z < x⇔ z ≤ x and z �= x.)

Proposition 7.1. Let V ∈�. Then the Minkowski cogauge νV is strictly increasing if and
only if V is strictly conormal.

Proof. (1) Let νV be strictly increasing. Due to Proposition 5.1, νV is continuous on the
open cone C. We also have V = {x ∈ C : νV (x) ≥ 1}. It easily follows from this that
bdC V = {x : νV (x) = 1}. Let x ∈ bdC V . If z < x, then νV (z) < νV (x) = 1, hence z /∈ V .
We proved that V is strictly normal.

(2) Let V be a strictly conormal set and let x > z. Since 0 < λ := νV (x) < +∞, we can
consider the elements x′ = x/λ and z′ = z/λ. Clearly x′ > z′. Since νV (x′) = 1, it follows
that x′ ∈ bdC V , therefore z′ /∈V . This means that νV (z′) < 1. Due to positive homogene-
ity of νV , we have νV (z) < νV (x). �

Consider a decreasing function g ∈� defined on C. Let V = epig. Then V ⊂ C∗ :=
C× (0,+∞).
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Proposition 7.2 [8, Theorem 7.1]. Let g ∈�. The following statements are equivalent:
(i) the set epig is strictly conormal;

(ii) the function g is strictly decreasing on the set domg and continuous (the latter means
that g(xn)→ g(x) if xn→ x for all x ∈ intC, including x /∈ dom f ).

Using results of Section 4, we can show that the complements to the totality of strictly
conormal sets and the totality of strictly decreasing and continuous functions are σ-
porous in some metrics. Let C be an open convex cone in Banach space X with a semi-
monotone norm. Consider sets �, �0 and �, �0. The following results follow from
Theorem 4.2 and the definition of the metric du in � and �.

Theorem 7.3. Assume that the set � contains a strictly conormal set. Then the complement
to the totality of all strictly conormal sets U ⊂� is σ-porous in the metric space (�,du).

Theorem 7.4. Assume that the set � contains a function g′ that is strictly decreasing on
domg′ and continuous. Then the complement to the totality of all functions g ∈�, that are
strictly decreasing on domg and continuous, is σ-porous in the metric space (�,du).

The following results follow from Theorem 4.5 and the definition of the metric d in
�0 and �0.

Theorem 7.5. Assume that the set �0 contains a strictly conormal set. Then the complement
to the totality of all strictly conormal sets V ∈�0 is σ-porous in the metric space (�0,d).

Theorem 7.6. Assume that the set �0 contains a function g′ that is strictly decreasing on
domg′ and continuous. Then the complement to the totality of all functions g ∈�0, that are
strictly decreasing on domg and continuous, is σ-porous in the metric space (�0,d).

8. Application to optimization

We now give some application of the results obtained to optimization. Let f and g be
real-valued functions defined on the n-dimensional space Rn. Consider the following
optimization problem P( f ,g):

minimize f (x) subject to g(x)≤ 0, i= 1, . . . ,m. (8.1)

For each y ∈ R consider the set A(y)= {x ∈ X : g(x)≤ y}. We assume that the set A(0)
of feasible elements is nonempty, then A(y) is nonempty for all y ≥ 0. The function β f ,g

defined on R+ by

β f ,g(y)=min
{
f (x) : x ∈ A(y)

}
, y ≥ 0 (8.2)

is called the perturbation function of the problem P( f ,g). It follows directly from the
definition that β f ,g is a decreasing function and β f ,g(0) coincides with the optimal value
inf{ f (x) : g(x)≤ 0} of P( f ,g).

Remark 8.1. Note that β f ,g(0) ≥ β f ,g(y) for y > 0, so β f ,g is upper semicontinuous at
the origin. Below we impose assumptions that guarantee lower semicontinuity of β f ,g . If
these assumptions hold, then β f ,g is continuous at zero. Sometimes we can consider β f ,g
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as a function defined on (0,+∞). It follows from the aforesaid that this will not lead to a
misunderstanding.

We will use the following assumptions:
(1) f and g are continuous functions;
(2) f is nonnegative and 0=minx∈Rn f (x) <minx∈A(0) f (x);
(3) A(y)= cl{x : g(x) < y} for all y ≥ 0;
(4) the sets A(y) are compact for y ≥ 0.

We discuss assumption (2). The inequality minx∈Rn f (x) <minx∈A(0) f (x) means that the
constraint g(x) ≤ 0 is essential: the constrained minimum of f is greater than its un-
constrained minimum. Let f̃ : Rn → R be an arbitrary continuous function, which at-
tends its global minimum onRn and such that minx∈Rn f̃ (x) <minx∈A(0) f̃ (x). Let f (z)=
f̃ (z)−minx∈Rn f̃ (x). Then assumption (2) holds for the function f . Since the optimiza-
tion problem P( f̃ ,g) is equivalent to P( f ,g), we can conclude that assumption (2) is not
very restrictive.

Assumptions (3) and (4) describe some properties of the constraint g. If g(0) < 0, then
the interior of the set intA(0) of feasible elements is not empty. The equalityA(y)= cl{x :
g(x) < y} can be considered as a certain constraint qualification. If g is coercive, that is,
lim‖x‖→+∞ g(x)= +∞, then assumption (4) holds.

We considerR as a Banach space with the norm ‖x‖ = |x| and with the open cone C =
(0,+∞)⊂R. Recall that the set �0 consists of all decreasing finite lower semicontinuous
functions defined on C such that the set domg is bounded.

Proposition 8.2. The perturbation function β f ,g belongs to �0.

Proof. The decreasing function β f ,g is finite since β f ,g(0) < +∞. Lower semicontinuity of
β f ,g follows from compactness of the set A(y). (See, e.g., [9, Proposition 3.15], where the
lower semicontinuity of β f ,g at zero is proved. The same proof can also be used for points
y �= 0.) Let z be a global minimum of f and let y > 0 be a number such that z ∈ A(y).
Then β f ,g(y′)= 0 for y′ > y, hence domβ f ,g is bounded. �
Proposition 8.3. Let β ∈�0. Then there exists a problem P( f ,g) such that assumptions
(1)–(4) hold and the perturbation function β f ,g of P( f ,g) coincides with β.

Proof. Let g be a continuous function defined on Rn and mapping onto R such that
assumptions (3) and (4) hold. Let f (x) = β(g+(x)) where g+(x) = max(g(x),0). Then
f is lower semicontinuous and nonnegative. We also have f (x) = 0 for all x such that
g(x) /∈ domβ. Thus minx∈Rn f (x) = 0. Let y > 0. Since g maps onto R, it follows that
there exists z ∈Rn such that g(z)= y. Since β is decreasing, we have

β f ,g(y)= inf
{
f (x) : g(x)≤ y

}= inf
{
β
(
g+(x)

)
: g(x)≤ y

}= β(g(z)
)= β(y). (8.3)

�

The following assertion shows that if P( f ,g) has no global minimizers on the bound-
ary of the set of feasible elements, then the perturbation function β f ,g is not strictly de-
creasing on the set domβ f ,g .
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Proposition 8.4 [9, Proposition 3.16]. Assume that

M :=min
{
f (x) : g(x)≤ 0

}
<min

{
f (x) : g(x)= 0

}
. (8.4)

Then there exists η > 0 such that the perturbation function β f ,g is constant (and equal to
β f ,g(0)≡M) on the segment [0,η).

Corollary 8.5. If β f ,g is a strictly decreasing function in a neighborhood of zero, then

min
{
f (x) : g(x)≤ 0

}=min
{
f (x) : g(x)= 0

}
, (8.5)

that is, a global minimizer of P( f ,g) is located on the boundary of the set of feasible elements.
The converse statement does not hold. (Consider, e.g., f (x) = c for all x and an arbitrary
function g.)

The theoretical study of the optimization problem P( f ,g) can be accomplished with
the help of the perturbation function β f ,g . We can identify two optimization problems
if they possesses the same perturbation function. Consider the set H of all pairs ( f ,g),
where f ,g are functions defined on Rn and mapping into R, such that assumptions (1)–
(4) hold. We say that pairs ( f ,g)∈H and ( f ′,g′)∈H are equivalent if β f ,g = β f ′,g′ . De-
note by � the set of all classes of equivalent pairs. For each π ∈ �, denote by βπ the
function β f ,g with ( f ,g) ∈ π. We can identify an element π ∈� with the function βπ .
Hence we can identify � with �0. Let

d
(
π1,π2

)= d(βπ1 ,βπ2

)
, π1,π2 ∈�, (8.6)

where d(βπ1 ,βπ2 ) is defined by (6.8). Then the metric space (�,d) is isometric to (�0,d).
It is clear that (�,d) is a complete space.

Let �′ be the set of classes π of equivalent pairs ( f ,g) such that π contains at least one
pair ( f ,g) for which min{ f (x) : g(x)≤ 0} < min{ f (x) : g(x)= 0} (i.e., the optimization
problem P( f ,g) has no solutions on the boundary of the set of feasible elements). Then
the function βπ is not strictly increasing on domβπ . It follows from Theorem 7.6 that the
following result holds.

Theorem 8.6. The set �′ is σ-porous in (�,d).

Remark 8.7. σ-porosity for optimization problems was studied by Zaslavski [11]. Con-
sider a nonempty closed subset Z of a complete metric space X such that Z = cl intZ.
Consider also a complete metric space 	 of continuous functions f : X → R that are
bounded from below on Z with the metric d( f ,g)= r( f ,g)(1 + r( f ,g))−1 where r( f ,g)=
sup{| f (x)− g(x)| : x ∈ X}. The following result holds [11].

There exists a set 
 ⊂	 which is a countable intersection of open everywhere dense
subsets such that for each f ∈	 the minimization problem, minimize f (x) subject to
x ∈ C has a unique solution which is an interior point of C.

At first glance this result contradicts Theorem 8.6. However, there is no contradic-
tion here. Indeed, metric spaces � and 	 are very different. The first of them contains
equivalent pairs of optimization problems that satisfy assumptions (1)–(4) and the sec-
ond contains only objective functions with the fixed set C of feasible elements. Metrics in
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� and 	 are also very different. Thus we have a new confirmation of the well-known fact
that generic properties strongly depend on the metric space under consideration.
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