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Let X be a complex Banach space, � a norming set for X , and D ⊂ X a bounded, closed,
and convex domain such that its norm closure D is compact in σ(X ,�). Let ∅ �= C ⊂D
lie strictly inside D. We study convergence properties of infinite products of those self-
mappings of C which can be extended to holomorphic self-mappings of D. Endowing
the space of sequences of such mappings with an appropriate metric, we show that the
subset consisting of all the sequences with divergent infinite products is σ-porous.

1. Introduction

Let K be a nonempty, bounded, closed, and convex subset of a Banach space. The con-
vergence of infinite products of self-mappings of such sets is of interest in many areas
of mathematics and its applications. See, for instance, [19] and references therein. In a
recent paper [20], it is proved that the subsets consisting of all those sequences of non-
expansive self-mappings of K with divergent infinite products are not only of the first
Baire category, but also σ-porous in several spaces, endowed with appropriate metrics, of
sequences of such mappings. In the present paper, we establish analogous results for holo-
morphic mappings. After discussing some basic facts regarding holomorphic mappings
and the Kobayashi distance in the next section, we study weak ergodicity in Section 3.
The convergence of infinite products to a (unique) common fixed point is considered in
Section 4. In the last section of our paper, we study the convergence of infinite products
to a retraction.

2. Preliminaries

In this section, we recall several basic facts concerning the Kobayashi distance and holo-
morphic mappings. These facts will be used throughout our paper.

In the sequel, all Banach spaces X will be complex and D will always denote a bounded,
convex domain in X . Let kD be the Kobayashi distance in D [15] (see also [10, 11, 12, 13,
17]).

We first quote the following very useful lemma regarding convex combinations of
points.
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Lemma 2.1 [18] (see also [17]). Let D be a bounded, convex domain in a Banach space
(X ,‖ · ‖).

(i) If x, y,w,z ∈D and s∈ [0,1], then

kD
(
sx+ (1− s)y,sw+ (1− s)z

)≤max
[
kD(x,w),kD(y,z)

]
. (2.1)

(ii) If x, y ∈D and s, t ∈ [0,1], then

kD
(
sx+ (1− s)y, tx+ (1− t)y

)≤ kD(x, y). (2.2)

There are also simple connections between kD and the norm ‖ · ‖ of X .

Theorem 2.2 [12, 17]. If D is a bounded, convex domain in a Banach space (X ,‖ · ‖), then

argtanh
( ‖x− y‖

diam‖·‖D

)
≤ kD(x, y) (2.3)

for all x, y ∈D and

kD(x, y)≤ argtanh
( ‖x− y‖

dist‖·‖(x,∂D)

)
(2.4)

whenever ‖x− y‖ < dist‖·‖(x,∂D).

This theorem shows that the Kobayashi distance kD is locally equivalent to the norm
‖ · ‖.

Next, we observe that in analogy with the norm, the Kobayashi distance is lower semi-
continuous with respect to a suitably chosen topology. Let � be a nonempty subset of the
dual X∗ of X . If there exist positive constants r and R such that

sup
{∣∣l(x)

∣∣ : l ∈�, ‖l‖ ≤ R
}≥ r‖x‖ (2.5)

for each x ∈ X , then we say that � is a norming set for X [8]. It is obvious that a norming
set generates a Hausdorff linear topology σ(X ,�) on X which is weaker than the weak
topology σ(X ,X∗).

Theorem 2.3 [14] (see also [2, 16, 17]). Let X be a Banach space, � a norming set for
X , and D ⊂ X a bounded, convex domain such that its norm closure D is compact in the
σ(X ,�) topology. If {xβ}β∈J and {yβ}β∈J are nets in D which are convergent in σ(X ,�) to
x and y, respectively, and x, y ∈D, then

kD(x, y)≤ liminf
β

kD
(
xβ, yβ

)
. (2.6)

If the nets {xβ}β∈J and {yβ}β∈J are replaced by the sequences {xk}k∈N and {yk}k∈N, then the
compactness of D in σ(X ,�) can be replaced by its sequential compactness in σ(X ,�).

Recall that a subset C of D is said to lie strictly inside D if dist‖·‖(C,∂D) > 0. Thus any
closed subset C lying strictly inside a bounded, convex domain D is complete with respect
to kD.
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Theorem 2.4 [12]. Let D be a bounded, convex domain in a Banach space (X ,‖ · ‖). A
subset C of D is kD-bounded if and only if C lies strictly inside D.

Now, we present a few results concerning holomorphic mappings. We begin with the
definition of a holomorphic mapping. Let X1 and X2 be two complex normed linear
spaces and let D1 be a domain in X1. A mapping f : D1 → X2 is said to be holomorphic in
D1 if it is Fréchet differentiable at each point of D1. An equivalent definition is given in
the following theorem.

Theorem 2.5 [8] (see also [3]). Let (X1,‖ · ‖1) and (X2,‖ · ‖2) be Banach spaces, D a
domain in X1, and let � be a norming set for (X2,‖ · ‖2). For a ∈ D and x ∈ X1 \ {0}, let
D(a,x) denote the set

D(a,x)= {z ∈ C : a+ zx ∈D}. (2.7)

Then the mapping f : D→ X2 is holomorphic in D if and only if f is locally bounded on D
and for each a∈D, x ∈ X1 \ {0}, and l ∈�, the function

l ◦ f|D(a,x) : D(a,x)−→ C (2.8)

is holomorphic in D(a,x) in the classical one-variable sense.

Directly from Theorem 2.5, we get the following simple lemma regarding nets of holo-
morphic mappings. We note here that C always stands for the norm closure of each subset
C of a Banach space.

Lemma 2.6 [14] (see also [16]). Let D1 and D2 be bounded, convex domains in the Ba-
nach spaces (X1,‖ · ‖1) and (X2,‖ · ‖2), respectively, and � a norming set for (X2,‖ · ‖2).
If { fλ}λ∈J is a net of holomorphic mappings fλ : D1 → D2 which is pointwise convergent in
the topology σ(X2,�) to a mapping f : D1 →D2 and there exists a point z0 ∈D1 such that
w0 = f (z0)∈D2, then f maps D1 holomorphically into D2.

Let (M1,d1) and (M2,d2) be two metric spaces. We say that a mapping f : M1 →M2 is
nonexpansive if

d2
(
f (x), f (y)

)≤ d1(x, y) (2.9)

for all x, y ∈M1.
An immediate consequence of the definition of the Kobayashi distance is the following

property of holomorphic mappings. If D1 and D2 are bounded domains in the Banach
spaces (X1,‖ · ‖1) and (X2,‖ · ‖2), respectively, and kD1 and kD2 are the Kobayashi dis-
tances on D1 and D2, respectively, then each holomorphic f : D1 → D2 is nonexpansive,
that is,

kD1

(
f (x), f (y)

)≤ kD2 (x, y) (2.10)

for all x, y ∈D1 [15].
We also recall the Earle-Hamilton theorem.
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Theorem 2.7 [9]. Let D be a bounded, convex domain in a Banach space (X ,‖ · ‖) and let
R̃= diam‖·‖D. Let a holomorphic f : D→D map D strictly inside itself. If ε > 0 is such that
dist‖·‖( f (D),∂D)≥ ε and t = ε/2R̃, then for 0 < s= 1/(1 + t) < 1,

kD
(
f (x), f (y)

)≤ skD(x, y) (2.11)

for all x, y ∈ D, and therefore f has a unique fixed point. Moreover, for any x in D, the
sequence of iterates { f k(x)} converges to this fixed point.

Now we introduce basic notions and notations concerning those spaces which we will
investigate in subsequent sections.

Throughout this paper, we let X be a complex Banach space, � a norming set for
X , and D ⊂ X a bounded, closed, and convex domain such that its norm closure D is
compact in σ(X ,�). Let C be a kD-bounded subset of D and let the set �H consist of all
those self-mappings of C which can be extended to holomorphic self-mappings of D. We
endow �H with the metric ρ�H defined by

ρ�H ( f ,g)= sup
x∈C

kD
(
f (x),g(x)

)
(2.12)

for f ,g ∈�H . It is not difficult to see that, by Lemma 2.6, the metric space (�H ,ρ�H ) is
complete.

Denote by �H the set of all sequences { ft}∞t=1, where each ft ∈�H . We equip the space
�H with the metric d�H defined by

d�H

({
ft
}∞
t=1,

{
gt
}∞
t=1

)
= sup

t≥1
ρ�H

(
ft,gt

)
, (2.13)

where { ft}∞t=1,{gt}∞t=1 ∈�H . Clearly, the metric space (�H ,d�H ) is also complete.
Finally, we recall the concept of porosity. We will use the rather strong notion which

appears in [4, 5, 6, 7]. In the literature, one can also find other notions of porosity [1, 21,
22, 23].

Definition 2.8. Let (Y ,d) be a complete metric space. Denote by B(x,R) the closed ball
centered at x ∈ Y and of radius R > 0. A subset E ⊂ Y is called porous in (Y ,d) if there
exist α∈ (0,1) and R0 > 0 such that for each R∈ (0,R0) and each y ∈ Y , there is a point
z ∈ Y for which

B(z,αR)⊂ B(y,R) \E. (2.14)

A subset of the space Y is called σ-porous in (Y ,d) if it is a countable union of porous
subsets in (Y ,d).

To end this section, we introduce the following notations which will be used through-
out this paper.

Let D ⊂ X be a bounded, closed, and convex domain and let C be a kD-bounded
subset of D. The positive numbers R1, R2 are such that for each x̃0 ∈ C, the closed ball



M. Budzyńska and S. Reich 331

B‖·‖(x̃0,R1) in (X ,‖ · ‖) lies in D and diam‖·‖D < R2. Next, 0 < L1 < L2 satisfy

L1 kD(x, y)≤ ‖x− y‖ ≤ L2 kD(x, y) (2.15)

for all x, y ∈ C. It is obvious that 0 < R1/R2 < 1 and K = L2/L1 > 1.
If∅ �= C ⊂D, then d(C) denotes the diameter of C in (D,kD), that is,

d(C)= sup
x,y∈C

kD(x, y). (2.16)

3. Weak ergodicity

This section is devoted to weak ergodicity in the sense of population biology (see [19]
and the references therein). Our result is analogous to [20, Theorem 1.1].

A sequence { ft}∞t=1 ∈�H is called regular if for any ε > 0, there exists a number N ∈
N such that for each x, y ∈ C, each integer T ≥ N , and each mapping π : {1, . . . ,T} →
{1,2, . . .}, we have

kD
((

fπ(T) ◦ ··· ◦ fπ(1)
)
(x),

(
fπ(T) ◦ ··· ◦ fπ(1)

)
(y)
)≤ ε. (3.1)

A mapping f ∈�H is called regular if the sequence f̂ = { ft}∞t=1, where ft = f (t ≥ 1), is
regular. It is easy to verify that if f ∈�H is regular, then there exists a unique x f ∈ C such
that f (x f )= x f and f n(x)→ x f as n→∞, uniformly on C.

Denote by � the set of all regular elements of �H and by �(0) the set of all regular
elements of �H .

For each n∈N, we denote by �n the set of all sequences { ft}∞t=1 ∈�H which have the
following property.

There exists an integer N ∈ N such that for each x, y ∈ C, each integer T ≥ N , and
each mapping π : {1, . . . ,T} → {1,2, . . .},

kD
((

fπ(T) ◦ ··· ◦ fπ(1)
)
(x),

(
fπ(T) ◦ ··· ◦ fπ(1)

)
(y)
)≤ 1

n
. (3.2)

It is not difficult to see that �=⋂∞n=1 �n.

Similarly, �(0)
n is the set of all f ∈�H such that f̂ ∈�n. Clearly, �(0) =⋂∞n=1 �(0)

n .

Theorem 3.1. Under the assumptions given in the definitions of �H , �H , �, and �(0),
(i) the set �H \� is σ-porous in �H ,

(ii) the set �H \�(0) is σ-porous in �H .

Proof. We will show that �H \�n is porous in �H and that �H \�(0)
n is porous in �H

for each n∈N. To this end, fix n∈N and choose α∈ (0,1) such that

α <
1−α

8Kn
(
d(C) + 1

) · R1

3R2
, (3.3)
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where R1, R2, K , and d(C) are defined at the end of the previous section. Assume that
{ ft}∞t=1 ∈�H and R∈ (0,1]. Set

γ = (1−α)R
2K
(
d(C) + 1

) · R1

3R2
= s

R1

3R2
, (3.4)

where 0 < s < 1, and choose 0 < N ∈N such that

d(C) + 1 < 2NαR. (3.5)

Observe that

4αnR < γ. (3.6)

Fix x′ ∈ C. For each t ∈N, define

fγt(x)= (1− s) ft(x) + sx′, (3.7)

where x ∈D. Note that if ft = f (t ≥ 1) with f ∈�H , then fγt = fγ (t ≥ 1), where

fγ(x)= (1− s) f (x) + sx′ (3.8)

for x ∈D. Hence, we get

kD
(
fγt(x), ft(x)

)≤ 1
L1

s
∥∥ ft(x)− x′

∥∥≤ L2

L1
skD
(
ft(x),x′

)≤ Kγ
3R2

R1
d(C)

= K · (1−α)R
2K
(
d(C) + 1

) · R1

3R2
· 3R2

R1
·d(C) <

(1−α)R
2

(3.9)

for each x ∈ C, and

kD
(
fγt(x), fγt(y)

)≤ 1
1 + sR1/2R2

kD(x, y)=
(

1− sR1

2R2 + sR1

)
kD(x, y)

≤
(

1− s
R1

3R2

)
kD(x, y)= (1− γ)kD(x, y)

(3.10)

for every x, y ∈D. Now, assume that {gt}∞t=1 ∈�H and that

d�H

({
fγt
}∞
t=1,

{
gt
}∞
t=1

)
≤ αR. (3.11)

Then we see that

d�H

({
ft
}∞
t=1,

{
gt
}∞
t=1

)
≤ d�H

({
fγt
}∞
t=1,

{
gt
}∞
t=1

)
+d�H

({
fγt
}∞
t=1,

{
ft
}∞
t=1

)
< αR+

(1−α)R
2

= (1 +α)R
2

< R.
(3.12)

To prove that for each x, y ∈ C, each integer T ≥ N , and each mapping π : {1, . . . ,T} →
{1,2, . . .}, we have

kD
((
gπ(T) ◦ ··· ◦ gπ(1)

)
(x),

(
gπ(T) ◦ ··· ◦ gπ(1)

)
(y)
)≤ 1

n
, (3.13)
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it is sufficient to verify that for each x, y ∈ C, each integer T ≥ N , and each mapping
π : {1, . . . ,N} → {1,2, . . .}, there is an integer m∈ {1, . . . ,N} such that

kD
((
gπ(m) ◦ ··· ◦ gπ(1)

)
(x),

(
gπ(m) ◦ ··· ◦ gπ(1)

)
(y)
)≤ 1

n
. (3.14)

To this end, assume that x, y ∈ C and π : {1, . . . ,N} → {1,2, . . .}. Assume, contrary to our
claim, that for each integer j ∈ {1, . . . ,N},

kD
((
gπ( j) ◦ ··· ◦ gπ(1)

)
(x),

(
gπ( j) ◦ ··· ◦ gπ(1)

)
(y)
)
>

1
n

,

kD(x, y) >
1
n
.

(3.15)

Set

x0 = x, xj+1 = gπ( j+1)xj ,

y0 = y, yj+1 = gπ( j+1)yj
(3.16)

for each j ∈ {0, . . . ,N − 1}.
Now fix j ∈ {0, . . . ,N − 1}. Then

kD
(
xj , yj

)
>

1
n
. (3.17)

Moreover,

kD
(
fγπ( j+1)

(
xj
)
, fγπ( j+1)

(
yj
))≤ (1− γ)kD

(
xj , yj

)
. (3.18)

It follows from the above inequalities that

kD
(
xj+1, yj+1

)= kD
(
gπ( j+1)

(
xj
)
,gπ( j+1)

(
yj
))

≤ kD
(
gπ( j+1)

(
xj
)
, fγπ( j+1)(xj)

)
+ kD

(
fγπ( j+1)

(
xj
)
, fγπ( j+1)

(
yj
))

+ kD
(
fγπ( j+1)

(
yj
)
,gπ( j+1)

(
yj
))

≤ (1− γ)kD
(
xj , yj

)
+ 2αR= kD

(
xj , yj

)− γkD
(
xj , yj

)
+ 2αR

< kD
(
xj , yj

)− γ

n
+ 2αR < kD

(
xj , yj

)− 4αnR
n

+ 2αR

= kD
(
xj , yj

)− 2αR.

(3.19)

Therefore, we obtain

kD
(
xN , yN

)≤ kD
(
x0, y0

)− 2NαR≤ d(C)− 2NαR < 0. (3.20)

This contradiction yields the existence of an integer m∈ {1, . . . ,N} for which the inequal-
ity

kD
((
gπ(m) ◦ ··· ◦ gπ(1)

)
(x),

(
gπ(m) ◦ ··· ◦ gπ(1)

)
(y)
)≤ 1

n
(3.21)
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is valid. Hence {gt}∞t=1 ∈�n. Thus we have shown that

{{
gt
}∞
t=1 ∈�H : d�H

({
fγt
}∞
t=1,

{
gt
}∞
t=1

)
≤ αR

}
⊂
{{

f̃t
}∞
t=1 ∈�H : d�H

({
ft
}∞
t=1,

{
f̃t}∞t=1

)
< R
}
∩�n.

(3.22)

If f ∈�H and ft = f for all t ≥ 1, then fγt = fγ (t ≥ 1) and

{
g ∈�H : ρ�H

(
fγ,g

)≤ αr
}⊂ { f̃ ∈�H : ρ�H

(
f , f̃

)
< r
}∩�(0)

n . (3.23)

Consequently, the set �H \�n is porous in �H and the set �H \�(0)
n is porous in �H for

each n∈N. This completes the proof. �

4. Convergence to common fixed points

In this section, we will study the convergence of unrestricted infinite products to a com-
mon fixed point.

First we introduce the following notations. Let �∗
H denote the set of all sequences

f = { ft}∞i=1 ∈�H for which there exists xf ∈ C such that

ft
(
xf
)= xf (4.1)

for all t ≥ 1. The closure of �∗
H in the metric space (�H ,d�H ) will be denoted by �∗

H .

Theorem 4.1. Let � be the set of all f = { ft}∞i=1 ∈�∗
H which satisfy the following condi-

tions:
(i) there exists x∗ ∈ C such that ft(x∗)= x∗ for all t ≥ 1;

(ii) for each ε > 0, there exists an N ∈N such that

kD
((

fπ(n) ◦ ··· ◦ fπ(1)
)
(x),x∗

)≤ ε (4.2)

for each integer n≥N , each mapping π : {1, . . . ,n} → {1,2, . . .}, and each x ∈ C.
Then the set �∗

H \� is σ-porous in �∗
H .

Proof. For each n ∈ N, let �n be the set of all sequences { ft}∞i=1 ∈�∗
H for which there

exist x(n) ∈ C and an N ∈N such that

kD
((

fπ(T) ◦ ··· ◦ fπ(1)
)
(x),x(n))≤ 1

n
(4.3)

for each integer T ≥N , each mapping π : {1, . . . ,T} → {1,2, . . .}, and each point x ∈ C. It
is obvious that �=⋂∞n=1�n. Now, fix n∈N. We will show that the set �∗

H \�n is porous
in �∗

H . To see this, let α∈ (0,1) be such that

α <
1

8Kn
(
d(C) + 1

) · R1

3R2
, (4.4)
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where R1, R2, K , and d(C) are defined in Section 2. Clearly, 0 < α < 1/2. Assume that

f̃ = { f̃t}∞i=1 ∈�∗
H and R∈ (0,1]. Then there exists f = { ft}∞i=1 ∈�∗

H such that

d�H

({
f̃t
}∞
i=1,
{
ft
}∞
i=1

)
≤ R

4
. (4.5)

Let xf ∈ C satisfy

ft
(
xf
)= xf (4.6)

for all t ≥ 1. Set

γ = R

4K
(
d(C) + 1

) · R1

3R2
= s

R1

3R2
. (4.7)

It is obvious that 0 < γ < 1 and 0 < s < 1. Next, choose 2 < N ∈N such that

(1− γ)N
(
d(C) + 1

)
<

1
2n

. (4.8)

Finally, for each t ∈N, define

fγt(x)= (1− s) ft(x) + sxf (4.9)

for x ∈ C. It is obvious that { fγt}∞t=1 ∈�∗
H . Moreover, we have

kD
(
fγt(x), fγt(y)

)≤ 1
1 + sR1/2R2

kD(x, y)=
(

1− sR1

sR1 + 2R2

)
kD(x, y)

≤
(

1− s
R1

3R2

)
kD(x, y)= (1− γ)kD(x, y)

(4.10)

for every x, y ∈D. Next, we obtain

kD
(
fγt(x), ft(x)

)≤ 1
L1

s
∥∥ ft(x)− xf

∥∥≤ L2

L1
skD
(
ft(x),xf

)
≤ K

3R2

R1
γd(C)= K · 3R2

R1
· R

4K
(
d(C) + 1

) · R1

3R2
·d(C) <

R

4

(4.11)

for each x ∈ C. Assume now that {gt}∞i=1 ∈�H and

d�H

({
fγt
}∞
i=1,
{
gt
}∞
i=1

)
≤ αR. (4.12)

Then we get

d�H

({
f̃t
}∞
i=1,
{
gt
}∞
i=1

)
≤ d�H

({
f̃t
}∞
i=1,
{
ft
}∞
i=1

)
+d�H

({
ft
}∞
i=1,
{
fγt
}∞
i=1

)
+d�H

({
fγt
}∞
i=1,
{
gt
}∞
i=1

)
<
R

4
+
R

4
+αR < R.

(4.13)



336 Infinite products of holomorphic mappings

We will show that the following property holds.
(P1) For each x ∈ C, each integer T ≥N , and each mapping π : {1, . . . ,T} → {1,2, . . .},

kD
((
gπ(T) ◦ ··· ◦ gπ(1)

)
(x),xf

)≤ 1
n
. (4.14)

So, let y ∈ C and t ∈N. We have

kD
(
fγt(y),xf

)= kD
(
fγt(y), fγt

(
xf
))≤ (1− γ)kD(y,xf

)
, (4.15)

which implies that

kD
(
gt(y),xf

)≤ kD
(
gt(y), fγt(y)

)
+ kD

(
fγt(y),xf

)≤ αR+ (1− γ)kD
(
y,xf

)
(4.16)

for each t ∈N and each y ∈ C. Assume that x ∈ C, T ≥N , and π : {1, . . . ,T} → {1,2, . . .}.
Set

x0 = x,

xi+1 = gπ(i+1)
(
xi
)

(i≥ 0).
(4.17)

Then, for any integer i∈N0, we get

kD
(
xi+1,xf

)= kD
(
gπ(i+1)

(
xi
)
,xf
)≤ αR+ (1− γ)kD

(
xi,xf

)
. (4.18)

Using induction, we obtain

kD
(
xi,xf

)≤ (1− γ)ikD
(
x0,xf

)
+αR ·

[ i−1∑
j=0

(1− γ) j
]

(4.19)

for i= 1, . . . ,T , and therefore we see that

kD
((
gπ(T) ◦ ··· ◦ gπ(1)

)
(x),xf

)
= kD

(
xT ,xf

)
< (1− γ)TkD

(
x0,xf

)
+αR

1
γ

≤ (1− γ)Nd(C) +αR
1
γ

< (1− γ)Nd(C) +
1

8Kn
(
d(C) + 1

) · R1

3R2
·R · 4K

(
d(C) + 1

)
R

· 3R2

R1

= (1− γ)Nd(C) +
1

2n
<

1
2n

+
1

2n
= 1

n
.

(4.20)

Hence property (P1) holds. Therefore, for {gt}∞t=1 ∈�∗
H with

d�H

({
fγt
}∞
t=1,

{
gt
}∞
t=1

)
≤ αR, (4.21)

we have

d�H

({
f̃t
}∞
t=1,

{
gt
}∞
t=1

)
< R (4.22)
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and {gt}∞t=1 satisfies (P1). This means that {gt}∞t=1 ∈�n which implies, in turn, that the
set �∗

H \�n is porous in �∗
H . The proof is complete. �

5. Convergence to a retraction

In this section, we continue to use the notations and definitions introduced in the previ-
ous sections.

Recall that C is a nonempty, closed, and convex subset of a bounded, convex domain
D in a Banach space X , and that C lies strictly inside D. Let F be a nonempty, closed, and

convex subset of the set C. By �(F)
H , we denote the set of all f ∈�H such that f (x) = x

for each x ∈ F. It is obvious that �(F)
H is a closed subset of �H . Next, we let �(F)

H consist
of all { ft}∞t=1 ∈�H such that ft ∈�(F)

H for all t ≥ 1. Clearly, �(F)
H is a closed subset of �H .

Assume additionally that there exists a mapping r ∈�(F)
H such that r(C)= F.

A sequence { ft}∞t=1 ∈�(F)
H is called normal if the following two properties hold.

(i) For each mapping π̃ :N→N, there exists a mapping pπ̃ : C→ F such that

lim
t→∞

(
fπ̃(t) ◦ ··· ◦ fπ̃(1)

)
(x)= pπ̃(x) (5.1)

for all x ∈ C.
(ii) For each ε > 0, there exists an N ∈N such that for each integer T ≥N , each map-

ping π̃ :N→N, and each x ∈ C,

kD
((

fπ̃(T) ◦ ··· ◦ fπ̃(1)
)
(x), pπ̃(x)

)≤ ε. (5.2)

We observe that pπ̃ ∈�(F)
H as the pointwise limit of a sequence in �(F)

H (by the com-
pactness of D in σ(X ,�) and Lemma 2.6). Denote by � the set of all normal sequences in

�(F)
H . For n∈N, denote by �n the set of all { ft}∞t=1 ∈�(F)

H for which there exists an N ∈N
such that for each x ∈ C, each integer T ≥N , and each mapping π : {1, . . . ,T} → {1,2, . . .},

distkD
((

fπ(T) ◦ ··· ◦ fπ(1)
)
(x),F

)= inf
y∈F

kD
((

fπ(T) ◦ ··· ◦ fπ(1)
)
(x), y

)
<

1
n
. (5.3)

It is easy to see that �=⋂∞n=1�n.

A mapping f ∈�(F)
H is called normal if the constant sequence { ft}∞t=1, with ft = f for

all t ≥ 1, is normal. Denote by �(0) the set of all normal mappings f ∈�(F)
H .

Theorem 5.1. (i) The set �(F)
H \� is σ-porous in (�(F)

H ,d�H ).

(ii) The set �(F)
H \�(0) is σ-porous in (�(F)

H ,ρ�H ).

Proof. Let n∈N and choose α∈ (0,1) such that

α <
1

4Kn
(
d(C) + 1

) · R1

3R2
(5.4)
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(here we use notations from the previous sections). Obviously, α<1/4. Choose any { ft}∞t=1

∈�(F)
H and R∈ (0,1]. Put

γ = R

2K
(
d(C) + 1

) · R1

3R2
= s

R1

3R2
. (5.5)

Clearly, 0 < γ < 1 and 0 < s < 1. Assume that a natural number N > 2 is such that

(1− γ)N
(
d(C) + 1

)
<

1
2n

. (5.6)

Now, for each t ∈N, define

fγt(x)= (1− s) ft(x) + sr(x) (5.7)

for x ∈ C. Hence we have

fγt(x)= x (5.8)

for every x ∈ F and t ≥ 1. We also have

kD
(
fγt(y),x

)= kD
(
(1− s) ft(y) + sr(y),(1− s) ft(x) + sr(x)

)
≤max

[
kD
(
ft(y), ft(x)

)
,kD
(
r(y),r(x)

)]≤ kD(y,x)
(5.9)

for each x ∈ F, y ∈ C, and t ≥ 1. Therefore { fγt}∞t=1 ∈�(F)
H if { ft}∞t=1 ∈�(F)

H , and fγ ∈
�(F)

H if f ∈�(F)
H . Next, we get

kD
(
fγt(x), ft(x)

)= kD
(
(1− s) ft(x) + sr(x), ft(x)

)≤ 1
L1

s
∥∥ ft(x)− r(x)

∥∥
≤ L2

L1
skD
(
ft(x),r(x)

)≤ K
3R2

R1
γd(C)

= K
3R2

R1

R

2K
(
d(C) + 1

) · R1

3R2
d(C) <

1
2
R

(5.10)

for x ∈ C and t ≥ 1, and hence for {gt}∞t=1 ∈�(F)
H with

d�H

({
gt
}∞
t=1,

{
fγt
}∞
t=1

)
≤ αR, (5.11)

we obtain

d�H

({
gt
}∞
t=1,

{
ft
}∞
t=1

)
≤ d�H

({
gt
}∞
t=1,

{
fγt
}∞
t=1

)
+d�H

({
fγt
}∞
t=1,

{
gt
}∞
t=1

)
< αR+

1
2
R <

1
4
R+

1
2
R < R.

(5.12)

Let T ≥N be an integer, x ∈ C, and π : {1, . . . ,T} → {1,2, . . .}. We will show that

distkD
((
gπ(T) ◦ ··· ◦ gπ(1)

)
(x),F

)= inf
y∈F

kD
((
gπ(T) ◦ ··· ◦ gπ(1)

)
(x), y

)
<

1
n
. (5.13)
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It is sufficient to show that

distkD
((
gπ(N) ◦ ··· ◦ gπ(1)

)
(x),F

)
<

1
n
. (5.14)

Take w ∈ C and t ∈N. Then, for each z ∈ F, we have (1− s)z+ sr(w)∈ F, and therefore

distkD
(
fγπ(t)(w),F

)= inf
y∈F

kD
(
fγπ(t)(w), y

)≤ kD
(
fγπ(t)(w),(1− s)z+ sr(w)

)
= kD

(
(1− s) fπ(t)(w) + sr(w),(1− s) fπ(t)(z) + sr(w)

)
≤ 1

1 + sR1/2R2
kD(w,z)=

(
1− sR1

sR1 + 2R2

)
kD(w,z)

≤
(

1− s
R1

3R2

)
kD(w,z)= (1− γ)kD(w,z).

(5.15)

This leads to

distkD
(
fγπ(t)(w),F

)≤ (1− γ)distkD(w,F
)
, (5.16)

which implies, in turn, that

distkD
(
gπ(t)(w),F

)≤ distkD
(
fγπ(t)(w),F

)
+ kD

(
fγπ(t)(w),gπ(t)(w)

)
≤ (1− γ)distkD(w,F) +αR.

(5.17)

By induction,

distkD
((
gπ(i) ◦ ··· ◦ gπ(1)

)
(x),F

)≤ (1− γ)i distkD(w,F) +αR ·
[∑i−1

j=0
(1− γ) j

]
. (5.18)

Hence

distkD
((
gπ(N) ◦ ··· ◦ gπ(1)

)
(x),F

)
< (1− γ)Nd(C) +

1
γ
·αR

≤ (1− γ)Nd(C) +
2K
(
d(C) + 1

)
R

· 3R2

R1
· 1

4Kn
(
d(C) + 1

) · R1

3R2
·R

= (1− γ)Nd(C) +
1

2n
<

1
2n

+
1

2n
= 1

n
.

(5.19)

Thus we have shown that

distkD
((
gπ(T) ◦ ··· ◦ gπ(1)

)
(x),F

)
<

1
n

(5.20)

for each point x ∈ C, each integer T ≥ N , and each mapping π : {1, . . . ,T} → {1,2, . . .}.
This means that {gt}∞t=1 ∈�n and yields the porosity of �(F)

H \�n in (�(F)
H ,d�H ). Since

� =⋂∞n=1�n, we conclude that �(F)
H \� is σ-porous in (�(F)

H ,d�H ). It is not difficult to
see that the second statement of the theorem has also been proved. �
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Remark 5.2. Finally, we observe that all the results proved in this paper have a metric
character and therefore analogous results are valid in appropriately defined spaces of se-
quences of kD-nonexpansive (not necessarily holomorphic) mappings.
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M. Budzyńska and S. Reich 341

[17] T. Kuczumow, S. Reich, and D. Shoikhet, Fixed points of holomorphic mappings: a metric ap-
proach, Handbook of Metric Fixed Point Theory (W. A. Kirk and B. Sims, eds.), Kluwer
Academic, Dordrecht, 2001, pp. 437–515.

[18] T. Kuczumow and A. Stachura, Iterates of holomorphic and kD-nonexpansive mappings in convex
domains in Cn, Adv. Math. 81 (1990), no. 1, 90–98.

[19] S. Reich and A. J. Zaslavski, Convergence of generic infinite products of nonexpansive and uni-
formly continuous operators, Nonlinear Anal. Ser. A: Theory Methods 36 (1999), no. 8, 1049–
1065.

[20] , The set of divergent infinite products in a Banach space is σ-porous, Z. Anal. Anwen-
dungen 21 (2002), no. 4, 865–878.
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