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This paper contains a review of recent results concerning typical properties of dimensions
of sets and dimensions of measures. In particular, we are interested in the Hausdorff di-
mension, box dimension, and packing dimension of sets and in the Hausdorff dimension,
box dimension, correlation dimension, concentration dimension, and local dimension of
measures.

1. Introduction

The idea of dimension of sets and measures is fundamental in diverse branches of math-
ematics, among other in the theory of measure, in the theory of dynamical system and in
the theory of fractals. Various notions of dimension have been proposed: Hausdorff di-
mension (undoubtedly the most popular), box dimension, correlation dimension, pack-
ing dimension, informatic dimension, entropy, and capacity. All these concepts were
widely investigated and used and all of them are rather hard to calculate.

The study of typical properties of compact sets has had a long story and ample litera-
ture. Many of related results can be found in survey papers by Gruber [9] and Zamfirescu
[34, 35, 36]. Here we present some recent results concerning typical properties of dimen-
sions of sets and dimensions of measures.

Recall that a subset of a metric space X is called of the first Baire category, if it can be
represented as a countable union of nowhere dense sets. A subset of a complete metric
space is called residual, if its complement is of the first Baire category. If the set of all
elements of X satisfying some property P is residual in X , then property P is called generic
or typical. We say that an element of X is typical if it has property P.

To recall some classical observations concerning typical properties of dimensions of
sets, we assume that the space of compact sets is equipped with the Hausdorff distance.
From [28] it follows that a typical compact subset of a separable metric space X has
Hausdorff dimension zero. Since the covering (Lebesgue) dimension is less than or equal
to the Hausdorff dimension, this implies that a typical compact set is totally disconnected.
Moreover, if the space X is connected, a typical compact set has no isolated points. In
[10], Gruber proved that if the collection of compact sets having lower box dimension
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at least δ is dense in the space of compact sets, then a typical compact set has upper
box dimension at least δ. In [6], Feng and Wu proved that a typical compact set in Rn

has packing dimension n. On the other hand, Haase [11] proved that, given x ∈ X , for a
typical measure µ, the lower local dimension at x is equal to zero. In addition, if X has
no isolated points, then upper local dimension at x is equal to infinity. This result was
generalized by Genyuk [8] by proving that for a typical probability measure µ on a Polish
space X , the lower local dimension of µ is equal to zero and the upper local dimension of
µ is equal to∞, for all x except a set of the first category.

The study of typical properties of Markov (stochastic) operators is the other related
field of research. The reader is referred to the review article by Choksi and Prasad [2] for
information on historic background and significance of Baire category theorems in er-
godic theory. For example, it was shown that a typical stochastic operator is conservative
and ergodic for the strong topology [15]. Moreover, a typical stochastic operator acting
on arbitrary σ-finite measure space is completely mixing for both strong and uniform
topologies (see [1, 31]).

In [16], it was proved that a typical stochastic semigroup generated by iterated func-
tion system is asymptotically stable and has a strictly positive invariant density. This re-
sult was generalized in [31] by proving that the set of convergent functions is residual
in the space of all multiplicative functions. In [17], it was shown that a unique station-
ary measure corresponding to an iterated function system is either absolutely continuous
or singular. Moreover, in the family of all nonexpansive iterated function system the last
property is generic. This result was generalized in [33] by proving that a typical iterated
function system with place dependent probabilities is asymptotically stable and nonex-
pansive. Finally, in [24], it was proved that a typical Markov operator acting on the space
of Borel measures supported on a compact subset of Rd is asymptotically stable and has
singular stationary measure.

Although first results concerning typical properties of dimensions appeared also a long
time ago, on the contrary to other geometric properties of sets and measures, generic
properties of dimensions does not seem to be so extensively studied. Some results in this
direction have been appeared quite recently and here we want to give a review of these
results. As a general rule, we will give only the frame of the proofs. Complete proofs can
be found in [8, 11, 18, 20, 21, 22, 23, 24, 25, 26].

2. Preliminaries

Let (X ,ρ) be a complete metric space. By B(x,r) (resp., Bo(x,r)) we denote the closed
(resp., open) ball in X with centre at x and radius r > 0. For A ⊂ X , clA stands for the
closure of A, diamA for the diameter of A, and cardA for the cardinality of A. As usual,
by R and N we denote the sets of all reals and all positive integers, respectively.

By � we denote the family of all nonempty compact subsets of X endowed with the
Hausdorff distance h given by the formula

h(A,B)=max
{

max
x∈A

ρ(x,B),max
x∈B

ρ(x,A)
}

, A,B ∈�, (2.1)
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where

ρ(x,B)=min
{
ρ(x, y) : y ∈ B

}
. (2.2)

It is well known that the metric space (�,h) is complete.
For A⊂ X , s≥ 0 and δ > 0, define

�s
δ(A)= inf

∞∑
i=1

(
diamUi

)s
, (2.3)

where the infimum is taken over all countable covers {Ui} of A such that 0 < diamUi ≤ δ.
Then

�s(A)= lim
δ→0

�s
δ(A) (2.4)

is called the Hausdorff s-dimensional measure. If �s(A) <∞ for some s > 0, we define the
Hausdorff dimension of A by the formula

dimH A= inf
{
s > 0 : �s(A) <∞}. (2.5)

If �s(A)=∞ for every s > 0, we set dimH A=∞.
By �(X) we denote the σ-algebra of Borel subsets of X and by �1(X) the family of all

probability Borel measures on X , that is, the measures µ on �(X) such that µ(X)= 1.
The Hausdorff dimension of a measure µ∈�1(X) is defined by the formula

dimH µ= inf
{

dimH A : A∈�(X), µ(A)= 1
}
. (2.6)

Given µ∈�1(X), we define the support of µ by the formula

suppµ= {x ∈ X : µ
(
B(x,r)

)
> 0 for every r > 0

}
. (2.7)

As usual, by B(X) we denote the space of all bounded Borel measurable functions f :
X →R and by C(X) the subspace of all continuous functions. Both spaces are considered
with the supremum norm.

For f ∈ B(X) and µ∈�1(X), we write

〈 f ,µ〉 =
∫
X
f (x)µ(dx). (2.8)

We admit that the space �1(X) is endowed with the Fortet-Mourier distance dFM defined
by the formula

dFM(µ,ν)= sup
{∣∣〈 f ,µ〉− 〈 f ,ν〉∣∣ : f ∈�

}
, (2.9)

where � is the set of all f ∈ C(X) such that | f (x)| ≤ 1 and | f (x)− f (y)| ≤ ρ(x, y) for
x, y ∈ X (see [7]).
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We say that a sequence (µn)⊂�1(X) converges weakly to a measure µ∈�1(X) if

lim
n→∞

〈
f ,µn

〉= 〈 f ,µ〉 for every f ∈ C(X). (2.10)

It is well known (see [3]) that the convergence in the Fortet-Mourier metric is equivalent
to the weak convergence. Moreover, (�1(X),dFM) is a complete metric space.

3. Dimensions of compact sets

We recall that the lower and upper box dimensions of a set A⊂ X are defined, respectively,
by the formulae

dimbA= liminf
r→0+

logN(A,r)
log(1/r)

,

dimbA= limsup
r→0+

logN(A,r)
log(1/r)

,
(3.1)

where N(A,r) is the least number of closed balls of radius r which cover the set A. Note
that if the closure of the set A is noncompact, then dimbA= dimbA=∞. Note also that
the lower and upper box dimensions are invariant under the topological closure. More-
over, it is well known that the Hausdorff dimension of A is not larger than the lower box
dimension of A.

In the above definitions of box dimensions, we can replace the number N(A,r) by
M(A,r)—the greatest possible number of disjoint closed balls of radius r that may be
found with centers in A.

Finally note that the box dimension defined above, eventually with some modifica-
tions, was intensively studied for a long time and it is known in literature also under the
name Minkowki dimension, fractal dimension, capacity dimension, or entropy dimen-
sion. (See [5] and references therein.)

Theorem 3.1. A typical compact subset of X has Hausdorff and lower box dimension zero.

Proof. Since the lower box dimension is greater than or equal to the Hausdorff dimension
(see [12]), it suffices to consider only the case of lower box dimension. Denote by � the
family of all finite subsets of X and by c+ the family of all decreasing sequences of positive
numbers. For a= (a1,a2, . . .)∈ c+, define

�(a)=
⋃
F∈�

�(F,a), (3.2)

where

�(F,a)= {A∈� : h(A,F) < an
}

, n= cardF. (3.3)

Now for a given sequence (ak) of elements of c+ we set

�
(

a1,a2, . . .
)= ∞⋂

k=1

�
(

ak
)
. (3.4)

It is easy to verify that the set �(a1,a2, . . .) is residual in �.
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We claim that for A∈�(a1,a2, . . .), where akn = 2−k−n, we have dimbA= 0. Indeed, by
the definition of �(a1,a2, . . .) and the choice of sequence (ak), for every k ∈N, there exists
a finite set F = {x1, . . . ,xn(k)} such that

h(A,F) < 2−k−n(k). (3.5)

Set εk = 2−k−n(k). Then N(A,εk)≤ n(k) and consequently

0≤ dimbA≤ lim
k→∞

log2N
(
A,εk

)
log2

(
1/εk

) ≤ lim
k→∞

log2n(k)

k+n(k)
= 0. (3.6)

This completes the proof. �

Theorem 3.2. If the family of compact sets having lower box dimension at least δ is dense
in �, then a typical compact set has upper box dimension at least δ.

For the proof, see [10].
The smallest local lower and the smallest local upper box dimension of the set A are

defined, respectively, by formulae

sl-dimbA= inf
{

dimb

(
B(x,r)∩A

)
: x ∈A, r > 0

}
,

sl -dimbA= inf
{

dimb
(
B(x,r)∩A

)
: x ∈A, r > 0

}
.

(3.7)

If A= X , we obtain the smallest local lower and the smallest local upper box dimension
of the space X .

Using these concepts, we can generalize Theorem 3.2 in the following way.

Theorem 3.3. For a typical compact subset A of X ,

sl-dimbA≥ sl-dimbX. (3.8)

Proof. If sl -dimbX = 0, the statement is obvious. Assume that sl-dimbX > δ > 0. For x ∈
X , r > 0 and ε > 0 by M(x,r;ε), we denote the greatest possible number of disjoint closed
balls of radius ε and with centers in the ball B(x,r). Since dimbB(x,r) > δ, there exists
ε = ε(x,r,δ) < 1 such that

M(x,r;ε)≥ ε−δ. (3.9)

Clearly ε(x,r,δ) < r. Let D(x,r,ε) be a subset of B(x,r) having M(x,r,ε) elements and
such that ρ(y1, y2) > 2ε for every y1, y2 ∈D(x,r,ε), y1 
= y2.

Denote by � the family of all finite subsets of X . For F ∈� and n∈N, we define

�n(F,δ)=
{
A∈� : h

(
A,
⋃
x∈F

D
(
x,

1
n

,ε
))

< α
(
F,

1
n

,δ
)}

, (3.10)

where

α
(
F,

1
n

,δ
)
= 1

3
min
x∈F

ε
(
x,

1
n

,δ
)
. (3.11)
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Let

�(δ)=
∞⋂

m=1

∞⋃
n=m

�n(δ), where �n(δ)=
⋃
F∈�

�n(F,δ). (3.12)

It is easy to see that the set �(δ) is residual in the space �.
We claim that

sl-dimbA≥ δ for A∈�(δ). (3.13)

Indeed, let A ∈�(δ), x0 ∈ A, and r > 0. Clearly, there exist an increasing sequence
{nk} ⊂N and a sequence {Fk} ⊂� such that

h

(
A,
⋃
x∈Fk

D
(
x,

1
nk

,ε
))

< α
(
Fk,

1
nk

,δ
)

, k = 1,2, . . . . (3.14)

From (3.14) and the definition of ε, it follows that for each k ≥ 1 there exists a point
xk ∈ Fk such that ρ(x0,xk) < 2/nk. Let

αk = α
(
Fk,

1
nk

,δ
)

, εk = ε
(
xk,

1
nk

,δ
)

,

Ak = B
(
x0,r

)∩ {y ∈ X : ρ(y,A)≤ αk
}
.

(3.15)

By (3.14) and the definition of αk, we have

D
(
xk,

1
nk

,εk

)
⊂ B

(
x0,r

)
for nk ≥ 3

r
. (3.16)

Consequently

D
(
xk,

1
nk

,εk

)
⊂ Ak (3.17)

and so

M
(
Ak,εk

)≥M
(
D
(
xk,

1
nk

,εk

)
,εk

)
=M

(
xk,

1
nk

,εk

)
≥ ε−δk . (3.18)

Let U = A∩ B(x0,r). Since for each point y ∈ Ak there exists a point y′ ∈ U such that
ρ(y, y′)≤ αk ≤ (1/3)εk, we have

M
(
U ,

εk
3

)
≥M

(
Ak,εk

)≥ ε−δk . (3.19)

Consequently

dimbU ≥ limsup
k→∞

logM
(
U ,εk/3

)
− log

(
εk/3

) ≥ lim
k→∞

log
(
ε−δk

)
− log

(
εk/3

) = δ, (3.20)

whence (3.13) follows.
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Now let (δn) be an increasing sequence of positive numbers convergent to sl-dimbX .
Set

�=
∞⋂
n=1

�
(
δn
)
. (3.21)

Clearly � is residual in �. Let A∈�. By (3.13) for arbitrary n∈N, we have

sl-dimbA≥ δn, (3.22)

whence (3.8) follows. �

Now using Theorem 3.3, we can estimate the packing dimension of the typical set. Re-
call that the packing dimension of a set A⊂ X , (see [3, 26]) can be defined by the formula

dimPA= inf

{
sup

1≤i<∞
dimbAi : A=

∞⋃
i=1

Ai

}
. (3.23)

It is clear that dimP A≥ dimbA.
If A is a closed set, we can assume that the sets Ai in (3.23) are closed. Since the space

(A,ρ) has a Baire property, at least one of the sets Ai has nonempty interior. Thus there
exist x ∈ A and r > 0 such that A∩B(x,r)⊂Ai. This implies that

dimP A≥ sl-dimbA. (3.24)

From the last inequality and Theorem 3.3, follows immediately the following corollary.

Corollary 3.4. For a typical compact subset A of X ,

dimP A≥ sl-dimbX. (3.25)

4. Box dimensions of measures

Let µ∈�1(X). The quantities

dimbµ= lim
κ→0+

inf
{

dimbA : A∈�(X), µ(A)≥ 1− κ
}

,

dimbµ= lim
κ→0+

inf
{

dimbA : A∈�(X), µ(A)≥ 1− κ
} (4.1)

are called the lower and the upper box dimension of µ, respectively.

Theorem 4.1. For a typical measure µ∈�1(X),

dimbµ= 0. (4.2)
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Proof. Denote by � the set of all measures µ ∈�1(X) such that cardinality of suppµ is
finite. For ν∈�, we define

�n(ν)= {µ∈�1(X) : dFM(µ,ν) < 3−k−n
}

, (4.3)

where k = card(suppν).
Let

�=
∞⋂
n=1

�n, where �n =
⋃
ν∈�

�n(ν). (4.4)

Since for each n∈N the set �n is open and dense in the space �1(X), the set � is residual.
To complete the proof it is sufficient to show that dimbµ= 0 for every µ∈�. �

Theorem 4.2. For a typical measure µ∈�1(X),

inf
{

dimbA : A∈�(X), µ(A) > 0
}≥ sl-dimbX. (4.5)

Proof. Fix 0 < λ < sl-dimbX and κ > 0. Given x ∈ X and r,ε > 0, denote by M(x,r;ε) the
greatest possible number of disjoint closed balls of radius ε that may be found with centers
in the ball B(x,r). Since dimbB(x,r) > λ, there is ε∈ (0,1) such that

M(x,r;ε)≥ ε−λ. (4.6)

For every x ∈ X and r > 0, we fix an ε = ε(x,r) satisfying the last inequality. In the ball
B(x,r), we choose the points y1, . . . , yM , where M =M(x,r;ε), such that the balls with
centers at yi for i∈ {1, . . . ,M} and radius ε are disjoint.

Define

µx,r = 1
M

(
δy1 + ···+ δyM

)
. (4.7)

Clearly µx,r ∈�1(X). As previously, denote by � the family of all finite subsets of X .
For given F ∈� and r > 0, we denote by k(F) the number of elements of F and we

define

µF,r = 1
k(F)

∑
x∈F

µx,r ,

α(F,r)= κ

6
min

{
ε(x,r) : x ∈ F

}
,

�(F,r)= {µ∈�1(X) : dFM
(
µ,µF,r

)
< α(F,r)

}
.

(4.8)

Now, for m∈N, define

	m =
∞⋃

n=m
�
(

1
n

)
, where �

(
1
n

)
=
⋃
F∈�

�
(
F,

1
n

)
. (4.9)

It is easy to see that the set 	m is open and dense in �1(X). Recall that µF,r and, conse-
quently, �(F,1/n) and 	m are constructed for fixed λ∈ (0,sl-dimbX) and κ > 0. Now, for
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such λ and κ, we define

	(λ,κ)=
∞⋂

m=1

	m. (4.10)

Clearly the set 	(λ,κ) is residual in the space �1(X).
It can be proved that for arbitrary µ∈	(λ,κ) we have

dimbA≥ λ for every A∈�(X) with µ(A)≥ κ. (4.11)

Now, let (λn) be a strictly increasing sequence of positive numbers convergent to
sl-dimbX and let (κn) be a decreasing sequence of positive numbers convergent to 0.
Clearly the set

	 =
∞⋂
n=1

	
(
λn,κn

)
(4.12)

is residual in �1(X). Let µ∈	. Since for arbitrary n∈N we have µ∈	(λn,κn), then

dimbA≥ λn for every A∈�(X) with µ(A)≥ κn, (4.13)

whence the statement of Theorem 4.2 follows immediately. �

As an immediate consequence of Theorem 4.2, we have the following corollary.

Corollary 4.3. For a typical measure µ∈�1(X),

dimbµ≥ sl-dimbX. (4.14)

Theorem 4.4. Assume that (X ,ρ) is a complete separable metric space. Then for a typical
measure µ∈�1(X),

suppµ= X. (4.15)

Proof. Let (xn)n∈N be a sequence of elements of X such that for each n0 the subsequence
(xn)n≥n0 is dense in X . Let P be the set of all real sequences p= (pn)n∈N such that pn > 0
for all n∈N and

∑∞
n=1 pn = 1.

For p∈ P and n∈N, we define

µp =
∞∑
n=1

pnδxn , α(p,n)= 1
n

min
1≤i≤n

pi,

�n(p)= {µ∈�1(X) : dFM
(
µ,µp

)
< α(p,n)

}
.

(4.16)

Let

�=
∞⋂
n=1

�n, where �n =
⋃
p∈P

�n(p). (4.17)
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Since for each n∈N the set �n is dense and open in the space �1(X), the set � is residual
in �1(X). To complete the proof it suffices to show that suppµ = X for every µ ∈ �.

�

From Theorem 4.4, follows immediately the following corollary.

Corollary 4.5. Let (X ,ρ) be a complete separable metric space. Then for a typical measure
µ in �1(X),

dimbA= dimbX , dimbA= dimbX , (4.18)

for every A∈�(X) such that µ(A)= 1.

5. Correlation dimension of measures

Given µ∈�1(X), we define the upper and lower correlation dimension of µ by the formu-
lae

dimcµ= limsup
r→0+

1
logr

log
∫
X
µ
(
B(x,r)

)
dµ(x),

dimcµ= liminf
r→0+

1
logr

log
∫
X
µ
(
B(x,r)

)
dµ(x).

(5.1)

Note that if µ({x}) > 0 for some x ∈ X , then dimcµ = dimcµ = 0. The correlation di-
mension introduced by Procaccia et al. [30] (see also [29]) is frequently used in the theory
of dynamical systems.

Theorem 5.1. For a typical measure µ∈�1(X),

dimcµ= 0. (5.2)

Proof. Let (εn) and (δn) be sequences of positive numbers convergent to zero. For n∈N,
we set

�n =
{
ν∈�1(X) : ν

({
x0
})≥ εn for some x0 ∈ X

}
,

	n =
⋃

ν∈�n

{
µ∈�1(X) : dFM(µ,ν) < δn

}
. (5.3)

Let

	 =
∞⋂

m=1

∞⋃
n=m

	n. (5.4)

Since 	 is a residual subset of �1(X) to complete the proof, it suffices to show that
dimcµ= 0 for every µ∈	. �

Theorem 5.2. For a typical measure µ∈�1(X),

sl-dimbX ≤ dimcµ≤ sl-dimbX. (5.5)
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Sketch of the proof. One can prove that for every n∈N the sets

	α−1/n =
{
µ∈�1(X) : dimcµ≥ α− 1

n

}
,

	β+1/n =
{
µ∈�1(X) : dimcµ < β+

1
n

}
,

(5.6)

where α= sl-dimbX and β = sl-dimbX , are residual in �1(X). Let

	
β
α =

∞⋂
n=1

(
	α−1/n∩	β+1/n). (5.7)

Since the set 	
β
α is residual in �1(X) and for every µ∈	

β
α the inequalities (5.5) hold, the

proof is complete. �

Note that the estimation in Theorem 5.2 cannot be improved. In fact, we can con-
struct a Cantor-like set C with dimbC = 0, dimbC = 1 such that the set {µ ∈ �1(C) :
dimcµ= 1} is residual in �1(C). On the other hand, we can construct a set X ⊂ R such
that dimbB(x,r) = 1 for all x ∈ X and r > 0 but dimcµ = 0 for µ from some open and
dense subset 	 of �1(X) (see [23]).

6. Concentration dimension of measures

Given µ ∈ �1(X), we define the lower and upper concentration dimension of µ by the
formulae

dimLµ= liminf
r→0+

logΦµ(r)

logr
,

dimLµ= limsup
r→0+

logΦµ(r)

logr
,

(6.1)

where

Φµ(r)= sup
x∈X

µ
(
B(x,r)

)
(6.2)

is a well-known Lévy concentration function. Such function was successfully used to
study the convergence of sequences of random variables. For the properties and other
applications of concentration function, see [13].

Clearly, lower and upper concentration dimension are well defined and nonnegative,
however, they can be infinite. If dimLµ= dimLµ, this common value is called concentra-
tion dimension.

The concentration dimension, introduced in [18], is strongly related with the Haus-
dorff dimension. It is easy to prove that the Hausdorff dimension of measure µ is greater
than or equal to the lower concentration dimension of µ. Moreover, if A is a nonempty
compact set, then the following variational principle holds:

dimH A= sup
{

dimLµ : µ∈�1(X) with suppµ⊂ A
}
. (6.3)
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It is also interesting that concentration dimension is greater than or equal to the topo-
logical dimension (see [26]). In particular, if X is a Polish space in [27], it is proved that

dimT = inf
{

dimLX
′ : X ′ is homeomorphic to X

}
, (6.4)

where dimT stands for the topological dimension of X and dimLX for the concentration
dimension of X defined by formula

dimLX = sup
{

dimLµ : µ∈�1(X)
}
. (6.5)

Note that the concentration dimension seems to be more easy to be calculated. For ex-
ample, in [18] the concentration dimension was calculated for invariant measures
corresponding to some iterated function systems and invariant measures corresponding
to a partial differential equation.

A subset K of X is called quasi-self-similar from below if there exist a > 0 and r0 > 0 such
that for every ball B(x,r) with center at x ∈ K and radius r ∈ (0,r0) there is a mapping
ϕ : K → K ∩B(x,r) such that

arρ(x, y)≤ ρ
(
ϕ(x),ϕ(y)

) ∀x, y ∈ K. (6.6)

These sets are a natural generalization of self-similar sets which appears in the theory
of iterated function systems. Namely, let Si : X → X , i = 1, . . . ,N , be strictly contracting
similarity transformations. It is well known (see [14]) that there is a unique compact
set K such that K =⋃N

k=1 Si(K). Such set, called self-similar fractal, a obviously satisfies
condition (6.6). In fact, in this case, the function ϕ satisfies also the quasi-self-similarity
condition from above, and the corresponding set K is called quasi-self-similar. For details
see [4, Example 2]. Note that quasi-self-similar sets appear in the theory of dynamical
systems and were intensively studied by several authors (see [5, 19, 32]).

Let �1(K) denote the family of all probability Borel measures on X such that suppµ⊂
K .

Theorem 6.1. Let K be a compact quasi-self-similar from below subset of X . Then for a
typical measure µ∈�1(K),

dimLµ= 0. (6.7)

Proof. Let

�= {µ∈�1(K) : dimLµ= 0
}
. (6.8)

From the equality dimLδx = 0 and the fact that linear combinations of point Dirac mea-
sures are dense in the space �1(K), it follows that � is dense in �1(K).

Let ν ∈ � and n ∈ N. From condition dimLν = 0, it follows that there exists rν,n ∈
(0,1/n) such that Φν(rν,n) ≥ 2(rν,n)1/n. For every ν ∈� and n ∈ N, we choose such rν,n

and we define

�n(ν)=
{
µ∈�1(K) : dFM(µ,ν) <

(
rν,n
)(n+1)/n

}
. (6.9)
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Now, we define

D =
∞⋂
n=1

�n, where �n =
⋃
ν∈�

�n(ν). (6.10)

Since �n, n ∈ N, are open and dense in �1(K), the set � is residual. To complete the
proof it suffices to verify that dimLµ= 0 for every µ∈�. �

Theorem 6.2. Let K be a compact quasi-self-similar from below subset of X . Then for a
typical measure µ∈�1(K),

dimLµ= dimH K. (6.11)

Proof. Set d = dimH K . For n∈N, define

�n =
{
µ∈�1(K) : dimLµ > d− 1

n

}
. (6.12)

Using the quasi-self-similarity assumption on K and the fact that linear combinations
of point Dirac measures are dense in �1(K), one can prove that the set �n is dense in
�1(K).

Now, for ν∈�n, we define

	n(ν)=
{
µ∈�1(K) : dFH(µ,ν) <

(
rν,n
)d+(n−1)/n

}
, (6.13)

where rν,n < 1/n and such that Φν(2rν,n)≤ (rν,n)d−1/n.
Define

	 =
∞⋂
n=1

	n, where 	n =
⋃

ν∈�n

	n(ν). (6.14)

Since 	n, n∈N, are open and dense in �1(K), the set 	 is residual. To complete the proof
it suffices to show that dimLµ= d for every µ∈	. �

7. Local dimension of measures

Given µ∈�1(X) and x ∈ X , we define the lower and upper local dimension of µ at point
x by the formulae

l-dimµ(x)= liminf
r→0

Qµ(x,r),

l-dimµ(x)= limsup
r→0

Qµ(x,r), (7.1)

where

Qµ(x,r)= logµ
(
B(x,r)

)
logr

. (7.2)

Note that the local dimension does not change if we replace the closed ball B(x,r) by the
open ball Bo(x,r). From Alexandrov’s theorem, it follows immediately that given x ∈ X
and r > 0, the function �1(X)  µ �→ Qµ(x,r) ∈ R+ is lower semicontinuous in the case
of closed balls and upper semicontinuous in the case of open balls.
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Theorem 7.1. Let X be a Polish space. For a typical measure µ∈�1(X), there is a residual
subset Aµ of X such that l-dimµ(x) = 0 for every x ∈ Aµ. If X has no isolated points, then
the set Aµ can be chosen in such a way that l-dimµ(x)=∞ for every x ∈ Aµ.

Proof. Consider first the case of upper local dimension. For x ∈ X , n∈N, and a > 0, we
define

	x,1/n,a =
{
µ∈�1(X) : sup

0<r<1/n
Qµ(x,r) > a

}
. (7.3)

From the lower semicontinuity of function µ �→Qµ(x,r), it follows that the set 	x,1/n,a

is open.
We claim that the set 	x,1/n,a is also dense in �1(X). Indeed, let µ ∈�1(X) \	x,1/n,a

and ε > 0. Without loss of generality, we can assume that µ({x}) = 0 (if µ({x}) > 0 and
X has no isolated points, we can find a measure µ̃ ∈�1(X) such that dFM(µ, µ̃) < ε/2).
Choose s > a and r < 1/n such that µ(B(x,r)) < ε/2. Now we define µε ∈�1(X) as follows:

µε
(
B(x,r)

)= rs, µε(A)= 1− rs(
1−µ

(
B(x,r)

))
µ(A)

for A⊂ X \B(x,r). (7.4)

Simple calculation shows that hFM(µ,µε) < ε. Since µε ∈	x,1/n,a, the claim is proved.
Let (xi) be a sequence dense in X . Define

	a =
∞⋂
n=1

∞⋂
i=1

{
µ∈�1(X) : sup

0<r<1/n
Qµ
(
xi,r

)
> a
}
. (7.5)

Clearly 	a is a residual subset of �1(X).
Now, given µ∈	a and n∈N, we define

Aµ,1/n,a =
{
x ∈ X : sup

0<r<1/n
Qµ(x,r) > a

}
. (7.6)

Since Aµ,1/n,a is a dense open subset of X , the set

Aµ,a =
∞⋂
n=1

Aµ,1/n,a (7.7)

is residual in X . It is easy to verify that for µ ∈ 	a we have l-dimµ(x) ≥ a for every x ∈
Aµ,a. Now set

	 =
∞⋂

m=1

	m (7.8)

and for µ∈	 define

Aµ =
∞⋂

m=1

Aµ,m. (7.9)

Observe that l-dimµ(x) = ∞ for every x ∈ Aµ. Since 	 is residual in �1(X) and Aµ is
residual in X , the proof for the case of upper local dimension is complete.
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For the lower local dimension, the argument is similar. Using the open balls, we can
show that the set

�a =
∞⋂
n=1

∞⋂
i=1

{
µ∈�1(X) : sup

0<r<1/n
Qµ(x,r) < a

}
(7.10)

is residual in �1(X) for every a > 0. Moreover, we can show that for µ∈�a the set

Cµ,a =
∞⋂
n=1

{
x ∈ X : sup

0<r<1/n
Qµ(x,r) < a

}
(7.11)

is residual in X . To complete the proof, it suffices to take

�=
∞⋂

m=1

�1/m (7.12)

and for µ∈� the set

Cµ =
∞⋂

m=1

Cµ,1/m. (7.13)

�

For further properties of local dimensions, see [8, 11].
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